一次函数与反比例函数初三专题
- 格式:doc
- 大小:308.65 KB
- 文档页数:6
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
1. (2014•广东,第23题9分)如图,已知A14,2⎛⎫- ⎪⎝⎭,B(﹣1,2)是一次函数y=kx+b与反比例函数myx=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.2. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数kyx=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.3.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P3, 02⎛⎫-⎪⎝⎭,且与反比例函数kyx=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?4.(2014•四川自贡,第22题12分)如图,一次函数y =kx +b 与反比例函数()60y x x=>的图象交于A (m ,6),B (3,n )两点.(1)求一次函数的解析式;(2)根据图象直接写出60kx b x+-<的x 的取值范围;(3)求△AOB 的面积.5.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的直线y =x +b 交x 轴于点B . (1)求k 和b 的值; (2)求△OAB 的面积.6. (2014•山东枣庄,第24题10分)如图,一次函数y =ax +b 与反比例函数y =的图象交于A 、B 两点,点A 坐标为(m ,2),点B 坐标为(﹣4,n ),OA 与x 轴正半轴夹角的正切值为,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD . (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积.7.(2014•四川遂宁,第23题,10分)已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A (1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.8.(2014•四川成都,第19题10分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数8 yx =-的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.9.(2014•四川广安,第20题6分)如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.10.(2014•四川绵阳,第22题12分)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A 作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.11. (2014•乐山,第25题10分)如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F与双曲线,y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,P A=PB?12.(2014•广西来宾,第22题8分)一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
26.26(4)专题:反比例函数与一次函数结合一.【知识要点】1.反比例函数与一次函数结合二.【经典例题】k S 的取值范围。
3.如图,已知直线l :6-=x y 与x 轴,y 轴交于点A,B 两点,与反比例函数xk y =(x >0)的图象交于点C (a,-1)和点D 。
(1)求k 的值及点D 的坐标。
(2)若点P 在反比例函数图象上且位于直线l 上方,过点P 作PM ⊥x 轴于点M 交AB 于E ,过点P 作PN ⊥y 轴于点N ,交AB 于点F ,求BE AF •的值。
4.如图,直线y=﹣x+4分别交x轴、y轴于A、B两点,P是反比例函数y=(x>0),图象上位于直线y=﹣x+4下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,并且AF•BE=4(1)求k的值;(2)若反比例函数y=与一次函数y=﹣x+4交于C、D两点,求三角形OCD的面积.三.【题库】【A】1.如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.2.二次函数y=ax2+bx+c的图象如图,则一次函数y=ax+b2﹣4ac与反比例函数y=.在同一坐标系内的图象大致为()A .B .C .D .【B 】【C 】 1.(绵阳2018第22题本题满分11分) 如图,一次函数2521+-=x y 的图像与反比例函数)0(>k xk y =的图像交与A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使P A +PB 的值最小,并求出其最小值和P 点坐标.2.