2016届高考数学一轮复习—专题二、一元二次不等式及其解法(教学教案+复习技法+含解析)
- 格式:doc
- 大小:170.00 KB
- 文档页数:11
7.2一元二次不等式及其解法一元二次不等式与相应的二次函数及一元二次方程的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图像一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2)有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1或x >x 2} {x |x ≠-b 2a} Rax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2} ∅ ∅1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax 2+bx +c >0(a >0)的解集为R 还是∅. 『试一试』1.(2013·苏中三市、宿迁调研)设集合A ={x |x 2-2x -3≤0},B ={x |x 2-5x ≥0},则A ∩(∁R B )=________.『解析』集合A =『-1,3』,B =(-∞,0』∪『5,+∞).从而∁R B =(0,5),则A ∩(∁R B )=(0,3』. 『答案』(0,3』2.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是________. 『解析』由题意知-12、13是ax 2+bx +2=0的两根.则a =-12,b =-2.a +b =-14.『答案』-143.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 『解析』∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16.∴a >4或a <-4.『答案』(-∞,-4)∪(4,+∞)1.由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.2.分类讨论思想解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏. 『练一练』若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 『解析』①当m =0时,1>0显然成立.②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0.得0<m <1,由①②知0≤m <1. 『答案』『0,1)考点一一元二次不等式的解法『典例』 解下列不等式:(1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0).『解』 (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔(2)(1)0(3)(2)0x x x x -+>⎧⎨-+≤⎩⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3.(2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0.由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ;当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a 或x >-a ;a >0时,解集为{}x |x >5a 或x <-a .『备课札记』 『类题通法』1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图像,写出不等式的解集.2.解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类. 『针对训练』 解下列不等式: (1)-3x 2-2x +8≥0;(2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0,即(3x -4)(x +2)≤0.解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅;当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 考点二一元二次不等式恒成立问题一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:1形如f(x )≥0x ∈R 确定参数的范围; 2形如f(x ) ≥0,x ∈『a ,b 』,确定参数范围; 3形如f(x )≥0参数m ∈『a ,b 』确定x 的范围. 角度一 形如f (x )≥0(x ∈R )确定参数的范围1.(2013·重庆高考)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.『解析』根据题意可得(8sin α)2-4×8cos 2α≤0,即2sin 2α-cos 2α≤0,2sin 2α-(1-2sin 2 α)≤0,即-12≤sin α≤12.因为0≤α≤π,故α∈06π⎡⎤⎢⎥⎣⎦,56ππ⎡⎤⎢⎥⎣⎦,. 『答案』06π⎡⎤⎢⎥⎣⎦,56ππ⎡⎤⎢⎥⎣⎦, 角度二 形如f (x )≥0,(x ∈『a ,b 』),确定参数范围2.对任意x ∈『-1,1』,函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求a 的取值范围; 解:函数f (x )=x 2+(a -4)x +4-2a 的对称轴为x =-a -42=4-a2.①当4-a2<-1,即a >6时,f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0,解得a <3,故有a ∈∅;②当-1≤4-a 2≤1,即2≤a ≤6时,只要f ⎝⎛⎭⎫4-a 2=⎝⎛⎭⎫4-a 22+(a -4)×4-a 2+4-2a >0,即a 2<0,故有a ∈∅;③当4-a2>1,即a <2时,只要f (1)=1+(a -4)+4-2a >0,即a <1,故有a <1.综上可知,当a <1时,对任意x ∈『-1,1』,函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零. 角度三 形如f (x )≥0(参数m ∈『a ,b 』)确定x 的范围3.对任意a ∈『-1,1』,函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求x 的取值范围.解:由f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,令g (a )=(x -2)a +x 2-4x +4.由题意知在『-1,1』上,g (a )的值恒大于零,则22(1)(2)(1)440(1)2440g x x x g x x x ⎧-=-⨯-+-+>⎪⎨=-+-+>⎪⎩解得x <1或x >3. 故当x <1或x >3时,对任意的a ∈『-1,1』,函数f (x )的值恒大于零.『备课札记』 『类题通法』恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.考点三一元二次不等式的应用『典例』 某小商品2013年的价格为8元/件,年销量是a 件.现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k .该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式;(2)设k =2a ,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?『解』 (1)设该商品价格下降后为x 元/件,则由题意可知年销量增加到⎝⎛⎭⎫kx -4+a 件,故经销商的年收益y =⎝⎛⎭⎫kx -4+a (x -3),5.5≤x ≤7.5.