北师大版八年级数学上册 勾股定理的应用同步练习题
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
北师大版八年级数学上【1】勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边, 90∠A,则a2+b2=c2;=D.若 a、b、c是Rt△ABC的三边, 90∠C,则a2+b2=c2.=2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.cb+ D.+ C. ca<bba>a=+ B. c2c22+a=b3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42 或 32 D.37 或 337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A2d(B d(C)2d(D)d8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是. 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AE 重合, AC B你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 小汽车 小汽车 B C 观测点所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
北师大版八年级数学上册第一章勾股定理 1.3勾股定理的应用同步练习题一、选择题1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB=120 m,则AB长为(C)A.30 m B.40 m C.50 m D.60 m2.如图,在水塔O的东北方向32 m处有一抽水站A,在水塔的东南方向24 m处有一建筑工地B,在AB间建一条直水管,则水管的长为(B)A.45 m B.40 m C.50 m D.56 m3.如图1所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光 (A)A.4 m B.3 m C.5 m D.7 m4.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米,竹竿高出水面的部分AD长0.5米.如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,那么水渠的深度BD为(A)A.2米 B.2.5米 C.2.25米 D.3米二、填空题5.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到D,则橡皮筋被拉长了2cm.6.如图,把一张长为4,宽为2的长方形纸片沿对角线折叠,则重叠部分的面积为2.5.7.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.8.如图所示,长方体的高为3 cm,底面是正方形,边长为2 cm,现使一绳子从点A出发,沿长方体表面到达C处,则绳子最短是5cm.9.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现:4=1×(3+1),12=2×(5+1),24=3×(7+1),…,分析上面规律,第5个勾股数组为(11,60,61).10.如图,在高3 m、坡面线段距离AB为5 m的楼梯表面铺地毯,则地毯长度至少需7m.11.如图,将一根20 cm长的细木棒放入长、宽、高分别为4 cm,3 cm和12 cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是7cm.12.如图,长方体的长为4 cm,宽为2 cm,高为5 cm,若用一根细线从点A开始经过4个侧面缠绕一圈到达点B,则所用细线的长度最短为13cm.三、解答题13.如图是一个滑道示意图,若将滑道AC水平放置,则刚好与AB一样长,已知滑梯的高度CE=3 m,CD=1 m,求滑道AC的长(图中四边形BDCE为长方形).解:设AC的长为x m,则AB=AC=x m.因为EB=CD=1 m,所以AE=(x-1)m.在Rt△AEC中,∠AEC=90°,由勾股定理,得AC2=CE2+AE2,即x2=32+(x-1)2.解得x=5.所以滑道AC的长为5 m.14.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的横截面是半径为3 m的半圆,该部分的边缘AB=CD =45 m,点E在CD上,CE=5 m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取整数3)解:如图:AD=πR=9 m,AB=CD=45 m,DE=CD-CE=45-5=40(m).在Rt△ADE中,AE2=AD2+DE2=92+402=1 681.所以AE=41 m.答:他滑行的最短距离约是41 m.15.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?解:(1)村庄能听到宣传,理由:因为村庄A到公路MN的距离为600米<1 000米,所以村庄能听到宣传.(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶至Q点结束对村庄的影响,则AP=AQ=1 000米,AB=600米,在Rt△APB中,PB2=AP2-AB2=640 000.所以BP=800米.所以BP=BQ=800米.则PQ=1 600米.所以影响村庄的时间为1 600÷200=8(分钟).答:村庄总共能听到8分钟的宣传.16.如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20 km,BB1=40 km,已知A1B1=80 km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.解:延长AA1到点D,使A1D=AA1,连接BD交MN于点P,连接PA,此时PA+PB的值最小,与BD的长度相同.过点D作DE⊥BB1交BB1的延长线于点E,因为AA1=20 km, BB1=40 km,A1B1=80 km,所以DE=80 km,BE=60 km.所以BD2=602+802=1002.所以BD=100 km.所以这个最短距离是100 km.。