在平面直角坐标系xOy 中,反比例函数y =(x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【D 】1.(2020年绵阳期末第12题)如图,已知点A(m ,m+3),点B(n ,n-3)是反比例函数()0>=k xk y 在第一象限的图象上的两点,连接AB.将直线AB 向下平移3个单位得到直线l ,在直线l 上任取一点C , 则△ABC 的面积为( ) A.29 B.6 C. 215 D.92.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(,)称为点P 的“倒影点”,直线y =﹣x+1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =的图象上.若AB =2,则k = .。
查补重难点03反比例函数与一次函数的综合运用考点一:反比例函数与一次函数综合反比例函数与一次函数进行综合考查的题型是江苏历年中考数学对于函数考查的重点内容,那么关于反比例函数与一次函数的综合专题当中,我们主要涉及到函数共存问题,交点和不等式(比大小)问题、最值问题以及与几何综合压轴类的题型。
无论是哪一类型的题型,在综合的考察过程当中都是对于反比例函数与一次函数的图像和性质有充分的了解,借助数形结合思想、方程思想、化归思想等。
通过函数的图像来得到我们所需要的求解问题。
在这过程当中,如果对于这两类函数没有全面的了解,那么在解题过程当中就要花费大家很多的时间而导致其解题效率的降低,那么在解决这三大类型的提醒过程当中,该如何利用这些函数的性质来进行解题,该专题可供大家在备考阶段能够进行专项的突破。
题型1.反比例函数和一次函数图像共存问题函数图象共存问题是一次函数和反比例函数当中含有共同的参数,根据分类讨论的形式,由函数的图像特点来判定符合两个函数参数的图形。
解决这类型的题不仅是反比例函数和一次函数进行综合考查,连同二次函数在内的题型进行考查也是比较常见的,所以解决这类型的问题时,我们先要根据一次函数或反比例函数中参数的共性,通过分别进行讨论的形式逐一进行排除,最终确定满足要求的函数图像。
.B ...变式1.(2023年湖北省襄阳市中考数学真题)在同一平面直角坐标系中,一次函数y kx =k x的图象可能是().B .C .D .变式2.(2022·广西·中考真题)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .题型2.反比例函数和一次函数的交点问题一次函数图像与反比例函数相关问题,牵扯到的知识点比较多,如求它们的函数解析式,或是通过两者的图像相交,需要考生结合两个函数解析式转化成一元二次方程,从而求得交点坐标等。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
2023年中考九年级数学高频考点专题训练--反比例函数与一次函数交点问题一、综合题1.如图,直线y1=3x﹣5与反比例函数y2= k−1x的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.2.如图,在平面直角坐标系中,双曲线L:y= k x(x>0)过点A(a,b)(0<a<2)、B(2,1)。
过点A作AC△x轴,垂足为C。
(1)求L的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为双曲线L上A,B之间(包括A,B两点)的动点,直线l1:y=mx+1过点P。
在(2)的条件下,若y=mx+1具有y随x的增大而增大的性质,请直接写出m的取值范围(不必说明理由)。
3.如图,已知正比例函数y=k1x的图象与反比例函数y=k2x的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足为Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.(1)求正比例函数解析式、反比例函数解析式.(2)当点D的纵坐标为9时,求ΔAEP的面积.(3)若直线OD上存在一点M,点M的横坐标为m,ΔAEM的面积为S,直接写出S关于m的解析式,并写出定义域.4.在平面直角坐标系中,过点P(0,a)作直线l分别交y=mx(m>0、x>0)、y=n x(n<0、x<0)于点M、N,(1)若m=4,MN△x轴,S△MON=6,求n的值;(2)若a=5,PM=PN,点M的横坐标为3,求m-n的值;(3)如图,若m=4,n=-6,点A(d,0)为x轴的负半轴上一点,B为x轴上点A右侧一点,AB=4,以AB为一边向上作正方形ABCD,若正方形ABCD与y=mx(m>0、x>0)、y=nx(n<0、x<0)都有交点,求d的范围.5.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0,x<0)的图象交于点A(-3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)求sin△ABO的值;(3)当x<0时,比较y1与y2的大小.6.如图,已知反比例函数y1=k x的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).