(2)当k =2a 时,依题意有⎝⎛⎭⎫2a x -4+a (x -3)≥(8-3)a ×(1+20%),化简得x 2-11x +30x -4≥0,解得x ≥6或4<x ≤5.又5.5≤x ≤7.5,故6≤x ≤7.5,即当实际价格最低定为6元/件时,仍然可以保证经销商2014年的收益比2013年至少增长20%.『备课札记』 『类题通法』构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解. 『针对训练』某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解:(1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x .因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0.所以y =f (x )=20(10-x )(50+8x ),定义域为『0,2』. (2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.『课堂练通考点』1.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为『0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________. 『解析』由题意知,因为函数f (x )的值域为『0,+∞), 所以f (x )min =f ⎝⎛⎭⎫-a 2=4b -a24=0,所以4b =a 2, 所以f (x )=⎝⎛⎭⎫x +a 22,所以关于x 的不等式f (x )<c 的解集为⎝⎛⎭⎫-a 2-c ,-a2+c , 即(m ,m +6),故⎩⎨⎧-a2-c =m ,-a2+c =m +6,两式相减得c =3,所以c =9.『答案』92.不等式4x -2x +2>0的解集为________.『解析』令2x =t ,则不等式变为t 2-4t >0.由于t >0,故t >4,即2x >4,解得x >2.所以不等式的解集为(2,+∞). 『答案』(2,+∞)3.(2013·南通三模)不等式x <2x -1的解集是________.『解析』不等式等价于(2)(1)0x x x+-<,由数轴标根法得x <-2或0<x <1,从而不等式的解集为{x |x <-2或0<x <1}.『答案』{x |x <-2或0<x <1}4.(2013·苏州常镇二调)若关于x 的不等式mx 2+2x +4>0的解集为{x |-1<x <2},则实数m 的值为________.『解析』由关于x 的不等式mx 2+2x +4>0的解集为{x |-1<x <2},得-1,2为方程mx 2+2x +4=0的两个实数根.得⎩⎪⎨⎪⎧m <0,m -2+4=0,4m +4+4=0,所以m =-2.『答案』-25.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,-x ,x ≤0,则不等式f (x )<4的解集是________.『解析』不等式f (x )<4等价于⎩⎪⎨⎪⎧ x >0,x 2+1<4,或⎩⎪⎨⎪⎧x ≤0,-x <4,即0<x <3或-4<x ≤0.因此,不等式f (x )<4的解集是(-4,3). 『答案』(-4,3)6.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )·(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.『解析』因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1. 『答案』-1 1。
《一元二次不等式及其解法》教案教学目标知识与技能:理解三个“二次”的关系,掌握图像法解一元二次不等式;培养学生数形结合的能力.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;情感态度与价值观:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想. 教学重点一元二次不等式的解法.教学难点理解三个二次之间的关系.教学过程(一)课题导入上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(ISP)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.某同学要把自己的计算机接入因特网,比如说在我们周围现有两家ISP公司电信和网通可供选择。
假如电信公司每小时收费1.5元(不足1小时按1小时计算);网通公司的收费原则如下图所示, 即在用户上网的第1小时内(含恰好1小吋,下同)收费1.7元,第2小吋内收费1.6元,以后每小时减少0」元(若用户一次上网时间超过17小时,按17小时计算)。
一般来说,一次上网时间不会超过17小时,所以,不妨设一次上网时间总小于17小时.那么,一次上网在多长时间以内能够保证选择电信公司的上网费用小于或等于选择网通公司所需费用?分析问题:假设一次上网x小时,则电信公司收取的费用为1.5x(元),网通公司收取的费用为叙35 7)(元),如果能够保证选择电信公司比选择网通公司所需费用少,则X(35~X)>1.5x,20 20整理得:一元二次不等式模型:X2-5X<() ..........(二)讲授新课1、一元二次不等式的定义象X2-5X<0这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、探究一元二次不等式^2-5X<0的解集怎样求不等式X2-5X<0的解集呢?探究:一元二次不等式不是我们熟悉的东西,但是大家看/(x) = X2-5%和兀$ 一5兀=0这是什么?我们十分熟悉的二次函数和一元二次方程,那么这三者之间又有着怎样的关系呢?容易知道: 二次方程的有两个实数根:召=0,兀2=5,二次函数有两个零点:x, =0,X2=5O 于是,我们得到:二次方程的根就是二次函数的零点.y(2)观察图象,获得解集画出二次函数y = x2-5x的图象,如图,观察函数图象,可知:当x<0,或兀>5时,函数图象位于兀轴上方,此时,y>0,即x2 -5x>0;当x = 0 ,或兀=5日寸,函数图像与兀轴相交,此时,y = 0,即x2 -5x = 0当0 v兀<5时,函数图象位于x轴下方,此时,yvO,即X2-5^<();通过上述分析,我们可知,不等式X2-5X<0的解集是{x|0<%<5},从而解决了开始时提出的问题,所以我们可知当一次上网在5个小时之内(含5个小时)的时候,选择电信比选择网通费用要少.当超过5个小时的时候,选择网通费用较少.因此,我们可以结合平时的上网时间合理的来进行选择.(3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:cix2+bx^c>0(a>0)^ax2 +bx + c< 0(a > 0),怎样确定一元二次不等式or,+Z?x+c〉0与ax' +/?X + C<0的解集呢?(三)组织讨论从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)二次函数y = ax1+bx+c与x轴的相关位置的情况,也就是一元二次方程ax2+bx-^c = 0 的根的情况;(2)二次函数y = ax2+bx-^-c的开口方向,也就是d的符号.总结讨论结果:(1)二次函数y = ax2+bx-^c(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程ax2^bx +c = 0的判别式A = b2-4ac三种収值情况(A>0,A = 0,A<0)来确定,因此,要分三种情况讨论;(2)QV O可以转化为a>0.归纳总结:一元二次不等式ox? +bx + c>0或or? +/?x + cvO(dH0)的解集:设相应的一元二次方程ax2 + bx + c = Q(a 0)的两根为兀「勺且x}<x2^ A = b2 -4ac,则不等式的解的各种情况如下表:(四)例题讲解例1、求不等式4X2-4X+1> 0的解集。
《2.2.3 一元二次不等式的解法》教学设计2.2.3一元二次不等式的解法教学设计一、教材分析1、地位与作用一元二次不等式的解法在高中数学中具有重要地位。
