最新人教版初中八年级上册数学第十二章《三角形全等的判定》精品教案
- 格式:pptx
- 大小:11.29 MB
- 文档页数:25
人教版八年级上册12.2 三角形全等的判定教学设计一、教学目标1.知识与能力:•掌握三角形全等的五种判定方法;•能够通过已知条件判定两个三角形是否全等;•能够应用三角形全等的基本知识解决实际问题。
2.过程与方法:•培养学生观察、分析、推理和归纳的能力;•通过思考问题、探究规律、归纳总结等方式激发学生学习兴趣,提高学生自主学习的能力;•能够运用网络、多媒体等现代技术手段辅助教学。
3.情感态度:•培养学生积极进取、勤奋好学的品质;•培养学生团结合作、乐于助人的精神;•培养学生坚毅有信心、勇于创新的品质。
二、教学过程1. 导入环节(5分钟)•针对三角形全等的概念和判定条件进行回顾,向学生提问“两个三角形全等的条件是什么?”,引导学生回顾上一个知识点,回答两个三角形相应角相等,相应边相等即可全等的条件。
2. 新课讲授(40分钟)2.1 三角形全等的五种判定方法•讲解第一种判定方法:SAS判定法, 通过介绍已知条件和判断方法来实现知识点的教学;•讲解第二种判定方法:ASA判定法,通过讲解角、边、边的大小关系和判断方法来间接实现知识点的教学;•讲解第三种判定方法:SSS判定法,通过讲解边、边、边的大小关系和判断方法来实现知识点的教学;•讲解第四种判定方法:AAS判定法, 通过讲解角、边、角的大小关系和判断方法来实现知识点的教学;•讲解第五种判定方法:HL判定法,通过讲解半射线长度、相同边长和角度之间的关系和判断方法来实现知识点的教学。
2.2 练习课•进行基础练习:引导学生多角度训练1.通过多张图片展示异侧角和对应边的关系,要求学生观察,并回答是否可以判定三角形全等?2.以此类推到其它五种判定方法。
•进行拓展实例研究1.将学生随机分为数个小组,分别安排一道实际应用场景的题目,要求学生应用判定方法解决问题并展示解题过程或思路。
2.老师进行现场研讨和回答问题。
3. 作业布置(5分钟)•完成教材相关作业;•自主查找5个实际应用场景,并使用三角形全等的知识加以解决。
《三角形全等的判定》教案【教学目标】1.让学生掌握三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
2.让学生能够应用三角形全等的判定方法解决实际问题。
3.培养学生的逻辑推理能力和证明能力。
【教学内容】1.三角形全等的定义和性质。
2.三角形全等的判定方法:SSS、SAS、ASA、AAS等。
3.应用三角形全等的判定方法解决实际问题。
【教学重点与难点】1.重点:三角形全等的判定方法及其应用。
2.难点:如何应用三角形全等的判定方法进行证明和解决实际问题。
【教具准备】1.黑板、粉笔。
2.教科书、学习辅导资料。
3.多媒体教学设备。
【教学过程】一、导入新课:通过复习上节课内容,引出三角形全等的概念,介绍三角形全等的性质。
二、新课学习:介绍三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
通过举例和讲解,让学生理解并掌握这些判定方法。
同时,引导学生思考这些判定方法的应用场景和实际意义。
三、巩固练习:通过一系列的练习题,让学生加深对三角形全等判定方法的理解和应用。
可以包括证明题和应用题等类型,让学生在练习中掌握如何应用三角形全等的判定方法进行证明和解决实际问题。
四、归纳小结:通过总结本节课学到的知识,让学生明确三角形全等的重要性和应用价值,同时引导学生思考如何运用三角形全等解决实际问题。
强调证明过程中的逻辑性和严谨性,培养学生的逻辑推理能力和证明能力。
五、布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。
同时,鼓励学生自主寻找和解决实际问题,培养他们的数学应用能力。
六、教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈和反思等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。
同时,也要关注学生的学习情况和反馈意见,及时调整教学策略和方法,以提高教学质量和效果。
《三角形全等的判定》教学设计方案(第一课时)一、教学目标本课旨在使学生掌握三角形全等的基本概念和判定方法。
通过学习,学生应能理解三角形全等的基本原理,并能够运用不同的判定定理(如SSS、SAS等)来判定两个三角形是否全等。
此外,培养学生观察、分析和解决问题的能力,并增强其空间想象能力。
二、教学重难点重点:掌握三角形全等的判定定理(如SSS、SAS等),并能正确运用这些定理进行判断。
难点:理解三角形全等的条件及其推理过程,以及在不同情境下灵活运用这些判定定理。