(1)求这两个函数的关系式;(2)如果在x轴上找一点C使△ABC的面积为18,求点C坐标.7.如图,一次函数y=ax+b与反比例函数y=k x的图象交于A(2,2),B(4,1)两点.(1)求这两个函数的表达式;(2)在反比例函数y=k x第三象限的图象上有一点P,且点P到直线AB的距离最短,求点P的坐标.8.已知一次函数y=kx+b的图象与反比例函数y=-8x的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.9.如图,在平面直角坐标系中,反比例函数y =k x(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y =k x(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.10.如图,已知直线y=mx+b(m≠0)与双曲线y= k x(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.11.如图,在平面直角坐标系中,O为坐标原点,已知△ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=k x(k≠0)的图象经过点D.(1)求反比例函数的解析式;(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.12.若反比例函数y=k x与一次函数y=2x-4的图象都经过点A(a,2).(1)求反比例函数y=kx的表达式;(2)当反比例函数y=kx的值大于一次函数y=2x-4的值时,求自变量x的取值范围.13.如图,已知直线y=ax+b与双曲线y=k x(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).14.如图,直线y1=mx与双曲线y2=k x交于点A、B,过点A作AP△x轴,垂足P点的坐标是(−2,0),连接BP,且S△ABP=4.(1)求正比例函数y1=mx和反比例函数y2=k x的解析式.(2)当y1<y2时,求x的取值范围.15.如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M,N两点.(1)求一次函数的表达式;(2)根据图象直接写出kx+b-4x>0中x的取值范围;(3)求△AOB的面积.16.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=k x(k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y=k x的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<kx的解集.答案解析部分1.【答案】(1)解:∵点B(n,﹣6)在直线y=3x﹣5上.∴-6=3n-5,解得:n= −1 3.∴B(−13,-6);∵反比例函数y=k−1x的图象也经过点B(−13,-6),∴k-1=-6×( −13)=2,解得:k=3;(2)解:设直线y=3x﹣5分别与x轴,y轴相交于点C,点D,当y=0时,即3x﹣5=0,x= 5 3,∴OC= 5 3,当x=0时,y=3×0-5=-5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2-5=1,即A(2,1).∴S△AOB=S△AOC+S△COD+S△BOD=12×(53×1+53×5+13×5)=356(3)解:由图象可知y1>y2时自变量x的取值范围为:−13<x<0或x>2.2.【答案】(1)解:将B(2,1)代入y= k x,得k=2,∴L的解析式为y= 2 x(2)解:∵点A(a,b)在反比例函数上,∴b= 2 a,∵S△ABC= 12b(2-a)=2,即12b(2−2b)=2,∴b=3,点A的坐标为( 23,3)(3)解:m的取值范围为0<m≤3提示:当点P与点A重合时,把( 23、3)代入y=mx+1,解得m=3∵y=mx+1具有y随x的增大而增大的性质,∴m>0,∴m的取值范围为0<m≤33.【答案】(1)解:∵正比例函数y=k1x的图象与反比例函数y=k2x的图象都经过点P(2,3),∴3=2k1,3=k22,∴k1=32,k2=6,∴正比例函数解析式为y=32x ,反比例函数解析式为y=6x;(2)解:当y=9=6x时,x=23,∴A(23,9),把x=23代入y=32x,得y=1,∴E(23,1),∴AE=9−1=8,∴S△AEP=12⋅AE⋅|x P−x A|=12×8×|2−23|=163;(3)解:由题意得,S△AEM=12⋅AE⋅|x M−x E|=12×8×|m−23|,∴S关于m的解析式为S={4m−83(m>23)−4m+83(m<23).4.