它是在学习了一元一次不等式、一元二次方程和二次函数的基础上进行的,是对前面知识的深化和综合运用。
同时,一元二次不等式在解决实际生活中的优化问题、函数定义域、值域等问题中有着广泛的应用,是进一步学习数学和其他学科的重要工具。
在高考中,一元二次不等式的解法常常与函数、数列、解析几何等知识相结合进行考查,是考生必须掌握的基础知识。
2、教材内容教材首先通过实例引出一元二次不等式的概念,然后利用二次函数的图象来探究一元二次不等式与二次函数、一元二次方程之间的关系,从而得出一元二次不等式的解法。
二、学情分析1、已有知识基础学生已经学习了一元一次不等式的解法,对于不等式的基本性质和求解不等式的基本步骤有了一定的了解。
学生也已经掌握了一元二次方程的解法,包括求根公式、因式分解法等,并且对二次函数的图象和性质有了初步的认识,如二次函数的开口方向、对称轴、顶点坐标等。
2、学习能力大部分学生具备一定的逻辑推理能力和运算能力,但在将知识进行综合运用方面可能存在不足。
例如,将二次函数的图象特征与一元二次不等式的解集联系起来,对于一些学生来说可能是一个难点。
3、兴趣爱好和学习风格学生对于与实际生活相关的数学问题比较感兴趣,如在生活中如何通过一元二次不等式来解决利润最大化、资源最优化等问题。
在学习风格上,有些学生更倾向于直观的图象学习,而有些学生则擅长通过公式和计算来理解知识。
三、教学目标1、知识与技能学生能够理解一元二次不等式的概念,会将一元二次不等式转化为标准形式。
掌握一元二次不等式的解法,能够熟练运用二次函数的图象求解一元二次不等式。
能将一元二次不等式的解法应用于解决简单的实际问题。
2、过程与方法通过探究一元二次不等式与二次函数、一元二次方程之间的关系,培养学生的观察能力、分析能力和逻辑思维能力。
一元二次不等式及其解法教案教学目标1.知识与技能:二次不等式与会解一元二次不等式及含参数的一元二次不等式。
2.过程与方法:通过学案让学生有目的复习,自主预习。
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系,进而探究一元二次不等式和含参数不等式的解法;以函数为载体,突破一元二次不等式恒成立问题。
3.情感态度与价值观:培养探究合作的能力和推证能力及解决问题的能力。
2学情分析本节课内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合、函数等知识的巩固和运用具有重要作用,也与后面的线形规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法。
因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
我班中等程度的学生占大多数,程度较高与程度较差的学生占少数。
学生数学基础差异不大,但进一步钻研的精神相差较大。
学生已经学习了一元一次不等式(组)的解法和二次函数的零点,会画一元二次函数的图象,也会通过图象去研究理解函数的性质,初步的数形结合知识可以使学生写出一元二次不等式的解集,因此从学生熟悉的二次函数的图象入手介绍一元二次不等式的解法,从认知规律上讲,应该是容易理解的。
在教学中加强师生互动,尽多的给学生动手的机会,让学生让学生观察、讨论,在实践中体验三者的联系,从而直观地归纳、总结、分析出三者的联系成为可能。
3重点难点1.重点:会解一元二次不等式及含参数不等式。
2.难点:一元二次不等式恒成立应用问题。
4教学过程4.1复习课教学活动活动1【活动】一元二次不等式及其解法引入:以高考考点及类型复习引入学生复习学案上的高考考点明确高考考点教学过程:一快速起跑——学案总结明确学习目标,总结学生学案的完成情况题。
二完善学案——自主学习总结1、一元二次不等式与相应的二次函数、一元二次方程的联系。
高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
【重点难点】1。
教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。
由常见问题的解决和总结,使学。
第2讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ; (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.一元二次不等式的解集 判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c(a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两个相异 实根x 1,x 2(x 1<x 2)有两个相等 实根x 1=x 2 =-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1 或x >x 2} {x |x ≠x 1}Rax 2+bx +c <0(a >0)的解集{x |x 1 <x <x 2}∅ ∅[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√ [教材衍化]1.(必修5P80A 组T4改编)已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪4-x x +1≤0,那么集合A ∩(∁U B )=________.解析:因为A ={x |-2≤x ≤3},B ={x |x <-1或x ≥4},故∁U B ={x |-1≤x <4},所以A ∩(∁UB )={x |-1≤x ≤3}.答案:[-1,3]2.(必修5P80A 组T2改编)y =log 2(3x 2-2x -2)的定义域是________.解析:由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,所以3x 2-2x -2>0的解集为⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞.答案:⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞[易错纠偏](1)解不等式时,变形必须等价; (2)忽视二次项系数的符号;(3)对系数的讨论,忽视二次项系数为0的情况; (4)解分式不等式时,忽视分母的符号.1.不等式2x (x -7)>3(x -7)的解集为________.解析:2x (x -7)>3(x -7)⇔2x (x -7)-3(x -7)>0⇔(x -7)(2x -3)>0,解得x <32或x >7,所以,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >7. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >72.不等式-x 2-3x +4>0的解集为________.(用区间表示) 解析:由-x 2-3x +4>0可知,(x +4)(x -1)<0. 得-4<x <1. 答案:(-4,1)3.对于任意实数x ,不等式mx 2+mx -1<0恒成立,则实数m 的取值范围是________.解析:当m =0时,mx 2+mx -1=-1<0,不等式恒成立;当m ≠0时,由⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0.综上,m 的取值范围是(-4,0]. 答案:(-4,0]4.不等式2x +1<1的解集是________. 解析:2x +1<1⇒2-(x +1)x +1<0 ⇒x -1x +1>0⇒x >1或x <-1. 答案:{x |x >1或x <-1}一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.主要命题角度有:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数. 角度一 解不含参数的一元二次不等式解下列不等式: (1)-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}. 