1.1 探索勾股定理第1课时【基础达标】1.如图,在△ABC中,△B=90°,BC=3,AC=4,则AB的长度为()A.1B.√7C.2√3D.52.在Rt△ABC中,△C=90°,AB=13,AC=12,则△ABC的面积为()A.5B.60C.45D.303.(优秀传统文化)在中国古代建筑中,有一种常见的装饰元素叫作“斗拱”.斗拱由多个小木块组成,它们之间通过榫卯结构相互连接,形成了一种独特的几何美感.如图1,我们选取斗拱模型的一部分,它由三个小木块组成,形状类似于一个直角三角形(图2).假设这个斗拱模型的直角边长度分别为a和b,斜边长度为c.根据工匠的记录,我们知道a=5尺(古代的长度单位),b=12尺,则斜边c为尺.4.如图,在△ABC中,△ACB=90°,AB=5,BC=3,则图中阴影部分的正方形的面积为.5(新考法)如图,在△ABC中,AC=BC=5,P为AC上一动点,连接BP,BP的最小值为3,当BP取最小值时,AP= .【能力巩固】6(新考法)如图,在5×5的网格中,A,B,C都是网格点,则AC的长落在数轴上点()A.M处B.N处C.P处D.Q处7对角线互相垂直的四边形叫作“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=1,BC=4,则AB2+CD2等于()A.15B.16C.17D.208.如图,所有阴影部分的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积依次为6、10、7,则正方形D的面积为.【素养拓展】9(合作学习)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD△BC于点D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.10如图,铁路上A,B两点相距25 km,C,D为两村庄,DA△AB于点A,CB△AB于点B,已知DA=15 km,CB=10 km,现在要在铁路AB边上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少千米处?11(五育并举)为推行五育并举,结合当地特色,某校推出石板画课程,如图,这是小明制作的正方形石板画ABDE,为了方便展示小明又制作了两个直角三角形支架(△ABC和△BDF),点C、B、F在同一直线上,在△ABC中,△ACB=90°,AC=8 cm,BC=7 cm,求C、E两点之间的距离.参考答案1.1 探索勾股定理 第1课时基础达标作业 1.B 2.D 3.13 4.16 5.1能力巩固作业 6.D 7.C 8.23素养拓展作业9.解:在△ABC 中,AB=15,BC=14,AC=13, 设BD=x ,则CD=14-x.由勾股定理得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x )2, ∴152-x 2=132-(14-x )2, 解得x=9, ∴AD=12,∴S △ABC =12BC ·AD=12×14×12=84.10.解:设AE=x ,在Rt△AED 中,x 2+152=DE 2. 在Rt△BCE 中,(25-x )2+102=CE 2.又DE=CE ,所以(25-x )2+102=x 2+152,解得x=10. 答:E 站应建在离A 站10 km 处.11.解:如图,连接CE ,过点E 作EG △AC ,交CA 的延长线于点G , ∴△EGA=90°, ∴△EAG+△AEG=90°. ∴△BAE=90°, ∴△EAG+△BAC=90°, ∴△AEG=△BAC.∴AE=AB,∴△AEG△△BAC(AAS),∴EG=AC=8 cm,AG=BC=7 cm.在Rt△ECG中,EG=8,GC=GA+AC=7+8=15(cm),根据勾股定理得CE=√82+152=17(cm).。
新北师大版八年级上学期《第一章勾股定理》同步练习题一、选择题1.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是【】A.6 B.7 C.8 D.92.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是平【】A.40cm B.202cm C.20cm D .102 cm3.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是【】A.46B.6 C.42D.264.点P在等腰Rt△ABC的斜边AB所在直线上,若记:k=AP2+BP2,则【】A.满足条件k <2CP2的点P有且只有一个 B.满足条件k<2CP2的点P有无数个 C.满足条件k=2CP2的点P有有限个 D.对直线AB上的所有点P,都有k=2CP25.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是【】A.Sl +S2>S3B.Sl+S2<S3C.S1+S2=S3D.S12+S22=S326.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是【】A.①② B.①②③ C.①②④ D.①②③④7. 如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是【】A.1.5 B.2 C.2.25 D.2.58.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是【】A.217 B.25 C.42 D.79.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,43第1题图第2题图第3题图第5题图10.已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8,则边BC 的长为【 】 A .21 B .15 C .6 D .以上答案都不对 11.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则CE 2+CF 2等于【 】A .75 B .100 C .120 D .12512. 如图,正方形网格中,每个正方形的顶点叫格点,每个小正方形的边长为1,则以格点为顶点的三角形中,三边长都是整数的三角形的个数是【 】 A .4 B .8 C .16 D .2013.如图,P 为等腰△ABC 内一点,过点P 分别作三条边BC 、CA 、AB 的垂线,垂足分别为D 、E 、F ,已知AB=AC=10,BC=12,且PD :PE :PF=1:3:3,则AP 的长为【 】A .43B . 203C .7D .814. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是【 】 A .52 B .42 C .76 D .7215. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为【 】 A .90 B .100 C .110 D .121 二,填空题16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕第11题图第12题图第13题图第14题图第6题图第7题图第8题图第9题图一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.17. 如图,△ABC 中,AB=AC=2,若P 为BC 的中点,则AP2+BP•PC 的值为 ;若BC 边上有100个不同的点P1,P2,…,P100,记mi=APi2+BPi•PiC(i=1,2,…,100),则m1+m2+…+m100的值为 .18.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c .设S△ABC=S,a+b+c=L ,则S 与L 的比SL蕴含着一个奇妙的规律,这个规律与a+b-c 的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、c a+b-c L S S/L 3、4、5 2 12 6 1/2 6、8、10 4 24 24 1 5、12、13 4 30 30 1 8、15、17 6 40 48 3/2 12、16、20 8 4896 2 … … … ………若a+b-c=m ,则观察上表我们可以猜想出SL= (用含m 的代数式表示) 19.