【答案】(1)解:点P(0,a),则点M、N的坐标分别为(ma,a)、(na,a),则S△MON=6= 12×MN×OP= 12×(4a- na)×a解得:n=-8(2)解:点M、N的坐标分别为(ma,a)、(na,a),∵PM=PN,则ma=-na,解得:m=-n,若a=5,点M的横坐标为3,则点M(3,5),故m=3×5=15=-n,故m-n=30(3)解:点A(d,0),则点B(d+4,0),点D、C的坐标分别为(d,4)、(d+4,4),设正方形交两个反比例函数于点G、H,则点G、H的坐标分别为(d,- 6d)、(d+4,4d+4),若正方形ABCD与y= mx(m>0、x>0),y=nx(n<0,x<0)都有交点,则HD≥0且CG≥0,即{4+6d≥04−4d+4≥0,且d<0,d+4>0,解得:-3≤d≤ −3 2,故d的范围为:-3≤d≤ −3 2 .5.【答案】(1)解:把A(-3,1)代入y2=mx得m=xy=-3×1=-3,∴反比例函数的解析式为y=−3x.过点A做AD△y轴于D,∵A(-3,1),∴AD=3.∵S△AOB=12OB•AD,∴12OB•3=6,OB=4.∴B(0,4).把A(-3,1).B(0,4)代入y1=kx+b得{−3k+b=1b=4,∴{k=1b=4,.∴一次函数的解析式为y=x+4(2)解:∵在Rt△ABD中,AD=3,BD=BO-OD=4-1=3∴△ABO=45°∴sin△ABO=sin45°=√22(3)解:由{y=−3xy=x+4得{x1=−1y1=3,{x2=−3y2=1.∴C(-1,3).∴当x<-3或-1<x<0时,y2> y1当-3<x<-1时, y 2 > y 16.【答案】(1)解:∵函数y 1=k x的图象过点A(1,4), ∴4=k 1, ∴k=4,即y 1=4x, 又∵点B(m ,-2)在y 1=4x的图象上, ∴m=-2,∴B(-2,-2),又∵一次函数y 2=ax+b 的图象过A ,B 两点,∴{−2a +b =−2a +b =4,解之得{a =2b =2, ∴y 2=2x+2.综上可得y 1=4x,y 2=2x+2. (2)解:设直线AB 交x 轴于点D ,易求D (-1 ,0)设C(x ,0),∵s ΔABC =s ΔADC +s ΔBCD ,∴12y A |x +1|+12|y B ||x +1|=18, 12×4×|x +1|+12×2×|x +1|=18 3|x+1|=18,解得:x=5或x=-7,∴C(5,0)或(-7,0).7.【答案】(1)解:设反比例函数的表达式为 y =k x, 将点 A(2,2) 代入 y =k x中,得 k =4 , ∴反比例函数的表达式为 y =4x;设一次函数的表达式为 y =kx +b ,将点 A(2,2) , B(4,1) 代入 y =kx +b 中,得 {2k +b =24k +b =1, 解得 {k =−12b =3, ∴一次函数的表达式为 y =−12x +3 (2)解:如图,作直线 AB 的平行线,当其与反比例函数的图象只有一个交点 P 时,此时点 P 到直线 AB 的距离最短,设直线 PM 的解析式为 y =−12x +n ,则 4x =−12x +n , 去分母,得 x 2−2nx +8=0 ,由题意得, Δ=0 ,∴4n 2−32=0 ,解得 n 1=−2√2 , n 2=2√2 (不合题意,舍去).∴x 2+4√2x +8=0 ,解得 x 1=x 2=−2√2 ,∴在 y =4x中,当 x =−2√2 时, y =−√2 . ∴点 P 的坐标为 (−2√2,−√2) .8.【答案】(1)解:令反比例函数y=- 8x中x=-2,则y=4, ∴点A 的坐标为(-2,4); 反比例函数y=- 8x 中y=-2,则-2=- 8x,解得:x=4, ∴点B 的坐标为(4,-2). ∵一次函数过A 、B 两点, ∴{4=−2k +b −2=4k +b ,解得: {k =−1b =2, ∴一次函数的解析式为y=-x+2 (2)解:设直线AB 与y 轴交于C , 令为y=-x+2中x=0,则y=2, ∴点C 的坐标为(0,2),∴S △AOB = 12 OC•(x B -x A )= 12×2×[4-(-2)]=6 (3)解:观察函数图象发现: 当x <-2或0<x <4时,一次函数图象在反比例函数图象上方, ∴一次函数的函数值大于反比例函数的函数值时x 的取值范围为x <-2或0<x <4.9.【答案】(1)解:把点 A(2,6) 代入 y =k x, k =2×6=12 , ∴ 反比例函数的解析式为 y =12x, ∵ 将点 A 向右平移2个单位,∴x =4 ,当 x =4 时, y =124=3 , ∴B(4,3) ,设直线 AB 的解析式为 y =mx +n ,由题意可得 {6=2m +n 3=4m +n, 解得 {m =−32n =9, ∴y =−32x +9 ,当 x =0 时, y =9 ,∴C(0,9) ;(2)解:由(1)知 CD =9−5=4 ,∴S ΔABD =S ΔBCD −S ΔACD =12CD ⋅|x B |−12CD ⋅|x A |=12×4×4−12×4×2=4 .10.【答案】(1)解:把(﹣3,﹣1)代入y= k x 得k=3, 则反比例函数的解析式是y= 3x; 把(n ,6)代入y= 3x 得n= 12. 根据题意得: {−3m +b =−112m +b =6 , 解得: {m =2b =5, 则一次函数的解析式是y=2x+5(2)解:在y=2x+5中,令x=0,解得y=5,则S △AOB = 12 ×5×( 12 +3)= 35411.