串口工作方式
- 格式:doc
- 大小:17.50 KB
- 文档页数:2
串口的工作原理
串口的工作原理是通过串行通信方式传输数据的一种通信方式。
串口通信采用的是一根传输线来进行数据的传输,通过发送方将数据以位的形式依次发送,接收方则将接收到的位逐个接收并还原为数据。
在串口通信中,发送方将数据通过发送引脚(TX)发送出去,并通过一定的协议将数据进行编码,如使用异步通信时,会采用起始位、数据位、停止位等方式进行编码。
接收方通过接收引脚(RX)接收数据,解码后还原为传输的数据。
串口通信的特点是可以一对一连接、长距离传输、通信速率较低,可以连接各种设备,如计算机、微控制器、传感器等。
串口通信的工作原理是通过发送方和接收方之间的数据传输来实现数据的交流和传输,其速率和数据位数可以根据实际需求进行配置和调整。
在串口通信中,发送方和接收方需要事先约定好通信的协议、数据位数、停止位、校验位等参数,以保证数据的准确传输。
由于串口通信采用的是用位来表示数据,所以传输的数据在传输过程中相对稳定可靠,不易受到传输干扰的影响。
总而言之,串口通信通过串行传输方式将数据按位发送和接收,通过发送方和接收方之间的协议和参数的约定,实现了数据的可靠传输。
由于其简单可靠的特点,在许多场景下仍然被广泛应用。
串口的工作原理
串口是用于数据传输的通信接口,它通过传递一个字节序列来完成数据的发送和接收。
串口的工作原理主要包括以下几个方面:
1. 传输格式:串口通信采用串行传输方式,即按照比特顺序逐个传输数据位。
常见的传输格式有起始位、数据位、奇偶校验位和停止位组成。
起始位用于同步接收端和发送端的时钟信号,数据位用于传递实际的数据,奇偶校验位用于检测传输过程中发生的位错误,停止位用于表示数据传输结束。
通过这些格式要求可以保证数据的正确传输和接收。
2. 波特率:串口通信采用一种称为波特率(Baud Rate)的指
标来衡量数据传输速率,即每秒传输的比特数。
常见的波特率有9600 bps、115200 bps等。
发送和接收端在通信之前必须事
先约定一个相同的波特率。
3. 缓冲区:串口通信中,发送和接收的数据通过缓冲区进行中转。
发送端将待发送的数据存储在发送缓冲区中,然后根据波特率逐个比特进行数据的发送。
接收端会不断读取接收缓冲区中的数据,然后进行后续的处理。
4. 握手协议:为了保证数据的可靠传输,串口通信中还有一些握手协议,如RTS/CTS(请求发送/清除发送)和DTR/DSR (数据终端就绪/数据设备就绪)。
通过这些握手信号,发送
端和接收端可以进行数据发送的控制和同步。
5. 数据传输协议:串口通信中的数据传输可以采用不同的协议,如RS-232、RS-485等。
这些协议规定了数据传输的电气特性、物理接口和通信规范。
总之,串口通过比特连续传输实现数据的发送和接收,通过传输格式、波特率、缓冲区、握手协议和数据传输协议等机制保证数据的可靠传输和接收。
串口通讯原理串口通讯是一种常见的数据传输方式,它通过串行传输数据,将数据一位一位地发送和接收。
串口通讯常用于计算机与外部设备之间的数据传输,例如打印机、调制解调器、传感器等。
本文将介绍串口通讯的原理和工作方式。
一、串口通讯的基本原理串口通讯使用两根信号线进行数据传输,分别是发送线(TX)和接收线(RX)。
发送线用于将数据从发送端发送到接收端,接收线则用于将数据从接收端传输到发送端。
这两根信号线通过一对电缆连接在一起。
在串口通讯中,数据是按照一定的格式进行传输的。
常见的格式包括起始位、数据位、校验位和停止位。
起始位用于标识数据传输的开始,数据位用于传输实际的数据,校验位用于检测数据传输的准确性,停止位用于标译数据传输的结束。
二、串口通讯的工作方式串口通讯的工作方式可以分为同步和异步两种。
同步传输是指发送端和接收端的时钟信号保持同步,数据按照时钟信号的边沿进行传输。
异步传输则是指发送端和接收端的时钟信号不同步,数据通过起始位和停止位进行同步。
在同步传输中,发送端和接收端需要事先约定好时钟信号的频率和相位,以确保数据的准确传输。
而在异步传输中,发送端和接收端只需要约定好数据的格式,不需要同步时钟信号,因此更加灵活。
三、串口通讯的优缺点串口通讯具有以下优点:1. 简单易用:串口通讯的硬件接口简单,使用方便。
2. 跨平台性:串口通讯可以在不同的操作系统和设备之间进行数据传输。
3. 可靠性高:串口通讯的传输稳定可靠,不容易出错。
然而,串口通讯也存在一些缺点:1. 传输速率较低:串口通讯的传输速率相对较低,无法满足高速数据传输的需求。
2. 连接距离有限:串口通讯的连接距离较短,一般不超过几十米。
