八年级上册数学 全等三角形专题练习(word版
- 格式:doc
- 大小:1.44 MB
- 文档页数:22
八年级数学上册《全等三角形的判定》练习题及答案一、选择题1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°2.下列说法正确的是( )A.两个等腰直角三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠CB.AD=AEC.BD=CED.BE=CD5.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°6.如图, OD⊥AB于点D,OE⊥AC于点E, 且OD=OE, 则△AOD与△AOE全等的理由是()A.SASB.ASAC.SSSD.HL7.如图所示,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠28.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等9.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是( )A.0.5 B.1 C.1.5 D.210.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对二、填空题11.如图,已知∠C=∠D=90°,请你添加一个适当的条件:______________,使得△ACB≌△BDA.12.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)13.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.15.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.16.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB= .三、解答题17.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.18.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF.求证:∠E=∠F.19.如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.20.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.参考答案1.答案为:C2.答案为:C3.答案为:B4.答案为:D5.答案为:B.6.答案为:D7.答案为:D8.答案为:A9.答案为:B 10.答案为:D11.答案为:AD=CD;(答案不唯一).12.答案为:AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.13.答案为:AB=DE.14.答案为:3;15.答案为:316.答案为:7.17. (1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD∥BC,∴∠AOD=∠OBC,在△AOD与△OBC中,,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD∥BC,∴∠DOC=∠OCB=35°.18.证明:19.解:(1)∵AC=BD∴AD=BC且AF=BE,∠A=∠B∴△ADF≌△BCE(SAS)∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE∴AD=BC=5cm,且CD=1cm,∴AC=AD+CD=6cm.20.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,∠1=∠D,∠3=∠5,BC=CE,∴△ABC≌△DEC(AAS),∴AC=CD;(2)∵∠ACD=90°,AC=CD,∴∠2=∠D=45°,∵AE=AC,∴∠4=∠6=67.5°,∴∠DEC=180°-∠6=112.5°.。
八年级上册数学专项训练题一、三角形全等专项训练1. 已知:如图,在△ABC和△DEF中,AB = DE,BC = EF,∠A = ∠D。
求证:△ABC≌△DEF。
解析:在三角形全等的判定定理中,有“SSS(边边边)”“SAS(边角边)”“ASA(角边角)”“AAS(角角边)”等。
本题中虽然给出了两组边相等(AB = DE,BC = EF)和一组角相等(∠A = ∠D),但是这组角不是两边的夹角,不满足SAS判定定理,所以不能判定这两个三角形全等。
2. 如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:∠AEF = ∠EAF。
解析:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS判定定理,△BDG≌△CDA。
所以BG = AC,∠G = ∠EAF。
又因为BE = AC,所以BE = BG,所以∠G = ∠AEF。
所以∠AEF = ∠EAF。
二、轴对称专项训练1. 已知点A(2,3)关于x轴对称的点为A',求A'的坐标。
解析:关于x轴对称的点,横坐标相同,纵坐标互为相反数。
所以点A(2,3)关于x轴对称的点A'的坐标为(2, 3)。
2. 如图,在△ABC中,AB = AC,∠A = 36°,AB的垂直平分线MN交AC于D,交AB于M。
求∠DBC的度数。
解析:因为AB = AC,∠A = 36°,所以∠ABC=∠C=(180° 36°)÷2 = 72°。
因为MN是AB的垂直平分线,所以AD = BD。
所以∠A = ∠ABD = 36°。
所以∠DBC=∠ABC ∠ABD = 72° 36° = 36°。
专题练习:全等三角形基础训练1.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是(D)(第1题图)A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD2.下列说法正确的是(D)A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等3.如图,正方形ABCD中,点E是AD边中点,BD,CE交于点H,BE,AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB =∠EHD.其中正确的个数是(D)A. 1B. 2C. 3D. 4(第3题图)4.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE ⊥EF ,AE =EF ,现有如下结论:①BE =12GE ;②△AGE≌△ECF;③∠FCD=45°;④△GBE ∽△ECH.其中,正确的结论有(B)A. 1个B. 2个C. 3个D. 4个(第4题图)5.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有(C)(第5题图)A. 1个B. 2个C. 3个D. 4个6.如图,已知点B ,C ,F ,E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA =FD(不唯一)(只需写出一个即可).(第6题图)7.如图,已知△ABC≌△ADE,若AB =7,AC =3,则BE 的值为__4__.(第7题图)8.在△ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC≌△DEF,则∠DEF =40°.9.如图,在△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D,AB =DC.(1)求证:△ABE≌DCE.(2)当∠AEB=50°,求∠EBC 的度数.(第9题图)解:(1)在△ABE 和△DCE 中, ∵⎩⎪⎨⎪⎧∠A =∠D,∠AEB =∠DEC,AB =DC ,∴△ABE ≌△DCE(AAS). (2)∵△ABE≌△DCE,∴BE =EC ,∴∠EBC =∠ECB.∵∠EBC +∠ECB=∠AEB=50°,∴∠EBC =25°.拓展提高10.用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB 的依据是(A)(第10题图)A. SSSB. SASC. ASAD. AAS 11.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( C )(第11题图)A. ①B. ②C. ③D. ①和②12.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连结BE ,FE ,则∠EBF 的度数是( A )A. 45°B. 50°C. 60°D. 不确定(第12题图)13.如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上.若CE =35,且∠ECF=45°,则CF 的长为(A)A. 210B. 3 5C. 5310D. 1035(第13题图)14.