【答案】(1)解:∵A (0,2),C (6,2),∴AC=6,∵△ABC 是等腰直角三角形,∴AC=BC=6,∵S △ABC =3S △ADC ,∴BC=3DC ,∴DC=2,∴D (6,4),∵反比例函数y 1=k x(k≠0)的图象经过点D , ∴k=6×4=24,∴反比例函数的解析式为y 1=24x; (2)解:∵C (6,2),BC=6,∴B (6,8),把点B 、A 的坐标分别代入y 2=ax +b 中,得{6a +b =8b =2, 解得:{a =1b =2, ∴直线AB 的解析式为y 2=x +2,解方程x+2=24x, 整理得:x 2+2x-24=0,解得:x=4或x=-6,∴直线y 2= x+2与反比例函数y 1=24x的图象的交点为(4,6)和(-6,-4), ∴当y 1>y 2时,0<x<4或x<-6.12.【答案】(1)解:将A (a ,2)代入一次函数y=2x-4中得:2=2a-4,即a=3, ∴A (3,2),将x=3,y=2代入反比例解析式得:k=6,则反比例解析式为y= 6x; (2)解:联立两函数解析式得: {y =6x y =2x −4,解得: {x =3y =2 或 {x =−1y =−6 ,即两函数的两交点分别为(3,2),(-1,-6),作出两函数图象,如图所示:则由函数图象得:反比例函数y= 6x的值大于一次函数y=2x-4的值时,自变量x 的取值范围为x <-1或0<x <3.13.【答案】(1)解:∵直线y=ax+b 与双曲线y=k x(x >0)交于A (1,3), ∴k=1×3=3,∴y=3x, ∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1, ∴B (3,1),∵直线y=ax+b 经过A 、B 两点,∴{a +b =33a +b =1解得{a =−1b =4, ∴直线为y=﹣x+4,令y=0,则x=4,∴P (4,0)(2)解:如图,作AD△y 轴于D ,AE△x 轴于E ,BF△x 轴于F ,BG△y 轴于G ,AE 、BG 交于H ,则AD△BG△x 轴,AE△BF△y 轴,∴CD OC =AD OP ,PF PE =BF AE =PB PA, ∵b=y 1+1,AB=BP ,∴1y 1+1=x 16, PF PE =BF AE =12, ∴B (6+x 12,12y 1) ∵A ,B 两点都是反比例函数图象上的点,∴x 1•y 1=6+x 12•12y 1, 解得y 1=2,代入1y 1+1=x 16,解得x 1=2, ∴A (2,2),B (4,1).(3)解:根据(1),(2)中的结果,猜想:x 1,x 2,x 0之间的关系为x 1+x 2=x 0.14.【答案】(1)解:过点B 作BD△AP 于点D ,交y 轴于E ,∵点P 的坐标为(-2,0),∴OP=2,根据题意得点A 、B 关于原点对称,∴BE=DE=OP=2,∴BD=4,又S △ABP =4,∴12AP ⋅4=4, ∴AP=2,∴点A 的坐标为(-2,-2),代入y 1=mx ,得m=1;代入y 2=k x,得k=4,∴正比例函数的解析式为y 1=x ,反比例函数y 2=k x的解析式为y 2=4x ; (2)解:由(1)可知点B 的坐标为(2,2),由图象可知,当x<-2或0<x<2时y 1<y 2.15.【答案】(1)解:∵点A 在反比例函数y = 4x 上,∴4m=4.解得m =1,∴点A 的坐标为(1,4).又∵点B 也在反比例函数y = 4x 上,∴42=n ,解得n =2,∴点B 的坐标为(2,2).又∵点A ,B 在y =kx +b 的图象上,∴{k +b =42k +b =2 解得 {k =−2b =6∴一次函数的表达式为y =-2x +6 (2)解:由图象可得,当 1<x<2 时,直线在双曲线的上方,∴这时 kx +b> 4x,即kx +b - 4x>0 ,∴ x 的取值范围为1<x<2 . (3)解:∵直线y =-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0).∴S △AOB =S △AON -S △BON = 12 ×3×4- 12×3×2=3. 16.【答案】(1)解:把A (﹣3,2)代入反比例解析式得:k=﹣6,则反比例解析式为 y =−6x(2)解:把B (2,n )代入反比例解析式得:n=﹣3,即B (2,﹣3),把A (﹣3,2)与B (2,﹣3)代入y=ax+b 中得: {−3a +b =22a +b =−3,解得:a=﹣1,b=﹣1,则一次函数解析式为y=﹣x+1 (3)解:∵A (﹣3,2),B (2,﹣3),∴结合图象得:不等式ax+b < k x的解集为﹣3<x <0或x >2。
2023年中考数学以三种题型出现必考(难点)压轴题27个小微专题精炼 专题22 反比例函数与一次函数综合类选择题精炼1. 一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( ) A. B. C. D. 2. 在同一平面直角坐标系中,函数1y kx =+与k y x=- (k 为常数且0k ≠)的图象大致是( ) A. B. C. D. 3. 已知一次函数y kx b =+的图象如图所示,则y kx b =-+与b y x=的图象为( )A. B. C. D.4.一次函数y =ax+b 与反比列函数y =的图象如图所示,则二次函数y =ax 2+bx+c 的大致图象是( )A .B .C .D .5. 