角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ). 【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3, 解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5. 即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1}, B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解:(1)由题知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a .所以a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,当c >2时,解集为{x |x >c 或x <2};当c <2时,解集为{x |x >2或x <c };当c =2时,解集为{x |x ≠2}.一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.主要命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围;(3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围. 角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________. 【解析】 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12. 综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,1-32B.⎣⎢⎡⎭⎪⎫1+32,+∞C.⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞D.⎣⎢⎡⎦⎥⎤1-32,1+32【解析】 因为x ∈(0,2], 所以a 2-a ≥xx 2+1=1x +1x .要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立, 则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x≥2,当且仅当x =1时等号成立,即⎝⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.【答案】 C角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.【解析】 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.【答案】 {x |x <1或x >3}(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)三个“二次”间的转化二次函数、二次方程与二次不等式统称三个“二次”,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题.1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________. 解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立, 则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13.答案:m ≥132.若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]一元二次不等式的应用某汽车厂上年度生产汽车的投入成本为10万元辆,出厂价为12万元辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?【解】 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000(1+0.6x )(0<x <1), 整理得y =-6 000x 2+2 000x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加, 必须有⎩⎪⎨⎪⎧y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内.解不等式应用题的步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)将文字语言转化为符号语言,用不等式(组)表示不等关系; (3)解不等式(组),得到数学结论,要注意数学模型中元素的实际意义; (4)回归实际问题,将数学结论还原为实际问题的结果.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝⎛⎭⎪⎫1-x10-80≥0,得x≤2.所以y=f(x)=20(10-x)(50+8x),定义域为[0,2].(2)由题意得20(10-x)(50+8x)≥10 260,化简得8x2-30x+13≤0.解得12≤x≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.思想方法系列5 转化与化归思想在不等式中的应用(2020·嘉兴模拟)不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为( )【解析】由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a,-2×1=-ca,解得⎩⎪⎨⎪⎧a=-1,c=-2,则函数y=f(-x)=-x2+x+2,结合选项可知选C.【答案】 C本例利用了转化思想,其思路为(1)一元二次不等式ax2+bx+c>0(a≠0)的解集的端点值是一元二次方程ax2+bx+c=0的根(如本例),也是函数y=ax2+bx+c与x轴交点的横坐标.(2)二次函数y=ax2+bx+c的图象在x轴上方的部分,是由不等式ax2+bx+c>0的x 的值构成的;图象在x轴下方的部分,是由不等式ax2+bx+c<0的x的值构成的,三者之间相互依存、相互转化.设a,b是关于x的一元二次方程x2-2mx+m+6=0的两个实根,则(a -1)2+(b-1)2的最小值是( )A .-494B .18C .8D .-6解析:选C.因为关于x 的一元二次方程x 2-2mx +m +6=0的两个根为a ,b ,所以⎩⎪⎨⎪⎧a +b =2m ,ab =m +6,且Δ=4(m 2-m -6)≥0,解得m ≥3或m ≤-2.所以y =(a -1)2+(b -1)2=(a +b )2-2ab -2(a +b )+2=4m 2-6m -10=4⎝ ⎛⎭⎪⎫m -342-494.由二次函数的性质知,当m =3时,函数y =4m 2-6m -10取得最小值,最小值为8.故选C.[基础题组练]1.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A =[-1,2],B =(1,+∞),A ∩B =(1,2].2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A.56 B.16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56.3.(2020·浙江省名校协作体高三联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;① 当x >0时,-x +2≥x 2,所以0<x ≤1.②,由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2020·宁波效实中学模拟)不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选C.