如图,以△ABC 的三边为边分别作等边△ACD,△ABE ,△BCF ,则下列结论:①△EBF≌△DFC;②四边形AEFD 为平行四边形;③当AB =AC ,∠BAC =120°时,四边形AEFD 是正方形.其中正确的结论是 ①②(请写出正确结论的序号).(第14题图)15.如图,点B,E,C,F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.(第15题图)16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是__50__.(第16题图)17.如图,在正方形ABCD的边BA的延长线上作等腰直角△AEF,连结DF,延长BE交DF于点G.若FG=6,EG=2,则线段AG的长为(第17题图)18.如图,已知点D在△ABC的BC边上,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.(第18题图)解:(1)证明:∵DE∥AC, ∴∠ADE =∠DAF. 同理∠DAE=∠FDA. 又∵AD=DA ,∴△ADE ≌△DAF(ASA), ∴AE =DF.(2)若AD 平分∠BAC ,四边形AEDF 是菱形,理由如下: ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形, ∵AD 平分∠BAC, ∴∠EAD =∠DAF. 又∵∠DAE=∠FDA,∴∠DAF =∠FDA.∴AF=DF. ∴平行四边形AEDF 为菱形.19.如图,过∠AOB 平分线上一点C 作CD∥OB 交OA 于点D ,E 是线段OC 的中点,请过点E 画直线分别交射线CD ,OB 于点M ,N ,探究线段OD ,ON ,DM 之间的数量关系,并证明你的结论.(第19题图)解:线段OD ,ON ,DM 之间的数量关系是:OD =DM +ON. 证明:∵OC 是∠AOB 的平分线, ∴∠DOC =∠COB.又∵CD∥OB,∴∠DCO =∠COB, ∴∠DOC =∠DCO, ∴OD =CD =DM +CM.∵E 是线段OC 的中点,∴CE =OE.∵CD ∥OB ,∴CM ON =CEOE,∴CM =ON.又∵OD=DM +CM , ∴OD =DM +ON. 20.如图,在四边形ABCD 中,点E 在AD 上,其中∠BAE=∠BCE=∠ACD =90°,且BC =CE ,求证:△ABC≌△DEC.(第20题图)解:∵∠BCE=∠ACD=90°, ∴∠3+∠4=∠4+∠5, ∴∠3=∠5.在△ACD 中,∵∠ACD =90°, ∴∠2+∠D=90°.∵∠BAE =∠1+∠2=90°, ∴∠1=∠D.在△ABC 和△DEC 中, ∵⎩⎪⎨⎪⎧∠1=∠D,∠3=∠5,BC =CE ,∴△ABC ≌△DEC(AAS).。
第十二章《全等三角形》专题练习专题1证明三角形全等的解题思路思路一:找边边相等呈现的方式:①公共边(包括全部公共和部分公共);②中点.类型1已知两边对应相等,找第三边相等1.如图,已知AB=DE,AD=EC,D是BC的中点,求证:△ABD≌△EDC.类型2已知两角对应相等,找夹边相等2.如图,∠ABD=∠CDB,∠ADB=∠DBC,求证:△ABD≌△CDB.类型3已知两角对应相等,找其中一角的对边相等3.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?类型4已知直角三角形的直角边(或斜边)相等,找斜边(或直角边)相等4.如图,∠A=∠D=90°,AB=DF,BE=CF.求证:△ABC≌△DFE.思路二:找角角相等呈现的方式:①公共角;②对顶角;③角平分线;④垂直;⑤平行.类型5已知两边对应相等,找夹角相等5.如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.6.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.7.如图,已知AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.类型6已知一边一角对应相等,找另一角相等8.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:△ABC≌△DAE.9.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC,求证:(1)△ADO≌△AEO;(2)△BDO≌△CEO.专题2全等三角形的基本模型类型1平移模型1.如图,AC=DF,AD=BE,BC=EF.求证:(1)△ABC≌△DEF;(2)AC∥DF.类型2对称模型2.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F,求证:∠A=∠D.3.如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.4.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.类型3旋转模型5.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.求证:BC=DE.6.如图,四边形ABCD的对角线相交于点O,AB∥CD,O是BD的中点.(1)求证:△ABO≌△CDO;(2)若BC=AC=4,BD=6,求△BOC的周长.类型4一线三等角模型7.如图,AD⊥AB于点A,BE⊥AB于点B,点C在AB上,且CD⊥CE,CD=CE.求证:AD=CB.类型5综合模型平移+旋转模型:平移+对称模型:8.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.小专题3构造全等三角形的常用方法方法1利用“角平分线”构造全等三角形因角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线段.1.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,求证:PM=PN.【拓展1】OM+ON的值是否为定值?请说明理由.【拓展2】四边形PMON的面积是否为定值?请说明理由.方法2利用“截长补短法”构造全等三角形截长补短法的具体做法:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种方法适用于证明线段的和、差、倍、分等题目.2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.3.如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.方法3利用“倍长中线法”构造全等三角形将中线延长一倍,然后利用“SAS”判定三角形全等.4.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.方法4利用“三垂直”构造全等三角形如图,若AB=AC,AB⊥AC,则可过斜边的两端点B,C向过A点的直线作垂线构造△ABD≌△CAE.在平面直角坐标系中,过顶点A的直线常为x轴或y轴.5.已知在△ABC中,∠BAC=90°,AB=AC,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(-1,0),求C点坐标;(3)如图3,若B(-4,0),C(0,-1),求A点坐标.参考答案专题1 证明三角形全等的解题思路1.证明:∵D 是BC 的中点,∴BD =CD.在△ABD 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,AD =EC ,BD =DC ,∴△ABD ≌△EDC(SSS ).2.证明:在△ABD 和△CDB 中,⎩⎪⎨⎪⎧∠ABD =∠CDB ,BD =DB ,∠ADB =∠CBD ,∴△ABD ≌△CDB(ASA ).3.解:全等.理由:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D.∴AB -BF =BD -BC ,即AF =DC.在△AOF 和△DOC 中,⎩⎪⎨⎪⎧∠A =∠D ,∠AOF =∠DOC ,AF =DC ,∴△AOF ≌△DOC(AAS ).4.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF.在Rt △ABC 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DF ,BC =FE ,∴Rt △ABC ≌Rt △DFE(HL ).5.证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).6.证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△ABE ≌△ACD(SAS ).7.证明:∵AD 是△ABC 的中线,∴BD =CD.在△ACD 和△EBD 中,⎩⎪⎨⎪⎧CD =BD ,∠ADC =∠EDB ,DA =DE ,∴△ACD ≌△EBD(SAS ).8.证明:∵DE ∥AB ,∴∠CAB =∠EDA.在△ABC 和△DAE 中,⎩⎪⎨⎪⎧∠CAB =∠EDA ,AB =DA ,∠B =∠DAE ,∴△ABC ≌△DAE(ASA ).9.