如图,函数1y x =+与函数22y x=的图象相交于点()()1,,2,M m N n -.若12y y >,则x 的取值范围 是( )A .2x <-或01x <<B .2x <-或1x >C .20x -<<或01x <<D .20x -<<或1x > 6. 如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .47. 如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)k y x x =<的图象上,则k 的值为( ) A .12- B .42- C .42 D .21-8.如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接B0.若S △OBC =1,tan∠BOC=,则k 2的值是( )A .﹣3B .1C .2D .39.如图,直线3y x =-+与y 轴交于点A ,与反比例函数k y x =(0k ≠)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A .4y x =B .4y x =-C .2y x =D .2y x=- 10.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A ,B 两点纵坐标分别为4,2,反比例函数y =经过A ,B 两点,若菱形ABCD 面积为8,则k 值为( )A.﹣8B.﹣2C.﹣8 D.﹣611. 如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x >0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为()A.B.C.2 D.3。
2025年中考数学高频考点专题练习 一次函数与反比例函数的实际应用一、解答题1.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培蔬菜.某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)与时间x (h )之间的函数关系如图所示,其中BC 段是恒温阶段,CD 段是某反比例函数图象的一部分,请根据图中信息解答下列问题:(1)求CD 段反比例函数图象的关系式,并写出自变量x 的取值范围; (2)恒温阶段保持的时间有多少小时?(3)大棚里栽培的一种蔬菜在温度为12℃到20℃的条件下最适合生长,若某天恒温系统开启前的温度是10℃,那么这种蔬菜一天内最适合生长的时间有多长? 2.如图直线y x m =-+与双曲线ky x=交于A ,B 两点,点A 的坐标为(1,2).(1)求一次函数和反比例函数的表达式; (2)求AOB 的面积.3.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠经过点,()0,1A -,()3,2B .(1)求这个一次函数的解析式; (2)①当双曲线()0my m x=≠经过点B 时,求m 的值; ①当3x >时,对于x 的每一个值,永远有()10mkx b k x+->≠成立,直接写出m 的取值范围. 4.数学兴趣小组了解到一款如图1所示的电子托盘秤,它是通过所称重物调节可变电阻R 的大小,从而改变电路中的电流I ,最终通过显示器显示物体质量.已知可变电阻R (单位①k Ω)与物体质量m (单位①kg )之间的关系如图2所示,电流I (单位①mA )与可变电阻 R 之间关系为 ()603I R R =≥+.(1)该小组先探究函数 ()60I R =≥的图像与性质,并根据I 与R 之间关系得到如下表格:①表格中的p = ;①请在图3 中画出 ()603I R R =≥+对应的函数图像; (2)该小组综合图2和图3发现,I 随着m 的增大而 ;(填“增大”或“减小”)(3)若将该款电子秤中的电路电流范围设定为0.20.4I <≤(单位:mA ),判断该电子托盘秤能否称出质量为2kg 的物体的质量?请说明理由. 5.如图,一次函数y =x +4的图象与反比例函数ky x=(k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)直接写出结果:k = ,点B 的坐标为 ;(2)若点P 在x 轴上,且3ACP BOC S S ∆∆=,求点P 的坐标.6.如图,一次函数y x b =+的图像和反比例函数()0k y x x=>的图像交于()2,4A .(1)求一次函数的解析式和反比例函数的解析式;(2)设点()0,P m ,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky x x=>的图像分别交于点C ,D ,当4CD ≤时,直接写出m 的取值范围.7.实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,其中当2045x ≤≤时,图象是反比例函数的一部分.(1)求点C ,D 所在反比例函数的表达式和直线AB 的表达式;(2)张老师想在数学课上讲解一道数学综合题,希望学生注意力指标不低于36,那么她最多可以讲______分钟.8.