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm .20.图中所示是一条宽为1.5m 的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD 的宽AB 为1m ,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD 不能超过 m .21.如图,在△ABC 中,AB=BC=2,∠ABC=90°,D 是BC 的中点,且它关于AC 的对称点是D′,则BD′= . 三、解答题(必须有必要的解答过程)22. 如图,在一棵树CD 的10m 高处的B 点有两只猴子,它们都要到A 处池塘边喝水,其中一只猴子沿树爬下走到离树20m 处的池塘A 处,另一只猴子爬到树顶D 后直线跃入池塘的A 处.如果两只猴子所经过的路程相等,试问这棵树多高? 第16题图第17题图第19题图第20题图第21题图23.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.24.如图,AD是已知△ABC中BC边上的高.P是AD上任意一点,当P从A向D移动时,线段PB、PC的长都在变化,试探索PB2-PC2的值如何变化?25.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.26.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.27.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是12(9−1),12(9+1);勾是五时,股和弦的算式分别是12(25−1),12(25+1).根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.28. 大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB=AC ,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为h1、h2.(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,12h h 、、h 之间又有什么样的结论.请你画出图形,写出结论并证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线1l :y=34x+3,2l :y=-3x+3,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.。
北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)勾股定理是数学中一个重要的定理,它的应用范围广泛。
在北师大版八年级上的教材中,我们学习了如何运用勾股定理解决实际问题。
本文将结合教材中的同步练习题,以及给出答案解析,来展示勾股定理的实际应用。
1. 问题一在一个直角三角形中,已知一条直角边长度为4cm,另外一条直角边长度为3cm。
求斜边的长度。
解析:根据勾股定理可得:斜边的平方等于直角边的平方和。
则斜边的长度可以通过计算√(3²+4²)来得出。
通过计算可知,斜边的长度为√(9+16)=√25=5cm。
所以,斜边的长度为5cm。
2. 问题二一辆汽车以40km/h的速度行驶8小时后停下来。
求汽车行驶的路程。
解析:已知速度和时间,我们可以利用勾股定理来计算汽车行驶的路程。
根据勾股定理,行驶的路程等于速度乘以时间。
所以,汽车行驶的路程为40km/h × 8h = 320km。
因此,汽车行驶的路程为320km。
3. 问题三一个直角三角形的斜边长度是5cm,一直角边和斜边之间的角度是30°。
求另外一个直角边的长度。
解析:已知斜边的长度和角度,我们可以利用勾股定理来计算另外一个直角边的长度。
根据勾股定理,另外一个直角边的长度等于斜边的长度乘以sin(30°)。
sin(30°) = 1/2,所以另外一个直角边的长度为5cm × 1/2 = 2.5cm。
因此,另外一个直角边的长度为2.5cm。
4. 问题四一块长方形农田的对角线长度为13m,较短的直角边的长度为5m。
求较长的直角边的长度。
解析:已知对角线的长度和一个直角边的长度,我们可以利用勾股定理来计算另外一个直角边的长度。
根据勾股定理,较长的直角边的长度等于√(对角线的长度的平方减去已知直角边的平方)。
则较长的直角边的长度可计算为√(13²-5²)。
勾股定理的应用同步练习题一、【基础知识精讲】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2= c 2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
二、【例题精讲】例1:如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?(∏的取值为3)例2:如图有一个三级台阶,每级台阶长、宽、高分别为2米、0.3米0.2米,A 处有一只蚂蚁,它想吃到B 处食物,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
例3:古代数学著作《九章算术》中记载了如下一个问题:有一个水池,水面的边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?三、【同步练习】A组1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少。
ABDCBA·东北B组1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm2.如图如果点C在SA上且SC=6cm,A处有一只蜗牛想要吃到C处食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,你能画出蜗牛爬行最短路程吗?,若SA=8cm,侧面展开图的夹角为90°,试求最短路径长。
1.3 勾股定理的应用课时同步练习北师大版八年级数学上册一、选择题1.近年来,作为规模较小的城市绿色敞开空间,口袋公园改善了城市生态环境,方便了市民健身休闲.如图,某口袋公园内有两条互相垂直的道路OA,OB,若OA长40m,OB长20m,当小明从A点沿公园内小路(图中箭头所示路线)走到B点时,小明所走的路程可能是( )A.35m B.42m C.44m D.52m2.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4米B.3米C.5米D.7米3.用梯子登上20m高的建筑物,为了安全要使梯子的底面距离建筑物15m,至少需要( )m长的梯子.A.20B.25C.15D.54.在直角坐标系中,点P(﹣2,3)到原点的距离是( )A.5B.3C.2D.135.如图,为了求出湖两岸A、B两点之间的距离,观测者从测点A、B分别测得∠BAC=90°,又量得AC=9m,BC=15m,则A、B两点之间的距离为( )A.10m B.11m C.12m D.13m6.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的斜边长为5,较短直角边长为3,则图中小正方形(空白区域)的面积为( )A.1B.4C.6D.97.