证明:(1)∵AO 平分∠BAC ,∴∠DAO =∠EAO.∵∠BDC =∠CEB =90°,∴∠ADO =∠AEO.在△ADO 和△AEO 中,⎩⎪⎨⎪⎧∠ADO =∠AEO ,∠DAO =∠EAO ,AO =AO ,∴△ADO ≌△AEO(AAS ).(2)∵△ADO ≌△AEO ,∴DO =EO.在△BDO 和△CEO 中,⎩⎪⎨⎪⎧∠BDO =∠CEO ,DO =EO ,∠DOB =∠EOC ,∴△BDO ≌△CEO(ASA ).小专题2 全等三角形的基本模型1.证明:(1)∵AD =BE ,∴AD +DB =BE +DB ,即AB =DE.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF(SSS ).(2)∵△ABC ≌△DEF ,∴∠A =∠EDF.∴AC ∥DF.2.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =FE.在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠B =∠F ,BC =FE ,∴△ABC ≌△DFE(SAS ).∴∠A =∠D.3.证明:在△AEB 和△ADC 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△AEB ≌△ADC(SAS ).∴BE =CD.4.解:添加∠BAC =∠DAC(答案不唯一),理由:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS ).5.证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).∴BC =DE.6.解:(1)证明:∵AB ∥CD ,∴∠BAO =∠DCO ,∠ABO =∠CDO.∵O 是DB 的中点,∴BO =DO.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠BAO =∠DCO ,∠ABO =∠CDO ,BO =DO ,∴△ABO ≌△CDO(AAS ).(2)∵△ABO ≌△CDO ,∴AO =CO =12AC =2. ∵BO =12BD =3, ∴△BOC 的周长为BC +BO +OC =4+3+2=9.7.证明:∵AD ⊥AB ,BE ⊥AB ,∴∠A =∠B =90°.∴∠D +∠ACD =90°.∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°.∴∠D =∠BCE.在△ACD 和△BEC 中,⎩⎪⎨⎪⎧∠A =∠B ,∠D =∠BCE ,CD =EC ,∴△ACD ≌△BEC(AAS ).∴AD =CB.8.解:(1)证明:在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠A =∠D ,AC =DE ,∴△ABC ≌△DFE(SAS ).∴∠ACB =∠DEF.∴AC ∥DE.(2)∵△ABC ≌△DFE ,∴BC =EF.∴BE =CF =12(BF -EC)=4.∴BC =BE +EC =9.专题3 构造全等三角形的常用方法1.证明:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEO =∠PFO =90°.∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN.∴∠EPM =∠FPN.∵OP 平分∠AOB ,PE ⊥OA ,PF ⊥OB ,∴PE =PF.在△PEM 和△PFN 中,⎩⎪⎨⎪⎧∠EPM =∠FPN ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN(ASA ).∴PM =PN.【拓展1】 解:OM +ON 的值是定值.理由:∵△PEM ≌△PFN ,∴ME =NF.易证△EPO ≌△FPO ,∴OE =OF.∴OM +ON =OE +EM +ON =OE +NF +ON =OE +OF =2OE =定值.【拓展2】 解:四边形PMON 的面积是定值.理由:∵△PEM ≌△PFN ,∴S △PEM =S △PFN .∴S 四边形PMON =S 四边形PEOF =定值.2.证明:在BC 上截取BF =AB ,连接EF.∵BE 平分∠ABC ,CE 平分∠BCD ,∴∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS ).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS ).∴CF =CD.∴BC =BF +CF =AB +CD.3.(1)EF =BE +DF ;(2)解:EF =BE +DF 仍然成立.理由:延长FD 到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ).∴AE =AG ,∠BAE =∠DAG.∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF.在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG.∵FG =DG +DF =BE +DF ,∴EF =BE +DF.4.证明:延长AM 至N ,使MN =AM ,连接BN.∵点M 为BC 的中点,∴BM =CM.在△AMC 和△NMB 中,⎩⎪⎨⎪⎧AM =NM ,∠CMA =∠BMN ,CM =BM ,∴△AMC ≌△NMB(SAS ).∴AC =BN =AD ,∠C =∠NBM ,∠ABN =∠ABC +∠NBM =∠ABC +∠C =180°-∠BAC =∠EAD.在△ABN 和△EAD 中,⎩⎪⎨⎪⎧AB =EA ,∠ABN =∠EAD ,BN =AD ,∴△ABN ≌△EAD(SAS ).∴DE =NA =2AM.5.解:(1)过点C 作CD ⊥x 轴,垂足为D.则∠CAD +∠ACD =90°.∵∠BAC =90°,∴∠BAO +∠CAD =90°.∴∠BAO =∠ACD.在△ABO 和△CAD 中,⎩⎪⎨⎪⎧∠AOB =∠CDA ,∠BAO =∠ACD ,AB =CA ,∴△ABO ≌△CAD(AAS ).∴BO =AD ,OA =CD.∵A(1,0),B(0,3),∴OA =1,OB =3.∴AD =3,CD =1.∴OD =OA +AD =4.∴C(4,1).(2)过点A 作AD ⊥x 轴,垂足为D ,过点C 作CE ⊥AD ,垂足为E.同(1)可证△ACE ≌△BAD , ∴AE =BD ,CE =AD.∵A(1,3),B(-1,0),∴BD =2,AD =3.∴CE =3,DE =AD -AE =1.∴C(4,1).(3)过点A 作AD ⊥x 轴,AE ⊥y 轴,垂足分别为D ,E. 同(1)可证△BAD ≌△CAE ,∴CE =BD ,AE =AD.∵B(-4,0),C(0,-1),∴OB =4,OC =1.∴AE =OB -BD =OB -CE =OB -(OC +OE)=3-AE.∴AE =32. ∴A(-32,32).。
一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.3.如图,在ABC∆中,ACB∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29 BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.6.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.7.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,即可证得AH =BC ,此时AD =12BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因此BE 2+CF 2=EF 2,若图2中△ABC 也进行这样的折叠(如图4),此时线段BE 、CF 、EF 还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF 绕着点D 旋转(如图5),射线DE 、DF 分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点,且AE CD=,BD与EC交于点F,则BFE∠的度数是___________度;②如图②,D,E分别是边AC,BA延长线上的点,且AE CD=,BD与EC的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒EAC DCBα180=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.9.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。