已知某消毒药物燃烧时,室内每立方米空气中的含药量y (微克)与时间x (小时)成正比例,药物熄灭后,y (微克)与x (小时)成反比例,如图所示,现测得药物4小时燃毕,此时室内空气每立方米的含药量为6微克,请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物熄灭后y 关于x 的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3微克且持续时间不低于10小时时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么? 9.如图,一次函数1y kx b =+的图像与反比例函数()20my x x=>的图像交于点(4,1)A 和点(2,)B n .(1)求一次函数和反比例函数解析式;(2)过点B 作BC y ⊥轴于点C ,连接OA ,求四边形OABC 的面积;(3)根据图像直接写出使mkx b x+<成立的x 的取值范围. 10.如图,在平面直角坐标系xOy 中,直线2y x =与双曲线ky x=与相交于A ,B 两点(点A 在点B 的左侧).(1)当5AB =k 的值;(2)点B 关于y 轴的对称点为C ,连接AC BC ,; ①判断ABC 的形状,并说明理由;①当ABC 的面积等于16时,双曲线上是否存在一点P ,连接AP BP ,,使PAB 的面积等于ABC 面积?若存在,求出点P 的坐标,若不存在,请说明理由.11.如图,已知点A 在正比例函数2y x =-图像上,过点A 作AB x ⊥轴于点B ,四边形ABCD 是正方形,点D 在反比例函数ky x=图像上.(1)若点A 的横坐标为−2,求k 的值;(2)若设正方形的边长为m ,试用含m 的代数式表示k 值.12.如图,直线1y x =+与y 轴交于A 点,与反比例函数(0)k y x x=>的图像交于点M ,过M 作MH x ⊥轴于点H ,且1tan 2AHO ∠=.(1)请直接写出k 的值;(2)设点()1,N a 是反比例函数()0k y x x=>图像上的点,在y 轴上是否存在点P ,使得PM PN +最小?若存在,求出点P 的坐标;若不存在,请说明理由.13.如图,已知直线1:y =x +4与反比例函数y =kx(x <0)的图象交于点A (−1,n ),直线l ′经过点A ,且与l 关于直线x =−1对称.(1)求反比例函数的解析式; (2)求图中阴影部分的面积.14.如图,在平面直角坐标系xOy 中,正比例函数1y k x =与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的坐标为()14,.(1)直接写出点B 的坐标为_______________;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长.15.如图,平面直角坐标系中,四边形AOBC 为平行四边形,11y k x b =+与双曲线22(0)k y x x=>交于点()1,3A 和点()3,E m .(1)求1k ,2k 和b 的值;(2)直接写出120y y -<时x 的取值范围;(3)如果平行四边形AOBC 的对角线OC 交双曲线于点P ,求点P 的坐标.。
反比例与一次函数
2、(2009•成都)某航空公司规定,旅客乘机所携带行李
的质量x(kg)与其运费y(元)由如图所示的一次函数图象
确定,那么旅客可携带的免费行李的最大质量()
A、20kg
B、25kg
C、28kg
D、30kg
3、若直线y=kx+b平行直线y=3x+4,且过点(1,-2),则b= .
4、已知直线y kx
=-4与两坐标轴所围成的三角形面积等于4,则直线解析式为_______ 。
6、(2008兰州)如图,已知双曲线
k
y
x
=(0
x>)经过矩形OABC的边AB
,OEBF 的面积为2,则k=.
例1.如图,已知反比例函数(0)
k
y k
x
=<的图象经过点()
A m,过点A作A
B x
⊥轴于点B,且AOB
△的
(1)求k和m的值;(2)若一次函数1
y ax
=+的图象经过点A,并且与x轴相交于点C,求ACO
∠
的度数和||:||
AO AC的值.
1.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数
m
y
x
=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且
4
sin
5
AOE
∠=。
(1)求该反比例函数和一次函数;
(2)求△AOC的面积。
x
3.已知,如图,在直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B (2,n ),连接BO ,若AOB S △ =4.(1)求的解析式和反比例函数的解析式;
(2)若把直线AB 向下平移4个单位,与x 轴交于点E ,与反比例函数在第一象限内的图象交于点D ,判断四边形ABDE 是什么特殊四边形?并说明理由。
4.(2013•烟台)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=32
1
+-
x 交AB ,BC 分别于点M ,N ,反比例函数x k y =的图象经过点M ,N .
(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.