如图,校园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m.从A点到C点,同学们为了抄近路,常沿线段AC走.这样做会踩坏草坪,而实际上只少走了( )A.10m B.4m C.6m D.8m8.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是( )A.26尺B.24尺C.17尺D.15尺9.现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m.救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离AC为( )A.3米B.5米C.7米D.9米10.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距( )A.12海里B.13海里C.14海里D.15海里二、填空题11.一艘轮船以16km/ℎ的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/ℎ的速度向东南方向航行,它们离开港口1 小时后相距 .12.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是 .13.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为 .14.我国古代《九章算术》中的“折竹抵地问题”:一根竹子高一丈,折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度为 尺.(一丈=10尺)15.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距 海里.16.如图,在一只底面半径为3cm,高为8cm的圆柱体状水杯中放入一支13cm长的吸管,那么这支吸管露出杯口的长度是 .三、解答题17.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?18.如图,强大的台风使得一根旗杆BC在离地面3m的A点处折断倒下,旗杆顶部C点落在离旗杆底部B点4m处,旗杆BC折断之前有多高?19.如图,一根竹子AB原高1丈(1丈=10尺),在点C处折断,竹稍A触及地面D处时,点D离竹根B 有3尺,试问折断处离地面有多高?20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?21.如图,一艘小船停留在点A处,在离水面高度为8米的台阶上有一根绳子连接小船,用绳子拉小船移动到点D处,已知开始时绳子的长AC=17米,停止后绳子的长CD=10米,求小船移动的距离AD的长.22.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.24.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,若DA=10km,CB=15km,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E 应建在距A点多远处?答案解析部分1.【答案】D【解析】【解答】解:∵两点之间线段最短,∴小明从A点沿公园内小路(图中箭头所示路线)走到B点时的最短距离即为AB的长,∵OA⊥OB,OA=40m,OB=20m,∴AB=OA2+OB2=205m,∵352<422<442<A B2=2500<522,∴小明所走的路程可能为52m,故答案为:D.【分析】根据勾股定理求出AB的长,再比较大小即可。
第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为 1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为 .3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为 .4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m 高的树被风折断,树顶落在离树根3 m 之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处, 若AB =8 cm ,BC =10 cm ,求EC 的长.CF D A参考答案:1.(1)13;(2)8;(3)6,8.2.2.5m.60cm.3.134.D.5.25km.6.4.7.3 cm.构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
高效学习经验——把数学的知识点都结合起中考状元XX平日里爱打篮球、爱看球赛,XX给人的第一印象很阳光。
在他看来,他取得高分的最大秘诀就是:基础知识掌握得非常牢固。
在所有学科中,XX认为自己的理科和英语还算不错。
他说他最擅长的是用知识网络法来归纳知识,让零散的知识变得系统、有条理,具体如何做呢?以数学为例,XX会首先联想一个数学关键词比如说一元二次方程,然后围绕着这个关键词想一想,什么叫做一元次方程,一元二次方程有哪些解法,解答一元二次方程的步骤是什么等等,然后再将这些间题的答案写在笔记本中,这样知识就变得非常清晰了。
《勾股定理》同步练习题A 卷(满分100分)一﹑填空题 (每小题2分, 共20分)1. 如图,∠OAB =∠OBC =∠OCD =90°, AB =BC =CD =1,OA =2,则OD 2=____________.2. 如图, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6,则腰AB 的长为____________.3. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________________m.4. 正方形的面积为18cm 2, 则正方形对角线长为__________ cm.5.在△ABC 中,∠C =90°,若AB =5,则2AB +2AC +2BC =__________.6. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________ AB 米. 7. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.8. 木工做一个长方形桌面, 量得桌面的长为60cm , 宽为32cm , 对角线为68cm , 这个桌面__________ (填“合格”或“不合格”).9. 直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为 . 10. 有六根细木棒,它们的长分别是2,4,6,8,10,12(单位:cm ),首尾连结能搭成直角三角形的三根细木棒分别是 . 二﹑选择题(每小题3分, 共30分)11. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A. 4B. 8C. 10D. 12 12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度 13. 