八年级数学上册《全等三角形》练习题及答案学校:___________姓名:___________班级:___________一、填空题1.如图,已知△ABC △△EDF ,点F ,A ,D 在同一条直线上,AD 是△BAC 的平分线,△EDA =20°,△F =60°,则△DAC 的度数是______.2.如图,△ABC △△DBE ,△ABC =80°,△D =65°,则△C 的度数为________.3.如图,在Rt △ABC 中,△C =90°,△CAD =50°,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则△B 的度数为______.4.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.5.如图,数轴上从左到右排列的A 、B 、C 三点的位置如图所示.点B 表示的数是5,13AB =,6BC =,若将数轴折叠,使A ,C 两点重合,则与点B 重合的点表示的数是__________.6.如图,△ABC 是等边三角形,且BD =CE ,△1=15°,则△2的度数为____°.二、单选题7.如图,点B 、D 、E 、C 在同一直线上,△ABD △△ACE ,△AEC =100°,则△DAE =( )A .10°B .20°C .30°D .80°8.下列各组两个图形属于全等图形的是( )A .B .C .D .9.如图,ABC 与AED 关于直线l 对称,若30B ∠=︒,95C ∠=︒,则DAE =∠( )A .30B .95︒C .55︒D .65︒10.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是( )A .a 2+b 2=c 2B .△A =△B +△C C .△A △△B △△C =3△4△5D .a =5,b =12,c =1311.△ABC 中,△B =△C ,若与△ABC 全等的三角形中有一个角是92°,则这个角在△ABC 中的对应角是( )A .△AB .△A 或△BC .△CD .△B 或△C12.如图,在ABC 中,在边BC 上取一点D ,连接AD ,在边AD 上取一点E ,连接CE .若ADB CDE △△≌,BAD ∠=α,则ACE ∠的度数为( )A .αB .45α-︒C .45α︒-D .90α︒-13.如图,已知矩形ABCD ,点E 是AB 边的中点,F 为AD 边上一点,2DFC BCE ∠=∠,若4,5CE CF ==,有如下结论:△CF BC AF =+,△75DF =,△175BC =,△12BCE BCF ∠=∠,其中正确的是( )A .△△B .△△△C .△△D .△△△14.如图,将正方形ABCD 剪去4个全等的直角三角形(图中阴影部分),得到边长为c 的四边形EFGH ,下列等式成立的是( )A .a b c +=B .22()4c a b ab +⋅=C .2()()c a b a b =+-D .222+=a b c三、解答题15.如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)16.补全解题过程(1)已知:如图1,点C是线段AB的中点,CD=2cm,BD=8cm,求AD的长解:△CD=2cm,BD=8cm,△CB=CD+______=______cm△点C是线段AB的中点,△AC=CB=_____cm,△AD=AC+_____=_____cm(2)如图2,两个直角三角形的直角顶点重合,△BOD=40°,求△AOC的度数.解:△△AOC+△COB=__________° ,△COB+△BOD=__________°,…………△△△AOC=__________ ……………………△△△BOC=40°,△△AOC=________°在上面△到△的推导过程中,理由依据是:________________________________17.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成△△△△四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第______部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.<),点E是线段OP的中点.在直径AB上方的18.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.圆上作一点C,使得EC EP19.△MOQ=90°,点A,B分别在射线OM、OQ上运动(不与点O重合).(1)如图1,AI平分△BAO,BI平分△ABO,若△BAO=40°,求△AIB的度数.(2)如图2,AI平分△BAO,BC平分△ABM,BC的反向延长线交AI于点D.△若△BAO=40°,则△ADB=°;△点A、B在运动的过程中,△ADB是否发生变化,若不变,试求△ADB的度数;若变化,请说明变化规律.参考答案:1.50°【分析】首先根据全等三角形的性质,可得△B=△EDF=20°,△C=△F=60°,即可求得△BAC=100°,再根据角平分线的定义即可求得.【详解】解:△△ABC△△EDF,△△B=△EDF,△C=△F,△△EDA=20°,△F=60°,△△B=20°,△C=60°,△△BAC=180°﹣△B﹣△C=100°,△AD是△BAC的平分线,△1502DAC BAC==︒∠∠,故答案为:50°.【点睛】本题考查了全等三角形的性质,三角形内角和定理,角平分线的定义,熟练掌握和运用全等三角形的性质是解决本题的关键.2.35︒##35度【分析】由△ABC△△DBE,根据全等三角形的性质可得△BAC=△D=65°,根据三角形内角和定理即可求解.【详解】解:△△ABC△△DBE,△D=65°,△△BAC=△D=65°,△△ABC=80°,△△C=180°﹣△ABC﹣△BAC=35°,故答案为:35°.【点睛】本题考查了全等三角形的性质,三角形内角和定理,掌握以上知识是解题的关键.3.20°##20度【分析】证明B DAB∠=∠,设B DAB∠=∠=x,利用三角形内角和定理构建方程求解.【详解】由作图可知,MN垂直平分线段AB,△DA=DB,△B DAB∠=∠,设B DAB∠=∠=x,在△ABC中,则有50°+x+x=90°,△x=20°,△20B∠=︒.故答案为:20°.【点睛】本题考查了作图-基本作图,线段的垂直平分线等知识,解决本题的关键是掌握线段的垂直平分线的性质.4.39【分析】根据平移的性质分别求出BE、DE,根据题意求出OE,根据全等三角形的性质、梯形的面积公式计算,得到答案.【详解】解:由平移的性质知,BE =6,DE =AB =8,△PE =DE −DP =8−3=5,根据题意得:△ABC △△DEF ,△S △ABC =S △DEF ,△S 四边形PDFC =S 梯形ABEP =12(AB +PE )•BE =12⨯(8+5)×6=39,故答案为:39.【点睛】本题考查平移及全等三角形的性质,掌握平移的性质是解题的关键.5.2-【分析】根据题意求得,A C 点表示的数,进而根据折叠的性质即可求解.【详解】解:△点B 表示的数是5,13AB =,6BC =,△C 点表示的数是5611+=,点A 表示是数是5138-=-设与点B 重合的点为D ,根据对称性可得AD BC =∴D 点表示的数为862-+=- 故答案为:-2【点睛】本题考查了数轴上点的距离,折叠的性质,数形结合是解题的关键.6.60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =∠∠,证明△ABD △△BCE (SAS ),根据全等三角形的性质可得△1=△CBE ,根据三角形外角的性质可得△2=△1+△ABE ,继而根据等量代换可得△2=△CBE +△ABE =△ABC ,即可求解.【详解】解:△△ABC 是等边三角形,△AB BC =,A ABC CB =∠∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△BCE (SAS ),△△1=△CBE ,△△2=△1+△ABE ,△△2=△CBE +△ABE =△ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.7.B【分析】由全等三角形的性质,得到100ADB AEC ∠=∠=︒,然后得到80ADE AED ∠=∠=︒,利用三角形的内角和定理,即可求出答案.【详解】解:△ABD ACE △≌△,△100ADB AEC ∠=∠=︒,△18010080ADE AED ∠=∠=︒-︒=︒,△180808020DAE ∠=︒-︒-︒=︒;故选:B .【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的进行解题.8.B【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A 、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B .【点睛】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.9.C【分析】根据轴对称的性质以及三角形的内角和定理解决问题即可.【详解】解:ABC 与AED 关于直线l 对称,ABC ∴△AED ,DAE BAC ∴=∠∠,180180309555BAC B C ∠∠∠=︒--=︒-︒-︒=︒,55DAE ∠∴=︒.故选:C .