3. 线路复杂:串口通讯需要使用专用的串口线缆,线路较为复杂。
四、串口通讯的应用领域串口通讯广泛应用于各个领域,包括工业自动化、通信设备、医疗设备等。
例如,在工业自动化领域,串口通讯常用于PLC(可编程逻辑控制器)和外部设备之间的数据传输;在通信设备领域,串口通讯常用于调制解调器和计算机之间的数据传输。
串口基本信息用一台电脑实验串口自发自收,实验前要将串口(以9针为例)的发送引脚(2脚)和接受引脚(3脚)短接。
三线连接:适用于计算机之间尤其是PC机和单片机之间的数据通信。
其连接信号对为(TxD,RxD)、(RxD,TxD)、(SG,SG)。
即发送数据TxD端和接受数据RxD端交叉连接,信号地SG对应连接。
七线交叉连接:适用于同型号的计算机之间的连接,如PC机间的数据通信。
其连接信号对为:(TxD,RxD)、(RxD,TxD)、(SG,SG)、(RTS,CTS)、(CTS,RTS)、(DSR.DTR)、(DTR,DSR)。
其中,TxD、RxD、SG与前面信号的含义相同,RTS为请求发送,CTS为准许发送,DSR为数据装置准备好,DTR为数据终端准备好。
在本地连接的微机系统中,RTS、CTS、DTR、DSR用作硬件联络控制信号。
目前使用的串口连接线有DB9和DB25两种连接器,用户可以国家使用的具体机器选择相应的连接器。
一个串口通讯类在/network/serialport.shtml。
PC机的RS-232接口的电平标准是-12V标示“1”,和+12V表示“0”,有些单片机的信号电平时TTL 型,即大于2.4v表示“1”,小于0.5v表示“0”,因此采用RS-232总线进行异步通信是,发送端和接受端要有一个电平转换接口。
串口通讯方法的三种实现串口是计算机上一种非常通用的设备通信协议。
大多数计算机包含两个基于RS232的串口。
串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS一232口。
同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信(Serial Communication),是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。
串口通信方便易行,应用广泛。
在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。
串口通讯—全双工和半双工方式在串行通信中,数据通常是在两个站(如终端和微机)之间进行传送,按照数据流的方向可分成三种基本的传送方式:全双工、半双工、和单工。
但单工目前已很少采用,下面仅介绍前两种方式。
1、全双工方式(full duplex)当数据的发送和接收分流,分别由两根不同的传输线传送时,通信双方都能在同一时刻进行发送和接收操作,这样的传送方式就是全双工制,如图1所示。
在全双工方式下,通信系统的每一端都设置了发送器和接收器,因此,能控制数据同时在两个方向上传送。
全双工方式无需进行方向的切换,因此,没有切换操作所产生的时间延迟,这对那些不能有时间延误的交互式应用(例如远程监测和控制系统)十分有利。
这种方式要求通讯双方均有发送器和接收器,同时,需要2根数据线传送数据信号。
(可能还需要控制线和状态线,以及地线)。
图1比如,计算机主机用串行接口连接显示终端,而显示终端带有键盘。
这样,一方面键盘上输入的字符送到主机内存;另一方面,主机内存的信息可以送到屏幕显示。
通常,往键盘上打入1个字符以后,先不显示,计算机主机收到字符后,立即回送到终端,然后终端再把这个字符显示出来。
这样,前一个字符的回送过程和后一个字符的输入过程是同时进行的,即工作于全双工方式。
2、半双式方式(half duplex)若使用同一根传输线既作接收又作发送,虽然数据可以在两个方向上传送,但通信双方不能同时收发数据,这样的传送方式就是半双工制,如图2所示。
采用半双工方式时,通信系统每一端的发送器和接收器,通过收/发开关转接到通信线上,进行方向的切换,因此,会产生时间延迟。
收/发开关实际上是由软件控制的电子开关。
图2当计算机主机用串行接口连接显示终端时,在半双工方式中,输入过程和输出过程使用同一通路。
有些计算机和显示终端之间采用半双工方式工作,这时,从键盘打入的字符在发送到主机的同时就被送到终端上显示出来,而不是用回送的办法,所以避免了接收过程和发送过程同时进行的情况。
串口基础知识一、什么是串口?串口(Serial Port),也称为COM口(Communication Port),是一种用于数据传输的通信接口,常用于计算机与外部设备之间的数据传输。