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min,由于a b +16b a ≥2 a b ·16b a=8(当且仅当a =4b 时等号成立),所以x 2+2x <8,解得-4<x <2.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.(2020·台州联考)在R 上定义运算:=ad -bc .若不等式≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C.13D.32解析:选D.原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32,故选D.7.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,化为(2[x ]-3)(2[x ]-15)<0,解得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.已知函数f (x )=x 2+2x +1,如果使f (x )≤kx 对任意实数x ∈(1,m ]都成立的m 的最大值是5,则实数k =________.解析:设g (x )=f (x )-kx =x 2+(2-k )x +1,由题意知g (x )≤0对任意实数x ∈(1,m ]都成立的m 的最大值是5,所以x =5是方程g (x )=0的一个根,将x =5代入g (x )=0,可以解得k =365(经检验满足题意).答案:36510.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,若|f (x )|≥ax 在x ∈[-1,1]上恒成立,则实数a 的取值范围是____________.解析:当x =0时,|f (x )|≥ax 恒成立,a ∈R ;当0<x ≤1时,|f (x )|≥ax 转化为a ≤|f (x )|x =|3x -2|x =|3-2x |.因为|3-2x|的最小值为0,所以a ≤0;当-1≤x <0时,|f (x )|≥ax 转化为a ≥|f (x )|x =-|x 2-2x |=-|x -2x |.因为-|x -2x|的最大值为-1,所以a ≥-1,综上可得a ∈[-1,0].答案:[-1,0]11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.12.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n 求|m -n |的取值范围.解:(1)证明:由题意知a +b +c =0,且-b2a >1.所以a <0且ca>1,所以ac >0. 对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0.所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a2=⎝ ⎛⎭⎪⎫c a 2+8⎝ ⎛⎭⎪⎫c a +4. 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知c a=t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞). 所以|m -n |>13,所以|m -n |的取值范围为(13,+∞).[综合题组练]1.(2020·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-235,+∞ B.⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a=2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.3.(2020·杭州模拟)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析:原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.答案:[-4,3]4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4. 答案:[-8,4]5.(2020·杭州高级中学质检)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .6.(2020·丽水市高考数学模拟)已知函数f (x )=|x +a |x 2+1(a ∈R ).(1)当a =1时,解不等式f (x )>1;(2)对任意的b ∈(0,1),当x ∈(1,2)时,f (x )>bx恒成立,求a 的取值范围.解:(1)f (x )=|x +1|x 2+1>1⇔x 2+1<|x +1|⇔⎩⎪⎨⎪⎧x +1≥0x 2+1<x +1或⎩⎪⎨⎪⎧x +1<0x 2+1<-(x +1)⇔0<x <1.故不等式的解集为{x |0<x <1}.(2)f (x )=|x +a |x 2+1>b x ⇔|x +a |>b (x +1x )⇔x +a >b (x +1x )或x +a <-b (x +1x)⇔a >(b -1)x+b x 或a <-[(b +1)x +b x ]对任意x ∈(1,2)恒成立.所以a ≥2b -1或a ≤-(52b +2)对任意b ∈(0,1)恒成立.所以a ≥1或a ≤-92.。
一元二次不等式及其解法教案一元二次不等式及其解法教案【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。
【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。
【教学过程】一、课题导入1、在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题:1)x 为何值时, y = 0;2)x 为何值时, y > 0;3)x 为何值时, y < 0;所以,不等式的解集是﹛x|x<1或x>6﹜,从而解决了本节开始时提出的问题。
(3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下形式: )0(,02>>++a c bx ax 或)0(,02><++a c bx ax一般地,怎样确定一元二次不等式的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线=y c bx ax ++2与x 轴的相关位置的情况,也就是一元二次方程c bx ax ++2=0的根的情况(2)抛物线=y c bx ax ++2的开口方向,也就是a 的符号总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程 c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分三种情况讨论(2)a<0可以转化为a>00>∆ 0=∆ 0<∆二次函数c bx ax y ++=2 (0>a )的图象0672>+-x x三、例题解析例1、解不等式02322>--x x 解:原不等式等价于0)2)(12(>-+x x方程02322=--x x 的解是2,2121=-=x x 所以,原不等式的解集是:}⎩⎨⎧>-<221|x x x 或 例2、解不等式2632≥+-x x 解:原不等式可变形为02632≤--x x 0>∆ ,方程02632=--x x 的解为33133121+=-=x x 或所以,原不等式的解集为⎩⎨⎧⎭⎬⎫-≤≤-331331|x x 例3、 求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程. 所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 通过例题让学生总结解一元二次不等式的步骤一看:看二次项系数是否为正,若为负化为正二算:算△及对应方程的根三写:由对应方程的根,结合不等号的方向,根据函数图象写出不等式的解集。