【点睛】本题考查轴对称,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、△222+=a b c ,△此三角形是直角三角形,故本选项不符合题意;B 、△△A +△B +△C =180°,△A =△B +△C ,△△A =90°,△此三角形是直角三角形,故本选项不符合题意;C 、设△A =3x ,则△B =4x ,△C =5x ,△△A +△B +△C =180°,△3x +4x +5x =180°,解得x =15°,△△C =5×15°=75°,△此三角形不是直角三角形,故本选项符合题意;D 、△22251213+=,△此三角形是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查的是勾股定理的逆定理及三角形内角和定理,如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.11.A【分析】根据三角形内角和定理可知,三角形中只能有一个钝角,因为△B =△C ,所以钝角一定是△A .【详解】解:△在△ABC 中,△B =△C ,△A +△B +△C =180°,△△B 和△C 必须都是锐角,△若与△ABC 全等的一个三角形中有一个角为92°,那么92°的角在△ABC 中的对应角一定是△A , 故选:A .【点睛】本题考查三角形的内角和定理,全等三角形的性质,灵活运算三角形内角和等于180°是解题的关键.12.C【分析】根据全等三角形对应角相等、三角形外角性质及内角和定理,将△ABC 各个角相加,可求出△ADC =90°,由于全等三角形对应边相等,所以AD =CD ,所以△ACD =45°,则△ACE =45°-α.【详解】解:△ADB CDE △△≌△△BAD =△ECD =α,△B =△DEC ,△ADB =△CDE ,AD =CD△△DEC =△EAC +△ACE△△BAC +△B +△ACB =△BAD +△EAC +△B +△ECD +△ACE =△BAD +2△B +△ECD =180°△△B =1802902αα︒-=︒- △△ADC =△ADB =90°△AD =CD△△DAC =△DCA =45°△△ACE =△ACD -△ECD =45°-α故选 C【点睛】本题考查了全等三角形的性质、三角形外角性质及内角和定理,根据已知条件熟练运用相关知识是解题的关键.13.B【分析】过E 作EH △CF 于H ,利用矩形的性质和全等三角形的判定和性质判断即可.【详解】解:过E 作EH △CF 于H ,如图,△四边形ABCD 是矩形,△90B BCD D ∠=∠=∠=︒,△9090DFC DCF DCF FCE BCE ,∠+∠=︒∠+∠+∠=︒,△DFC FCE BCE ∠=∠+∠,△2DFC BCE ∠=∠,△FCE BCE ∠=∠,在CHE 和CBE △中,90CHE B FCE BCE CE CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,△CHE CBE AAS △≌△(),△CH CB HE BE CEH CEB BCE ECF ,,,==∠=∠∠=∠,△12BCE BCF ∠=∠, 故△正确;△AE EB =,△AE EH =,在Rt FAE 和Rt FHE 中,AE EH EF EF =⎧⎨=⎩, △Rt FAE Rt FHE HL △≌△△(),△AF FH AEF HEF ,=∠=∠,△45CE CF ,==,△CF CH FH BC AF =+=+,故△正确;△AEF HEF CEH CEB ,∠=∠∠=∠,△90HEF CEH +∠∠=︒,△3EF =, △1341221552EF CE EF CE HE CF CF ⋅⋅⨯====, △125AE =, △2425AB AE ==,△95AF ===, △75DF AD AF CH AF CF FH AF CF AF AF =-=-=--=--=, 故△正确; △916555BC CH CF FH ==-=-=, 故△错误.故选B . 【点睛】本题考查了矩形的性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,证明三角形全等是解题的关键.14.D【分析】利用空白部分的面积等于原正方形面积减4个全等三角形的面积,以及空白部分本身是一个边长为c 的正方形,利用等面积法求解.【详解】解:△四边形ABCD 是正方形,△△A =90°,△△AHE +△AEH =90°,△△AHE △△DGH ,△△DHG =△AEH ,△△AHE +△DHG =90°,△△EHG =90°,又△HE =EF =FG =GH ,△四边形EFGH 是正方形,△由图可得剩下正方形面积为:21()42a b ab +-⨯, 根据正方形面积公式,剩下正方形面积也可以表示为:c 2,221()42a b ab c ∴+-⨯=,化简得a 2+b 2=c 2, 故选:D .【点睛】本题主要考查了勾股定理的证明,正方形的性质与判定,全等三角形的性质,解题的关键在于证明四边形EFGH 是正方形.15.见解析【分析】作ACD ∠的角平分线即可.【详解】解:如图,射线CP 即为所求作.【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.16.(1)BD ,10,10,CD ;(2)90,90,△BOD ,50,同角的余角相等【分析】(1)先推出CB =10cm ,根据中点的定义得AC =CB ,进而即可求解;(2)根据同角的余角相等,即可求解.【详解】(1)解:△CD=2cm,BD=8cm,△CB=CD+BD=10cm△点C是线段AB的中点,△AC=CB=10cm,△AD=AC+CD=12cm故答案是:BD,10,10,CD;(2)解:△△AOC+△COB=90° ,△COB+△BOD=90°,………△△△AOC=△BOD ………△△△BOC=40°,△△AOC=50°在上面△到△的推导过程中,理由依据是:同角的余角相等.故答案是:90,90,△BOD,50,同角的余角相等.【点睛】本题主要考查线段的中点的定义,角的和差运算,掌握同角的余角相等是解题的关键.17.(1)△(2)a的值为﹣3(3)d的值为3或﹣5【分析】(1)由bc<0可知b、c异号,进而问题可求解;(2)根据数轴上两点距离可进行求解;(3)根据数轴上两点距离及线段和差关系可进行求解.(1)解:△bc<0,△b,c异号,△原点在B,C之间,即第△部分,故答案为:△;(2)解:△BC=3,b=﹣1,点C在点B的右边,△C表示的数为:﹣1+3=2,△AC=5,A点在点C的左边,△点A表示的数为:2﹣5=﹣3,△a的值为﹣3;(3)解:△C表示的数为2,△OC =2,△点B 表示的数为﹣1,点D 表示的数为d ,BD =2OC ,△|d ﹣(﹣1)|=4,解得:d =3或﹣5,△d 的值为3或﹣5.【点睛】本题主要考查数轴上两点距离及线段的和差关系,熟练掌握数轴上两点距离及线段的和差关系是解题的关键.18.证明见解析【分析】连接OC ,根据线段中点的定义得到OE =EP ,求得OE =EC =EP ,得到△COE =△ECO ,△ECP =△P ,利用三角形内角和定理求出90ECO ECP ∠+∠=︒,根据切线的判定定理即可得到结论.【详解】证明:连接OC ,△点E 是线段OP 的中点,△OE EP =,△EC EP =,△OE EC EP ==,△COE ECO ∠=∠,ECP P ∠=∠,△180COE ECO ECP P ∠+∠+∠+∠=︒,△90ECO ECP ∠+∠=︒,△OC PC ⊥,△OC 是O 的半径,△PC 是O 的切线.【点睛】本题考查了切线的判定,等边对等角,三角形内角和定理,熟练掌握切线的判定定理是解题的关键.19.(1)135°(2)△45;△不变,理由见解析【分析】(1)根据角平分线的性质和三角形内角和定理即可求解;(2)根据角平分线的性质和三角形内角和定理即可求解.(1)△MN△PQ,△△AOB=90°,△△BAO=40°,△△ABO=90°﹣△OAB=50°,△AI平分△BAO,BI平分△ABO,△△IBA=12△ABO=25°,△IAB=12△OAB=20°,△△AIB=180°﹣(△IBA+△IAB)=135°.(2)△△△MBA=△AOB+△BAO=90°+40°=130°,△AI平分△BAO,BC平分△ABM,△△CBA=12△MBA=65°,△BAI=12△BAO=20°,△△CBA=△D+△BAD,△△D=45°,故答案为:45.△不变,理由:△△D=△CBA﹣△BAD=12△MBA﹣12△BAO,=12(△MBA﹣△BAO),=12△AOB=12×90°,=45°,△点A、B在运动的过程中,△ADB=45°.【点睛】本题考查了角平分线的性质和三角形内角和定理,解决本题的关键是掌握角平分线的性质.。