如图中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64(1题图) A B C200m 520m(3题图) D CB A O (2题图) A B D(13题图)14. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形15. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )A. 18cmB. 20 cmC. 24 cmD. 25cm 16. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;,,514131===c b a ②6=a ,∠A =45°; ③∠A =320, ∠B =58°;④;,,25247===c b a ⑤.422===c b a ,,A. 2个B. 3个C. 4个D. 5个 17. 在△ABC 中,若12122+==-=n c n b n a ,,,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形18. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°19. 在△ABC 中,AB =12cm ,BC =16cm,,AC =20cm,,则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 2 20. 如图:有一圆柱,它的高等于8cm ,底面直径等于4cm (3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点 处的食物,需要爬行的最短路程大约( )A. 10cmB. 12cmC. 19cmD. 20cm 三、 解答题 (每小题10分, 共50分)21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)22. 如图, 在△ABC 中, AD ⊥BC 于D ,AB =3,BD =2,DC =1, 求AC 2的值. A(20题图)BAB D C23. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?观测点小汽车小汽车24. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 25. 如图所示的一块地,∠ADC =90°,AD =12m ,CD =9m ,AB =39m ,BC =36m ,求这块地的面积.B 卷 (满分50分)一、填空题(每小题2分,共10分)1. 如图,AC ⊥CE ,AD =BE =13,BC =5,DE =7,则AC = .2. 如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B3. 在ΔABC 中,若AB=30,AC=26,BC 上的高为AD=24,则此三角形的周长为 .4. 已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2. 二、选择题(每小题3分,共15分)6. 在Rt △ABC 中,∠C =90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别A BCDE (1题图)(2题图) 2032A B是( )A. 5、4、3、B. 13、12、5C. 10、8、6D. 26、24、107.如图,在同一平面上把三边为BC =3,AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ) A.125 B. 135 C. 56 D. 2458. 直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是( ) A. 120 B. 121 C. 132 D. 1239.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2 D .12cm 2 10.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里三、解答题(11、12题每题8分,13题9分,共25分)11. 如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?12.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.13.如图,A 城气象台测得台风中心在A 城正西方向320km的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km的范围内是(9题图)北 南A东(10题图)(7题图)C ′ BCA受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?参考答案一1、7 ;2、10;3、480; 4、6;5、50;6、15;7、直角;8、合格;9、30;10、6,8,10; 二CDDC DADC AA 三21、13米 22、AC 2=623、20 v 米/秒=72千米/时>70千米/时,超速。
勾股定理的应用同步练习题
一、【基础知识精讲】
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2= c 2,
那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
二、【例题精讲】
例1:如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?(∏的取值为3)
例2:如图有一个三级台阶,每级台阶长、宽、高分别为2米、0.3米0.2米,A 处有一只蚂蚁,它想吃到B 处食物,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
例3:古代数学著作《九章算术》中记载了如下一个问题:有一个水池,水面的边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
三、【同步练习】A组
1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向
东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?
2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插
入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少。
A
B
D
C
B
A
·
东
北
B组
1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()
A.14cm B.4cm C.15cm D.3cm
2.如图如果点C在SA上且SC=6cm,A处有一只蜗牛想要吃到C处食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,你能画出蜗牛爬行最短路程吗?,若SA=8cm,侧面展开图的夹角为90°,试求最短路径长。
C
A
3.在等腰Rt⊿ABC中,∠BAC=900,P为⊿ABC内一点,PA为1,PB为3,PC=7,求∠CPA的大小。