二 正比例与反比例比例尺
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
小学六年级数学重点知识正比例与反比例的概念与应用小学六年级数学重点知识:正比例与反比例的概念与应用数学是一门重要的学科,对于学生的学习和发展起着至关重要的作用。
在小学六年级数学课程中,正比例与反比例是重要的知识点。
本文将介绍正比例与反比例的概念,并探讨它们在实际生活中的应用。
一、正比例的概念与特点正比例是指两个变量之间的关系,当其中一个变量的值增加时,另一个变量的值也相应地按照比例增加。
两个变量之间的关系可以用以下公式表示:y = kx。
其中,y和x分别代表两个变量的值,k为比例因子。
正比例的特点是变化的方向相同,即当x增加时,y也增加;当x 减少时,y也减少。
并且,两个变量之间的关系呈现出线性的趋势,可以用一条直线表示。
例如,如果一辆汽车以固定的速度行驶,行驶的时间与行驶的距离之间就是正比例关系。
行驶的距离是x,行驶的时间是y,那么它们之间的关系可以用y = kx表示。
当汽车行驶的距离增加时,所花费的时间也会相应增加;当汽车行驶的距离减少时,所花费的时间也会相应减少。
二、正比例的应用举例正比例在实际生活中有广泛的应用。
以下是几个常见的例子:1. 比例尺:在地图上,比例尺是用来表示地图距离与实际距离之间的比例关系。
比如,如果一个比例尺是1:1000,那么地图上的1厘米就代表实际世界中的1000米。
这是一种正比例关系,比例因子为1000。
2. 比赛成绩:在体育比赛中,比赛成绩通常与运动员的训练时间和努力程度呈正比例关系。
运动员花费更多时间和精力训练,通常会取得更好的成绩。
3. 比例配方:在烹饪中,有时候需要根据需要增加或减少食材的用量。
比如,如果你想要做一份双倍份量的蛋糕,那么你需要将原始配方中的食材的用量都扩大一倍。
这也是一种正比例关系。
三、反比例的概念与特点反比例是指两个变量之间的关系,当其中一个变量的值增加时,另一个变量的值相应地按照比例减少。
两个变量之间的关系可以用以下公式表示:y = k/x。
《比例》知识清单一、比例的定义比例是表示两个比相等的式子。
例如,如果 a:b = c:d,那么我们就说 a、b、c、d 成比例。
在比例中,组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如,在比例 3:4 = 6:8 中,3 和 8 是外项,4 和 6 是内项。
二、比例的基本性质比例的基本性质是:在比例中,两个外项的积等于两个内项的积。
比如,对于比例 2:3 = 4:6,2×6 = 3×4,都等于 12。
利用比例的基本性质,我们可以进行一些计算和判断。
如果已知比例中的三项,就可以求出第四项。
例如,已知 2:3 = 4:x,根据比例的基本性质可得 2x = 3×4,解得 x = 6。
三、比例的分类1、正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如,汽车行驶的速度一定,行驶的路程和时间成正比例。
因为路程÷时间=速度(一定)。
用字母表示,如果 y/x = k(一定),那么 y 和 x 成正比例关系,其中 k 是常数。
2、反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
比如,长方形的面积一定,长和宽成反比例。
因为长×宽=面积(一定)。
如果用字母表示,xy = k(一定),那么 x 和 y 成反比例关系。
四、比例的应用1、比例尺比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
公式为:比例尺=图上距离 ÷实际距离。
比例尺有三种表示方法:数值比例尺、线段比例尺和文字比例尺。
例如,一幅地图的比例尺是 1:5000000,表示地图上 1 厘米代表实际距离 5000000 厘米,也就是 50 千米。
2、按比例分配在生活中,常常需要把一个数量按照一定的比例进行分配。
六年级数学比例重点知识汇总孔子曰:学而时习之。
课后作业也是学习和巩固数学的重要环节。
下面是小偏整理的六年级数学比例重点知识汇总,感谢您的每一次阅读。
六年级数学比例重点知识汇总(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:3组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。
4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
第四单元正比例与反比例第一课变化的量教学目标:1.结合具体目标,体会生活中存在着大量互相依存的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点:结合具体目标,体会生活中存在着大量互相依存的变量。
教学难点:在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学用具:课件教学方法:情景教学法.小组合作学习教学过程:一、变式练习5分钟(一)填空。
1.比例尺=():()2.比例尺1:100表示()1厘米代表()的100厘米。
也可以说,图上距离是实际距离的(),还可以说,实际距离是图上距离的()倍。
(二)判断1.线段比例尺是在图上附有一条注有数量的线段,用来表示和地面上相对应的实际距离。
2.在一幅平面图上,用4厘米表示40千米的距离,这幅平面图的比例尺是1:10000。
3.图上距离一定小于实际距离。
4.比例尺的前项一定小于后项。
二、体会什么是变量师:在生活中,很多事物在发生变化。
如:人的年龄.身高.体重在变,我国的人均收入.生产总值等等都在变化,象这样的会变化的量,这些都是变化的量。
我们都称为变量。
(板书课题)三、创设情境,感受生活中互相关联的变量。