一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)解:如图3,延长DC 到点G ,截取CG =AE ,连接BG ,在△AEB 与△CGB 中,∵AE CG A BOG AF BF =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△CGB (SAS ),∴BE =BG ,∠ABE =∠CBG .∵∠EBF =45°,∠ABC =90°,∴∠ABE +∠CBF =45°,∴∠CBF +∠CBG =45°.在△EBF 与△GBF 中,∵BE BG EBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△GBF (SAS ),∴EF =GF ,∴△DEF 的周长=EF +ED +CF =AE +CF +DE +DF =AD +CD =10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.2.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯= BMD ∴是等腰直角三角形.()2解:如图2,BDM是等腰直角三角形,理由是:延长ED交AC 于F,ADE和ABC△是等腰直角三角形,45BAC EAD∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,DM FM∴=,DE FC=,AD ED FC∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=, //CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.3.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F;(3)证明见解析.【解析】试题分析:(1)过E点作EG⊥x轴于G,根据B、E点的坐标,可证明△AEG≌△ABO,从而根据全等三角形的性质得证;(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,然后根据全等三角形的判定得到△AEG≌△DAK,进而求出D点的坐标,然后设F坐标为(0,y),根据S梯形EGKD=S梯形EGOF+S梯形FOKD可求出F的坐标;(3)连接MI、NI,根据全等三角形的判定SAS证得△MIN≌△MIA,从而得到∠MIN=∠MIA和∠MIN=∠NIB,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI,作IS⊥OM于S, 再次证明△HIP≌△SIC和△QIP≌△QIC,得到C△POQ周长.试题解析:(1)过E点作EG⊥x轴于G,∵B(0,-4),E(-6,4),∴OB=EG=4,在△AEG和△ABO中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()()111347463222y y+⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I为△MON内角平分线交点,∴NI平分∠MNO,MI平分∠OMN,在△MIN和△MIA中,∵MN MANMI AMIMI MI=⎧⎪∠=∠⎨⎪=⎩∴△MIN≌△MIA(SAS),∴∠MIN=∠MIA,同理可得∠MIN=∠NIB,∵NI平分∠MNO,MI平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI,作IS⊥OM于S, ∵IH⊥ON,OI平分∠MON,∴IH=IS=OH=OS,∠HIS=90°,∠HIP+∠QIS=45°,在SM上截取SC=HP,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP,∴C△POQ=OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.4.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.5.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论.()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.6.在四边形 ABCD 中,E 为 BC 边中点.(Ⅰ)已知:如图,若 AE 平分∠BAD ,∠AED =90°,点 F 为 AD 上一点,AF =AB .求证:(1)△ABE ≌AFE ;(2)AD =AB +CD(Ⅱ)已知:如图,若 AE 平分∠BAD ,DE 平分∠ADC ,∠AED =120°,点 F ,G 均为 AD 上的点,AF =AB ,GD =CD .求证:(1)△GEF 为等边三角形;(2)AD =AB + 12BC +CD .【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG是等边三角形,(2)∵△EFG是等边三角形,∴GF=EF=BE=12 BC,∵AD=AF+FG+GD,∴AD=AB+CD+12 BC.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.7.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.8.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD ≌△QCD 则有CD=12CF ,即可得出BE +CD =8. 【详解】 解:(1)如图①,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF ∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.9.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠),∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∴MN AN AM BM CN =+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN 、和MN 之间的关系式.10.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE ⊥AC ,连结 DF 交射线 AC 于点 G(1)当 DF ⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
八年级数学全等三角形专项练习题一、单选题1.如图,△ABC ≌△DEF ,点A 与D ,B 与E 分别是对应顶点,且测得BC=5cm ,BF=7cm ,则EC 长为( )A .1cmB .2cmC .3cmD .4cm 2.已知图中的两个三角形全等,则α∠的度数是( )A .72°B .60°C .58°D .50° 3.在下列各组条件中,不能说明ABC DEF ∆∆≌的是( )A .AB=DE ,∠B=∠E ,∠C=∠FB .AB=DE ,∠A=∠D ,∠B=∠EC .AC=DF ,BC=EF ,∠A=∠D D .AB=DE ,BC=EF ,AC=ED 4.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED = 6.“经过已知角一边上的一点,作一个角等于已知角”的尺规作图过程如下:已知:如图,AOB ∠和OA 上一点C .求作:一个角等于AOB ∠,使它的顶点为C ,一边为CA .作法:如图.(1)在OA 上取一点()D OD OC <,以点O 为圆心,OD 长为半径画弧,交OB 于点E ; (2)以点C 为圆心,OD 长为半径画弧,交CA 于点F ,以点F 为圆心,DE 长为半径画弧,两弧交于点G ;(3)作射线CG .则GCA ∠就是所求作的角.此作图的依据中不含有( )A .三边分别相等的两个三角形全等B .全等三角形的对应角相等C .两直线平行同位角相等D .两点确定一条直线7.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点 8.如图所示,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于E ,15ABC S ∆=,3DE =,6AB =,则AC 长是( )A .4B .5C .6D .79.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,则BC 的长是( )A .20B .C .30D .10 10.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个二、填空题 11.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC =_______. 12.如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是__.13.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.14.如图,的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________三、解答题16.如图,点E、F在AC上,DF=BE,AE=CF,∠AFD=∠CEB.求证:AD∥CB.17.已知:如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E . (1)求证:△BEC ≌△CDA ;(2)当AD =3,BE =1时,求DE 的长.18.