第2讲一元二次不等式及其解法板块一知识梳理·自主学习[必备知识]考点1 一元二次不等式的解法1.将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx +c >0(a >0)或ax2+bx+c<0(a>0).2.计算相应的判别式.3.当Δ≥0时,求出相应的一元二次方程的根.4.利用二次函数的图象与x轴的交点确定一元二次不等式的解集.考点2 三个二次之间的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}{x|x≠x1}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅[必会结论]1.ax2+bx+c>0(a≠0)恒成立的充要条件是:a>0且b2-4ac<0(x∈R).2.ax2+bx+c<0(a≠0)恒成立的充要条件是:a<0且b2-4ac<0(x∈R).[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) 答案 (1)√ (2)√ (3)× (4)×2.[课本改编]不等式(x -1)(2-x )≥0的解集为( ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2} D .{x |x <1或x >2}答案 A解析 因为(x -1)(2-x )≥0,所以(x -2)(x -1)≤0,所以结合二次函数的性质可得1≤x ≤2.故选A.3.[2018·辽阳统考]不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2] C .(-∞,-1)∪[2,+∞) D .(-1,2]答案 D 解析x -2x +1≤0⇔(x +1)(x -2)≤0,且x ≠-1,即x ∈(-1,2].故选D. 4.若不等式ax 2+bx +c >0的解集为(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( )A.⎝ ⎛⎭⎪⎫-43,1 B .(-∞,1)∪⎝ ⎛⎭⎪⎫43,+∞ C .(-1,4) D .(-∞,-2)∪(1,+∞)答案 A解析 由不等式ax 2+bx +c >0的解集为(-4,1), 知a <0且-4,1是方程ax 2+bx +c =0的两根.∴-4+1=-ba ,且-4×1=c a,即b =3a ,c =-4a .则所求不等式转化为3a (x 2-1)+a (x +3)-4a >0,即3x 2+x -4<0,解得-43<x <1.5.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2)答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a <2,另a =2时,原式化为-4<0,不等式恒成立,∴-2<a ≤2.故选B.板块二 典例探究·考向突破 考向一元二次不等式的解法例 1 解下列关于x 的不等式:(1)0<x 2-x -2≤4; (2)ax 2-(a +1)x +1<0. 解 (1)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)原不等式化为(ax -1)(x -1)<0. ①当a =0时,其解为x >1; ②当0<a <1时,其解为1<x <1a;③当a >1时,其解为1a<x <1;④当a =1时,无解;⑤当a <0时,不等式化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,其解为x <1a或x >1.综上所述a =0时,不等式解集为{x |x >1};0<a <1时,不等式解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a ;a >1时,不等式解集为⎩⎨⎧⎭⎬⎫x | 1a <x <1;a <0时,不等式解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >1;当a =1时,不等式解集为∅. 触类旁通解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【变式训练1】 解不等式:(1)2x +1x -5≥-1;(2)x 2-(a 2+a )x +a 3>0.解 (1)将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧(3x -4)(x -5)≥0,x -5≠0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >5. (2)原不等式化为(x -a )(x -a 2)>0, ①当a 2-a >0,即a >1或a <0时, 原不等式的解为x >a 2或x <a . ②当a 2-a <0,即0<a <1时, 原不等式的解为x <a 2或x >a ; ③当a 2-a =0,即a =0或a =1时, 原不等式的解为x ≠a .综上①②③得a >1或a <0时不等式解集为 {x |x >a 2或x <a };当0<a <1时,不等式解集为{x |x <a 2或x >a }; 当a =0或a =1时,不等式解集为{x |x ≠a }.考向一元二次不等式恒成立问题例 2 [2018·正定模拟]已知函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 (1)当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0.综上,-4<m ≤0,故m 的取值范围是(-4,0]. (2)不等式f (x )<5-m ,即(x 2-x +1)m <6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,∴[g (x )]min =g (3)=67,∴m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67.本例中(1)变为:若f (x )<0对于m ∈[1,2]恒成立,求实数x的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.本例中(2)条件“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围?解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3],得m ≥6,即m 的取值范围为[6,+∞).本例中(2)条件“f (x )<5-m 恒成立”改为“存在x ,使f (x )<5-m 成立”,如何求m 的取值范围.解 由题知f (x )<5-m 有解, 即m <6x 2-x +1有解,则m <⎝ ⎛⎭⎪⎫6x 2-x +1max,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 触类旁通解决一元二次不等式恒成立问题的方法(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【变式训练2】 (1)[2018·九江模拟]若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)答案 A解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.(2)若关于x 的不等式ax 2-x +2a <0的解集为∅,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫24,+∞ 解析 依题意可知,问题等价于ax 2-x +2a ≥0恒成立, 当a =0时,-x ≥0不恒成立;当a ≠0时,要使ax 2-x +2a ≥0恒成立, 即f (x )=ax 2-x +2a 的图象不在x 轴的下方,∴⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,1-8a 2≤0,解得a ≥24,即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞.核心规律1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. 