6.(2013•兰州)已知反比例函数y 2=ax+b 的图象交于点A (1,4)和点B (m ,-2), (1)求这两个函数的关系式;
(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围; (3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.
例2.如图,过y 轴上点A 的一次函数与反比例函数相交于B 、D 两点,B (-2,3),BC ⊥x 轴于C ,四边形OABC 面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D 的坐标;(3)当x 在什么取值范围内,一次函数的值大于反比例函数的值。
(直接写出结果)
2.已知反比例函数x
k
y =
和一次函数6---=k x y 的图象交于A ,B 两点,过A 作AC ⊥x 轴交x 轴于C 点,△ACO 的面积等于4.(1)求两函数的表达式;(2)若直线AB 分别与y 轴、x 轴交于M 、N 两点,求NM ∶NA 的值.
3.(2013•攀枝花)如图,直线y=k 1x+b (k 1≠0)与双曲线x
k y 2
=
k 2≠0)相交于A (1,2)、B (m ,-1)两点. (1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<0<x 2<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b <
x
k 2
的解集.
4.(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b (k≠0)的图象与反比例函数y=
x
m
(m≠0)的图象交于A 、B 两点,与x 轴交于C 点,点A 的坐标为(n ,6),点C 的坐标为(-2,0),且tan∠ACO=2. (1)求该反比例函数和一次函数的解析式;
(2)求点B 的坐标;
(3)在x 轴上求点E ,使△ACE 为直角三角形.(直接写出点E 的坐标)
5.(2013•莆田)如图,直线l :y=x+1与x 轴、y 轴分别交于A 、B 两点,点C 与原点O 关于直线l 对称.反比例函数x
k
y =
的图象经过点C ,点P 在反比例函数图象上且位于C 点左侧,过点P 作x 轴、y 轴的垂线分别交直线l 于M 、N 两点.(1)求反比例函数的解析式;(2)求AN•BM 的值.
6.(2013•绵阳)如图,已知矩形OABC 中,OA=2,AB=4,双曲线x
k
y =
(k >0)与矩形两边AB 、BC 分别交于E 、F . (1)若E 是AB 的中点,求F 点的坐标;
(2)若将△BEF 沿直线EF 对折,B 点落在x 轴上的D 点,作EG⊥OC,垂足为G ,证明△EGD∽△DCF,并求k 的值.
7.(2013•龙岩)如图,将边长为4的等边三角形AOB 放置于平面直角坐标系xoy 中,F 是AB 边上的动点(不与端点A 、B 重合),过点F 的反比例函数x
k
y =
(k >0,x >0)与OA 边交于点E ,过点F 作FC ⊥x 轴于点C ,连结EF 、OF .(1)若S △O C F =3求反比例函数的解析式;
(2)在(1)的条件下,试判断以点E 为圆心,EA 长为半径的圆与y 轴的位置关系,并说明理由; (3)AB 边上是否存在点F ,使得EF ⊥AE ?若存在,请求出BF :FA 的值;若不存在,请说明理由.
中考提高训练:
1.如图,△AOB为正三角形,点B的坐标为(-2,0),过点C(2,0)作直线交AO于点D,交AB点E,点E在
双曲线
k
y
x
=(x>0),若
ADE OCD
S S
∆∆
=,则k的值是
2.如图,直线y=-x+1交x轴于A,交y轴于B、P为反比例函数y=
k
x
(x>0)图象上一点,PM⊥x轴于M交AB于E,PN⊥y轴于N交AB于F,若∠EOF=45°,则k的值为
3.(2013•丽水)如图,点P是反比例函数y=
x
k
(k<0)图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=5 k的值是________;
(1)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是___________.
4.(2013年临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
x
y
3
=在第一象限内的图像经过OB边的中点C ,则点B的坐标是
(A)( 1, 3). (B)(3, 1 ). (C)( 2 ,3
2). (D)(3
2,2 ).
5.(2013•内江)如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()
6.(2013•苏州)如下图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>
0)的图象经过顶点B,则k的值为()
7.(2013•南宁)如上图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()
8.(2013•遵义)如上图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为.
4.(2012江苏宿迁)如图,在四边形ABCD中,∠DAE=∠ABC= 90°,CD与以AB为直径的半圆相切于点E,EF⊥AB
于点F,EF交BD于点G。
设AD=a,BC =b。
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由。
5.(2012乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为
(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.。