嘉淇同学要证AE BF =,她先用下列尺规作图步骤作图:①//,90AD BC BAD ∠=;②以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ;③过点C 作CF BE ⊥,垂足为点F .并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明过程.19.如图,点C为线段AB上一点,△ACM与△CBN都是等边三角形,AN与MB交于P.(1)求证:AN=BM;(2)连接CP,求证:CP平分∠APB.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.答案1.C2.D3.C4.C5.D6.C7.D8.A9.D10.C11.45cm12.ASA13.6:8:314.6﹣15.135°16.∵A E=CF∴AE﹣EF=CF﹣EF,即AF=CE,又∵∠AFD=∠CEB,DF=BE,△ADF≌△CBE(SAS),∴∠A=∠C∴AD∥CB.17.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,ADC E90 ACD CBE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),(2)解:∵△ADC≌△CEB,∴BE=CD=1,AD=EC=3,∴DE=CE﹣CD=3﹣1=2.18.(1)∵以点B为圆心,BC长为半径画弧∴BC=BE根据已知条件第一句话,得到AE=BF故答案为:BE;BF;(2)证明:∵CF⊥BE,∴∠BFC=90°,又∵AD∥BC,∴∠AEB=∠FBC.∵以点B为圆心,BC长为半径画弧,∴BE=BC,在△ABE与△FCB中,BAE CFB AEB FBC BE CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCB ,∴AE=BF19.(1)∵△ACM 与△CBN 都是等边三角形, ∴AC =CM ,CN =CB ,∠ACM =∠BCN =60°, ∴∠ACN =∠BCM =120°,且AC =CM ,CN =CB ,∴△ACN ≌△MCB (SAS ), ∴AN =BM ;(2)过点C 作CE ⊥AN 于点E ,作CF ⊥BM 于点F , ∵△ACN ≌△MCB ,∴S △ACN =S △MCB , ∴12×AN ×CE =12×BM ×CF ,且AN =BM , ∴CE =CF ,且CE ⊥AN ,CF ⊥BM , ∴CP 平分∠APB .20.(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°, 又∵∠BAC=∠DAC+∠1=90°, ∴∠1=∠2,在△ABD 和△ACE 中 12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE . (2)结论:BD 2+FC 2=DF 2.理由如下: 连接FE ,∵∠BAC=90°,AB=AC , ∴∠B=∠3=45°由(1)知△ABD ≌△ACE ∴∠4=∠B=45°,BD=CE ∴∠ECF=∠3+∠4=90°, ∴CE 2+CF 2=EF 2, ∴BD 2+FC 2=EF 2, ∵AF 平分∠DAE , ∴∠DAF=∠EAF ,在△DAF 和△EAF 中 AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===, ∴△DAF ≌△EAF ∴DF=EF∴BD 2+FC 2=DF 2. (3)过点A 作AG ⊥BC 于G , 由(2)知DF 2=BD 2+FC 2=32+42=25 ∴DF=5,∴BC=BD+DF+FC=3+5+4=12, ∵AB=AC ,AG ⊥BC , ∴BG=AG=12BC=6, ∴DG=BG -BD=6-3=3,∴在Rt △ADG 中,。
第十二章全等三角形一.选择题(共10小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.107.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点9.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二.填空题(共6小题)11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.12.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE ≌△ACD,添加的条件是:.13.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.15.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.16.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三.解答题(共6小题)17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.19.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD 的延长线交BE于点F.说明:AF⊥BE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案一.选择题(共10小题)1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.解:∵两个三角形全等,∴∠1=62°,故选:B.4.解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.5.解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.6.解:∵AB∥FC∴∠ADE=∠EFC∵E是DF的中点∴DE=EF∵∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵AB=20,CF=12∴BD=AB﹣AD=20﹣12=8.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.8.解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.9.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.10.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.二.填空题(共6小题)11.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.12.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.13.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.14.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.15.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.16.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t 分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.三.解答题(共6小题)17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.18.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.19.证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=DC,BC=AC,∠ECD=∠ACB=90°.在△BEC和△ADC中EC=DC,∠ECB=∠DCA,BC=AC,∴△BEC≌△ADC(SAS).∴∠EBC=∠DAC.∵∠DAC+∠CDA=90°,∠FDB=∠CDA,∴∠EBC+∠FDB=90°.∴∠BFD=90°,即AF⊥BE.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。
初二数学全等三角形练习题及答案一、选择题1. 已知三角形ABC和三角形DEF的对应边长关系为AB=DE,AC=DF,∠B=∠E,则三角形ABC与三角形DEF的关系是()。
A. 全等B. 相似C. 不全等也不相似D. 不确定2. 在△ABC中,∠A=∠C,AB=BC,则∠B的度数为()。
A. 60°B. 90°C. 120°D. 不确定3. 已知三角形ABC和三角形CDE的对应边长关系为AB=CD,AC=CE,BC=DE,则三角形ABC与三角形CDE的关系是()。
A. 全等B. 相似C. 不全等也不相似D. 不确定4. 若两个三角形的对应角相等,且其中一个三角形的一条边与另一个三角形的一条边相等,则这两个三角形一定是()。