满分策略1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅由a 确定,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.板块三 启智培优·破译高考数学思想系列7——转化与化归思想在不等式中的应用[2018·江苏模拟]已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解题视点 利用“三个二次”之间的关系,将不等式、函数、方程之间相互转化. 解析 由题意知f (x )=x 2+ax +b=⎝ ⎛⎭⎪⎫x +a 22+b -a 24.∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24,∴f (x )=⎝ ⎛⎭⎪⎫x +a 22.又∵f (x )<c ,∴⎝ ⎛⎭⎪⎫x +a 22<c ,即-a 2-c <x <-a2+c .∴⎩⎪⎨⎪⎧-a2-c =m , ①-a2+c =m +6. ②②-①得2c =6,∴c =9.答案 9答题启示 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.(2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别. 跟踪训练若不等式a ·4x-2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 a >14解析 不等式可变形为a >2x-14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x,令⎝ ⎛⎭⎪⎫12x=t ,则t >0. ∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·潍坊模拟]函数f (x )=1ln (-x 2+4x -3)的定义域是( )A .(-∞,1)∪(3,+∞)B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x 2+4x -3>0,-x 2+4x -3≠1,即⎩⎪⎨⎪⎧1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).2.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2 答案 B解析 依题意得q,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1.选B. 3.[2018·郑州模拟]已知关于x 的不等式ax -1x +1>0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞,则a 的值为( )A .-1 B.12 C .1 D .2答案 D解析 由题意可得a ≠0且不等式等价于a (x +1)( x - ⎭⎪⎫1a>0,由解集的特点可得a >0且1a =12,故a =2.故选D. 4.[2018·福建模拟]若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4] D .[0,4] 答案 D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以实数a 的取值范围是[0,4].5.[2018·梧州模拟]不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1) 答案 A 解析 ∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.6.不等式(2x -1)(1-|x |)<0成立的充要条件是( ) A .x >1或x <12B .x >1或-1<x <12C .-1<x <12D .x <-1或x >12答案 B解析 原不等式等价于⎩⎪⎨⎪⎧2x -1>0,1-|x |<0或⎩⎪⎨⎪⎧2x -1<0,1-|x |>0.∴⎩⎪⎨⎪⎧x >12,x >1或x <-1或⎩⎪⎨⎪⎧x <12,-1<x <1.∴x >1或-1<x <12.故选B.7.[2018·重庆模拟]关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52B.72C.154D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52.故选A.8.[2018·青岛模拟]不等式2x 2-3|x |-35>0的解集为________. 答案 {x |x <-5或x >5}解析 2x 2-3|x |-35>0⇔2|x |2-3|x |-35>0⇔(|x |-5)(2|x |+7)>0⇔|x |>5或|x |<-72(舍)⇔x >5或x <-5. 9.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.答案 (-2,3)解析 依题意知,⎩⎪⎨⎪⎧-13+12=-2a,-13×12=ca ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).10.对于任意a ∈[-1,1],f (x )=x 2+(a -4)x +4-2a 的值恒大于0,那么x 取值范围是________.答案 (-∞,1)∪(3,+∞)解析 令g (a )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,由题意得g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解得x <1或x >3.[B 级 知能提升]1.[2018·保定模拟]若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞ B.⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞) D.⎝⎛⎦⎥⎤-∞,-235答案 A解析 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f (5)>0,即a >-235.2.[2018·辽宁模拟]若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]答案 D解析 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].3.[2018·西安质检]在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32.4.[2018·池州模拟]已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围;11 (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解 (1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1, 综上,a 的取值范围是[0,1]. (2)∵f (x )=ax 2+2ax +1=a (x +1)2+1-a ,∵a >0,∴当x =-1时,f (x )min =1-a ,由题意,得1-a =22,∴a =12. ∴x 2-x -⎝ ⎛⎭⎪⎫122-12<0,即(2x +1)(2x -3)<0,-12<x <32.故不等式的解集为⎝ ⎛⎭⎪⎫-12,32. 5.已知函数f (x )=ax 2+(b -8)x -a -ab ,当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0.当x ∈(-3,2)时,f (x )>0.(1)求f (x )在[0,1]内的值域;(2)若ax 2+bx +c ≤0的解集为R ,求实数c 的取值范围.解 (1)因为当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0,当x ∈(-3,2)时,f (x )>0, 所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,可得⎩⎪⎨⎪⎧-3+2=-b -8a ,-3×2=-a -ab a ,所以a =-3,b =5, f (x )=-3x 2-3x +18=-3⎝ ⎛⎭⎪⎫x +122+18.75, 函数图象关于x =-12对称,且抛物线开口向下,所以在区间[0,1]上f (x )为减函数,所以函数的最大值为f (0)=18,最小值为f (1)=12, 故f (x )在[0,1]内的值域为[12,18]. (2)由(1)知,不等式ax 2+bx +c ≤0化为-3x 2+5x +c ≤0,因为二次函数y =-3x 2+5x+c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需⎩⎪⎨⎪⎧ a =-3<0,Δ=b 2-4ac ≤0,即25+12c ≤0⇒c ≤-2512,所以实数c 的取值范围为⎝⎛⎦⎥⎤-∞,-2512.。