串口采用串行传输方式,即逐位地发送和接收数据,相比并行传输方式,串口的数据传输速率较慢,但具有传输距离远、连接设备数量多的优势。
二、串口的工作原理串口的工作原理是通过发送和接收电平信号来传输数据。
串口通信使用的是两根信号线:发送线(Tx)和接收线(Rx)。
发送线上的电平变化表示发送的二进制数据,接收线上的电平变化表示接收到的二进制数据。
发送方通过发送线将数据按照一定的协议发送给接收方,接收方通过接收线接收数据并进行处理。
三、串口的通信参数串口通信需要设置一些参数,以确保通信的正确性和稳定性。
常用的串口通信参数包括:1. 波特率(Baud Rate):表示每秒钟传输的位数,常用的波特率有9600、115200等。
2. 数据位(Data Bits):表示每个字节的位数,常用的数据位有7位、8位。
3. 停止位(Stop Bits):表示停止位的个数,常用的停止位有1位、1.5位、2位。
4. 校验位(Parity Bit):用于检测数据传输过程中的错误,常用的校验位有无校验、奇校验、偶校验。
四、串口的应用领域串口广泛应用于各种设备之间的数据通信,常见的应用领域有:1. 电脑与外部设备之间的数据传输,如打印机、扫描仪、数码相机等。
2. 嵌入式系统中,用于与传感器、执行器等外部设备进行数据交互。
3. 工业自动化领域,用于控制和监控设备之间的数据传输。
4. 通信设备中,如调制解调器、路由器等。
五、串口的优缺点串口作为一种通信接口,具有以下优点:1. 传输距离远:串口的传输距离可以达到几百米,适用于远距离通信。
2. 连接设备数量多:串口可以通过串口转换器扩展连接多个设备。
3. 通信稳定可靠:串口通信采用的是同步传输方式,可以保证数据的准确传输。
4.3.3 串口的工作方式
串行口分四种工作方式,由SCON中的SMO、SM1二位选择决定。
1.方式0
(1)特点
1.用作串行口扩展,具有固定的波特率,为Fosf/12。
2.同步发送/接收,由TXD提供移位脉冲,RXD用作数据输入/输出通道。
3.发送/接收8位数据,低位在先。
(2)发送操作
当执行一条“MOV SBUF,A”指令时:
启动发送操作; TI=0;
由TXD输出移位脉冲;
由RXD串行发送SBUF中的数据。
发送完8位数据后;
自动置TI=1,请求中断。
要继续发送时,T1必须有指令清零。
(3)接收操作RI=0;
在RI=0条件下,
置REN=1,启动一帧数据的接收,
由TXD输出移位脉冲,
由RXD接收串行数据到A中。
接收完一帧自动置位RI,
请求中断。
想继续接收时,
要用指令清零RI。
2.方式1
(1)特点
1.8位UART接口。
2.帧结构为10位,包括起始位(为0),8位数据位,1位停止位。
3.波特率由指令设定,由T1的溢出率决定。
(2)发送操作
当执行一条“MOV SBUF,A”指令时,启动发送操作,A中的数据从TXD端实现异步发送。
发送完一帧数据后自动置TI=1,请求中断。
要继续发送时,TI必须由指令清零。
(3)接收操作
当置REN=1时,串行口采样RXD,当采样到1至0的跳变时,确认串行数据帧的起始位,开始接收一帧数据,直到停止位到来时,把停止位送入RB8中。
置位RI请求中断。
CPU取走数据后用指令清零RI。
3.方式2和方式3
方式2和方式3具有多机通信功能,这两种方式除了波特率不同以外,其余完全相同。
(1)特点
1.9位UART接口。
2.帧结构为11位,包括起始位(为0)、8位数据位、1位可编程位TB8/RB8和停止位(为1)。
3.波特率在方式2时为固定FOSC/32或FOSC/64,由SMOD位决定,当SMOD=1时,波特率为FOSC/32;当SMOD=0时,波特率为FOSC/64。
方式3的溢出率由T1的溢出率决定。
(2)发送操作
发送数据之前,由指令设置TB8(如作为奇偶校对位或地址/数据位),将要发送的数据由A写入SBUF中启动发送操作。
在发送中,内部逻辑会把TB8装入发送移位寄存器的第9位位置,然后发送一帧完整的数据,发送完毕后置位TI。
TI须由指令清零。
(3)接收操作
当置位SEN位且RI=0时,启动接收操作,帧结构上的第9位送入RB8中,对所接收的数据视SM2和RB8的状态决定是否会使RI置位。
当SM2=0时,RB8不论什么状态RI都置1,串行口都接收数据。
当SM2=1时,为多机通信方式,接收到的RB8为地址/数据表识位。
当RB8=1时,接收的信息为地址帧,此时置位RI,串行口接收发送来的数据。
当RB8=0时,接收的信息为数据帧,若SM2=1时,RI不会置位,此数据丢弃;若SM2=0,则SBUF接收发送来的数据。