A. 全等B. 相似C. 不全等也不相似D. 不确定5. 在△ABC中,∠B=∠C,AC=BC,则这个三角形是()。
A. 等腰三角形B. 直角三角形C. 锐角三角形D. 不确定二、填空题1. 若全等三角形ABC和DEF中∠B=∠E=90°,则∠A=______,∠C=______。
2. 在△ABC中,∠A=∠B=60°,则∠C=______。
3. 已知△ABC≌△DEF,若AC=DF=12cm,AC∥DF,BC=9cm,则DE=______。
4. 若三角形ABC与三角形DEF全等,则∠ABC=______°,∠BAC=______°。
5. 在△ABC≌△XYZ中,∠B=47°,∠X=26°,∠Y=______°。
三、解答题1. 已知△ABC≌△DEF,AB=5cm,AC=8cm,BC=7cm,求DE的长度。
解:由全等三角形的定义可知,当两个三角形全等时,它们的对应边长相等。
因此,DE的长度也为7cm。
2. 由题可得,四边形ABCD中,AB=BC=CD,AD⊥BC,∠C=90°。
八年级上册数学 全等三角形专题练习(word 版一、八年级数学轴对称三角形填空题(难)1.如图,在长方形ABCD 的边AD 上找一点P ,使得点P 到B 、C 两点的距离之和最短,则点P 的位置应该在_____.【答案】AD 的中点【解析】【分析】【详解】分析:过AD 作C 点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P 点使BP+PC 的之最短. 详解:如图,过AD 作C 点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD 是矩形∴AB=CD∴△ABP ≌△DC′P∴AP=PD即P 为AD 的中点.故答案为P 为AB 的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.5.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDG AB DBABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG . ∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG =60°,∴②正确;∵AE =CD ,AF =DG ,∴EF =CG ;∴③正确;∵∠ADB =60°,而∠CDB =∠EAB ≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG =60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.6.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.8.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.9.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22-=22AD AE-=33,63∴EF+BF的最小值为33.10.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON =∠1=30°,∴OA 1=A 1B 1=a ,∴A 2B 1=a .∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2=16a ,以此类推:A 7B 7=64B 1A 2=64a .故答案为:64a .【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.二、八年级数学轴对称三角形选择题(难)11.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .511a 32⨯() B .511a 23⨯() C .611a 32⨯() D .611a 23⨯() 【答案】A【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出EF=ZN=13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以13即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中AF=AB{AD=AD∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=12×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是13a,即等边三角形QKM的边长的13,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=13a,∵GF=12AF=12×13a=16a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=12GF=112a,同理IN=112a,∴GI=112a+13a+112a=12a,即第二个等边三角形的边长是12a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是13×12a;同理第第三个等边三角形的边长是12×12a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是13×12×12a;同理第四个等边三角形的边长是12×12×12a,第四个正六边形的边长是13×12×12×12a;第五个等边三角形的边长是12×12×12×12a,第五个正六边形的边长是1 3×12×12×12×12a;第六个等边三角形的边长是12×12×12×12×12a,第六个正六边形的边长是1 3×12×12×12×12×12a,即第六个正六边形的边长是13×512()a,故选A.12.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.13.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.14.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.15.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩=== ∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.16.如图,点P 、Q 分别是边长为4cm 的等边△ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且速度都为1cm/s ,连接AQ 、CP 交于点M ,下面四个结论:①BP =CM ;②△ABQ ≌△CAP ;③∠CMQ 的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ 为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.17.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=∠CDA,则∠BAC的大小是()A.100°B.90°C.80°D.120°【答案】A【解析】【分析】由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG是AE的中垂线,CF是AD的中垂线,∴AB=BE,ACECD∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+∠EAC=180°∴∠BAD+∠EAC=60°∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A【点睛】本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.18.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.有下列结论:①∠C=2∠A;②BD平分∠ABC;③S△BCD=S△BOD.其中正确的选项是()A.①③B.②③C.①②③D.①②【答案】D【解析】①、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确;②、∵DO是AB垂直平分线,∴AD=BD.∴∠A=∠ABD=36°.∴∠DBC=72°﹣36°=36°=∠ABD.∴BD是∠ABC的角平分线,正确;③,根据已知不能推出△BCD的面积和△BOD面积相等,错误;故选:D.19.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQ B.DE=12AC C.AE=12CQ D.PQ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.20.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.。