2016届高考数学一轮复习 专题二、一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数y =ax 2+bx +c 的图象、一元二次方程ax 2+bx +c =0的根与一元二次不等式ax 2+bx +c >0与ax 2+bx +c <0的解集的关系,可归纳为:若a <0时,可以先将二次项系数化为正数,对照上表求解.[小题能否全取]1.(教材习题改编)不等式x (1-2x )>0的解集是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫0,12 C .(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞D.⎝ ⎛⎭⎪⎫12,+∞ 2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-13B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-13≤x ≤13 D .R3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)4.(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.5.不等式1x -1<1的解集为________.解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x 轴交点的横坐标相同.典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4;(2)x2-4ax-5a2>0(a≠0).由题悟法1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax2+bx+c>0(a>0),ax2+bx+c<0(a>0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式:(1)-3x2-2x+8≥0;(2)ax2-(a+1)x+1<0(a>0).典题导入[例2] 已知f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.本题中的“x∈[-1,+∞)改为“x∈[-1,1)”,求a的取值范围.由题悟法1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是:a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是:a <0且b 2-4ac <0.以题试法2.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系;(2)引进数学符号,用不等式表示不等关系;(3)解不等式;(4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP公司可供选择.公司A每小时收费1.5元;公司B在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP公司较省钱?1.(2012·重庆高考)不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)2.(2013·湘潭月考)不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(-∞,-1)C.⎝⎛⎭⎪⎫-∞,-1311D.⎝⎛⎭⎪⎫-∞,-1311∪(1,+∞)5.已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y=f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(2,3)∪(-3,-2)B .(-2,2) C .(2,3)D .(-∞,-2)∪(2,+∞)6.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.8.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________.9.(2012·陕西师大附中模拟)若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.1.若关于x 的不等式x 2+12x -⎝ ⎛⎭⎪⎫12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实数λ的取值范围是________.解析:由题意得x 2+12x ≥⎝ ⎛⎭⎪⎫12n max =12,解得x ≥12或x ≤-1.又x ∈(-∞,λ],所以λ的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m m +=a24-c ,解得c =9.答案:93.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,其种型号汽车的刹车距离s (m)与汽车的车速v (km/h)满足下列关系:s =nv 100+v 2400(n 为常数,且n ∈N ),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<8,14<s 2<17.(1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?解:(1)依题意得⎩⎪⎨⎪⎧6<40n 100+1 600400<8,14<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <10,52<n <9514.又n ∈N ,所以n =6.11 (2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60.因为v ≥0,所以0≤v ≤60, 即行驶的最大速度为60 km/h.1.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫32,152 B .[2,8] C .[2,8)D .[2,7] 解析:选C 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8. 2.(2012·江西高考)不等式x 2-9x -2>0的解集是________.解析:由x 2-9x -2>0,得(x +3)(x -3)(x -2)>0,利用数轴穿根法易得-3<x <2或x >3. 答案:{x |-3<x <2,或x >3}3.(2012·温州高三适应性测试)若圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,则实数m 的取值范围是( )A .m >-6B .m >3或-6<m <-2C .m >2或-6<m <-1D .m >3或m <-1解析:选B 依题意,令x =0得关于y 的方程y 2+2my +m +6=0有两个不相等且同号(均不等于零)的实根,于是有⎩⎪⎨⎪⎧ Δ=m 2-m +>0,m +6>0, 由此解得m >3或-6<m <-2.。