师:往往一些量的改变会引起另外一些量的改变,比如:身高的改变会引起体重的改变;购物时,单价或数量的改变,会引起总价的改变;象这样的例子很多,今天我们就来学习“变化的量”1.妙想体重变化情况(1)说说表中出现了哪些量?它们是怎么样变化的?说说小明10周岁前的体重是如何随年龄增长而变化的。
今后他的年龄和体重还可能怎么样变化?小结:人的年龄和体重是互相关联的两个量,人的体重随着年龄的变化而变化。
2.骆驼的体温变化(1)出示骆驼体温变化统计图,先观察认识统计图中反应出哪些信息。
(2)依次回答书中的三个问题。
(先独立思考,再小组交流)(3)小结:请说说骆驼的体温与时间之间的关系。
3.蟋蟀叫的次数与气温之间的近似关系。
(1)蟋蟀叫的次数与气温之间有怎么样的关系(2)这两个量的关系跟前两种情况比有什么不同?(3)你能用式子表示这两个量的关系吗?前两个例子可以用含有字母的式子表示吗?(4)小结:用语言表达蟋蟀叫的次数与气温之间的近似关系。
小学数学1-6年级数与代数知识点汇总(一)数的认识一、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
四、像+4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
(8)代数初步(二)正比例与反比例上课解决方案教案设计课前准备教具准备多媒体课件教学过程⊙回顾与整理1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。
预设生1:两个数相除又叫作两个数的比。
(如5÷2,可以写成5∶2)生2:表示两个比相等的式子叫作比例。
(如8∶4=24∶12)生3:图上距离与实际距离的比叫作比例尺,比例尺可分为数值比例尺和线段比例尺。
(如一幅地图的比例尺是1200000)生4:配制农药会应用到比的知识;地图上一般都有比例尺。
(2)出示教材83页回顾与交流2题。
学生独立完成,思考比、分数、除法之间的关系,并全班交流。
预设生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。
生2:除法算式的商相当于分数的分数值,相当于比的比值。
强调:因为0不能做除数,所以,所有分数的分母及比的后项都不能为0。
(3)想一想什么是比的基本性质,然后应用比的基本性质化简下面的比。
30∶1201∶34610∶0.123∶102.5∶60.5∶3.225∶5634∶32先思考比的基本性质,然后交流,最后独立完成,集体订正。
(4)复习按比例分配问题。
①什么是按比例分配应用题?(引导理解:把一个数量按照一定的比进行分配的问题,叫作按比例分配应用题)②按比例分配应用题有什么特点?预设生1:用比或者连比反映各部分占总数量的份数。
生2:直接给出各部分占总数量的份数。
③按比例分配应用题的一般解题步骤是什么?预设生1:找出或求出要分配的总数;生2:根据已知的比求总份数;生3:按照要分配的各部分数量占总数的几分之几,分别求出每一部分数量是多少。
(5)完成教材83页3题。
学生独立完成,然后交流订正,并说一说解决问题时都用到了哪些知识。
2.(1)说一说。
师:我们学习了正比例和反比例的知识,请你回忆一下,然后说一说你对这部分内容的了解。
正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:y=k (一定)x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总=工效(一定)工总和工时是成正比例的量工时路程=速度(一定)所以路程与时间成正比例。
时间(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x × y = k (一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合y=k (一定),则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反x比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例 1 :购买面粉的重量和钱数如下表,根据表填空。
6.比例尺(第5课时)
1.圆的半径与周长成( )比例。
2.甲、乙两数的比是2:5,甲数是7,乙数是( )。
3.一辆汽车5小时行200千米,照这样计算,汽车再行2小时还可以行x 千米。
(1)( )和( )成( )关系。
(2)列出比例是( )。
(3)题中( )和( )是两种相关联的量。
二、我是小法官。
(对的画“√”,错的画“×”)
1.任意两个比都可以组成比例。
( )
2.圆的半径和它的面积成正比例。
( )
3.实际距离一定,比例尺和图上距离成反比例。
( )
4.两种相关联的量,不成正比例,就成反比例。
( )
5.比例尺有单位。
( )
三、森林医院。
(判断是否正确,错了改正)
解比例:
1.5.12x =5
1 解:x=12.5×5
x=62.5
2.0.6:0.36=5
4:x 解: 0.6x=0.36×5
4 x=4.8
四、我会解答。
(1)x 与0.15的比等于3.6与0.9的比,求x 。
(2)17与x 的比等于4与17
4的比,求x 。
五、有问题,我来答。
听说王家岭煤矿发生事故,一辆前去救灾的车辆计划每小时行60千米,4小时到达。
实际每小时多行20千米。
可以提前几小时到达?
六、动脑思考。
用100厘米长的绳子围成长和宽之比是4:1的长方形,如果把它画在比例尺是1:10的图纸上,求这个长方形的面积。
参考答案
一、1.正 2.17.5 3.(1)路程 时间 正比例 (2)
5200=2
x (3)路程 时间
二、1.× 2.× 3.×4.× 5.×
三、1.错误 x=2.5 2.错误 x=0.48
四、(1)x=0.6 (2)x=1
五、1小时
六、4平方厘米
友情提示:
一、认真对待每一次复习及考试。
.
二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.
四、请仔细审题,细心答题,相信你一定会有出色的表现!。