特别是对于复杂的图形分析,需要学生具备较高的空间想象能力和逻辑推理能力。
三、教学准备1. 教材与教具:准备初中数学教材、三角形模型、投影仪等教学工具。
2. 课件与视频:制作包含三角形全等概念、判定定理及实例分析的PPT课件,并准备相关教学视频,以辅助学生理解。
3. 练习题:准备一系列练习题,包括基础题和进阶题,帮助学生巩固所学知识。
通过通过练习题,学生可以更好地理解和掌握所学知识,并加深对知识点的记忆。
在练习题的设计中,基础题能够让学生对知识点有基本的认识和掌握,而进阶题则能够引导学生进一步深化理解和运用所学知识。
这样的设计不仅能够检验学生的掌握情况,还可以在发现学生的薄弱环节时及时进行调整,更好地进行个性化教学。
另外,除了让学生通过练习题来巩固所学知识,还可以采取其他教学方法,如讲解案例、讨论互动等方式来提高学生的理解能力。
这样能够使学生更好地掌握知识点,同时也能够激发学生的学习兴趣和积极性。
总之,通过准备一系列练习题并配合其他教学方法,学生可以更好地理解和掌握所学知识,提高学习效果。
同时,教师也能够更好地了解学生的学习情况,及时调整教学策略,为学生提供更加有效的学习支持。
这样的教学方法对于学生的学习成长具有重要的意义。
四、教学过程:一、课前导入本节课我们将继续探讨数学世界中神秘的几何关系——三角形全等的判定。
首先,我们要对上一节课的内容进行简短的回顾,然后通过一个有趣的几何问题来激发学生的好奇心和求知欲。
全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。
3、全等三角形的______相等,______相等。
回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。
3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。
全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。
2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。
3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。
二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。
发现: 。
归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。
求证:△ABC ≌ △DCF 。
F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。
12.2《全等三角形》判定(胖瘦模型)教案一、教学目标•知识与技能:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法,并能够应用于解决相关问题。
•过程与方法:通过引入胖瘦模型的概念,引导学生理解全等三角形的定义和性质,学会利用胖瘦模型进行全等三角形的判定。
•情感态度与价值观:培养学生观察、思考和动手实践的能力,培养学生合作、探究和创新的精神。
二、教学重难点•教学重点:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法。
•教学难点:能够应用所学方法解决实际问题,提高判断辨析的能力。
三、教学过程1. 导入新知通过给学生提出一个问题引入本节课的内容。
例如,将一张纸对折,然后剪出一个形状,然后再将原始纸展开,剪出的形状能否与原始纸相重合?2. 引入胖瘦模型解释胖瘦模型的概念,即数量和位置都完全相同的两个几何图形。
并通过与学生一起进行实物模型的制作,加深学生对胖瘦模型的理解。
3. 引出全等三角形的定义和性质通过展示两个完全相同的三角形,并引导学生总结出全等三角形的定义和性质。
•定义:在平面上,两个三角形的对应边长相等,对应角度相等,则称这两个三角形是全等三角形。
•性质:全等三角形的对应部分(边和角)完全相等。
4. 胖瘦模型法判定全等三角形•胖模型法:如果已知两个三角形的三边对应相等,那么可以判定这两个三角形是全等的。
•瘦模型法:如果已知两个三角形的两边及夹角对应相等,那么可以判定这两个三角形是全等的。
5. 综合应用通过一些实例,让学生运用胖瘦模型法判定两个三角形是否全等。
示例题:已知△ABC中,∠B=∠D,AC=DF,BC=EF,判定△ABC≌△DEF。
解题步骤: - 根据已知条件,用瘦模型法判定两个三角形的对应边和对应角是否相等。
- 验证两个三角形的对应部分是否完全相等。
- 根据全等三角形的定义和性质,得出结论。
6. 拓展探索让学生在实际生活中找寻更多的全等三角形,并通过比较发现和归纳全等三角形的其他判断方法。