生物信息学第三章分子生物信息数据库
- 格式:ppt
- 大小:6.12 MB
- 文档页数:113
红河学院《生物信息学》课程教学大纲一、课程基本情况与说明(一)课程代码:(二)课程英文名称:bioinformatics(三)课程中文名称:生物信息学(四)授课对象:生物科学和生物技术专业本科生(五)开课单位:生命科学与技术学院(六)教材:1、生物技术专业:《生物信息学应用技术》,王禄山、高培基编,化学工业出版社,2008年2、生物科学专业:《生物信息学基础》,孙啸、陆祖宏、谢建明编,清华大学出版社,2005年(七)参考书目[1]《生物信息学》,DavidW.Mount著,钟扬等译,高等教育出版社,2003年[2]《基因组数据分析手册》,胡松年、薛庆中编,浙江大学出版社,2003年[3]《生物信息学中的计算机技术(Developing Bioinformatics Computer Skills)》,CynthiaGibas,Per Jambeck著,孙超等译,中国电力出版社,2002年[4]《生物信息学:基因和蛋白质分析的实用指南》,Andreas D. Baxevanis,Francis OuelletteB F著,李衍达、孙之荣等译,清华大学出版社,2000年[5]《生物信息学算法导论(An Introduction to Bioinformatics Algorithms )》,琼斯,帕夫纳著,王翼飞等译,化学工业出版社,2007年(八)课程性质(五号宋体加粗)生物信息学是生命科学领域一门新兴的边缘学科,综合了生物学、计算机学、信息学、统计学等方面的知识。
该学科在学生掌握生物化学、遗传学、分子生物学以及计算机应用、高等数学等相关知识的基础上开设,属于生物类专业的专业课程(必修或选修)。
通过学习,学生能够加深对分子生物学和基因工程等课程的理解,并为进一步学习基因组学(genomics)和蛋白质组学(protemics) 奠定基础。
(九)教学目的1、给学生介绍生物信息学的主要内容以及未来可能的发展方向,为学生构建相关知识体系,开阔学生的视野,为将来进一步学习、科研打下基础。
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。
第4章生物分子数据库国际上已建立起许多公共生物分子数据库,包括基因组图谱数据库、核酸序列数据库、蛋白质序列数据库、生物大分子结构数据库等。
这些数据库由专门的机构建立和维护,他们负责收集、组织、管理和发布生物分子数据,并提供数据检索和分析工具,向生物学研究人员提供大量有用的信息,最大限度地满足他们研究和应用的需要,为他们的研究服务。
4.1 引言建立生物分子数据库的动因是由于生物分子数据的高速增长,而另一方面也是为了满足分子生物学及相关领域研究人员迅速获得最新实验数据的要求。
生物分子信息分析已经成为分子生物学研究必备的一种方法。
如果说理论分析和算法模拟是生物信息学实验方法的话,那么来自于具体实验的原始数据和来自于数据库的数据则是生物信息学的实验材料。
数据库及其相关的分析软件是生物信息学研究和应用的重要基础,也是分子生物学研究必备的工具。
从数据库使用的角度来看,公共生物分子数据库应满足以下5个方面的主要需求:(1)时间性对于新发表的数据,应该能够在很短的时间内(几个小时至几天)通过国际互连网访问。
(2)注释对于每一个基本数据(如序列),应附加一致的、深层次的辅助说明信息。
(3)支撑数据在有些情况下,数据库使用者需要得到原始的实验数据,因而要提供访问原始数据的方法。
数据库中应包含原始数据,或者能够通过交叉索引访问实验数据库中的原始数据。
(4)数据质量必须保证数据库中数据的质量,数据库管理机构应对数据来源进行检查,并且关注数据库用户和专家提出的意见。
(5)集成性三种基本生物分子数据库(核酸序列、蛋白质序列、蛋白质结构)的集成对于用户来说是非常重要的。
对于数据库中的每一个数据对象,必须与其它数据库中的相关数据联系起来,这样可以从某些分子数据出发得到一系列的相关信息。
例如,从某个核酸序列出发,通过交叉索引,可进一步得到对应的基因、蛋白质序列、蛋白质结构,甚至得到蛋白质功能的信息。
分子生物学研究领域虽各有重点,但是研究对象之间存在着密切的联系,比如DNA序列与蛋白质序列之间的联系,基因调控信息与基因表达数据之间的联系。
什么是生物信息学数据库
生物信息学数据库是指存储生物学和生物信息学数据的计算机化系统。
这些数据库包含了各种生物学数据,如基因组序列、蛋白质序列、代谢通路、基因表达数据、蛋白质结构、生物图像等。
这些数据可以通过计算机程序进行访问、搜索和分析,以帮助生物学家和生物信息学家进行研究和发现。
生物信息学数据库通常由多个子数据库组成,每个子数据库都包含特定类型的数据。
例如,基因组数据库包含各种生物的基因组序列,蛋白质数据库包含蛋白质序列和结构信息,代谢通路数据库包含代谢通路和代谢产物信息等。
此外,生物信息学数据库还可以用于对生物信息的收集、存储和管理的研究,包括国际基本的生物信息库和生物信息传输国际物联网系统的建立,生物信息数据库质量的评估与检测系统的建立,以及生物可视化系统和专家系统的建立等。
以上信息仅供参考,如有需要,建议查阅相关网站。
第三章结构数据库【前介】本章将集中介绍生物信息学中生物分子结构的有关内容,并将研究重点放在三维结构实际存在的氨基酸序列上,力图使读者了解结构数据库记录的内容及如何合理应用各类通用软件程序处理这类记录。
本章不涉及结构生物学家们建立三维分子结构的计算程序,也不讨论相似蛋白质构象的精细结构。
在本章参考书目后列出了一些优秀的讨论蛋白质构象的有关专著和蛋白质结构决定方法。
用图象直观表示蛋白质和核酸结构在生物化学教科书和研究论文中屡屡出现。
这些图象是美丽迷人的反而使我们忽视了图象背后所反映的实验细节���实验中应用的生物物理方法,X射线晶体衍射学家和核磁共振波谱分析学家们努力工作的成效.在结构数据库中记录的数据是实用化的实验数据。
它既不同于直接由仪器获得的原始数据,也并非原始数据的简单数学转换。
每一个结构数据库记录都内含着随结构预测技术的进步而不断变化的假设和偏好。
尽管如此,每个生物分子结构蕴涵着有关序列所缺失数据的至关重要的信息。
∙三维分子结构数据的一些概念首先做一个关于如何记录生物高聚物的三维数据的思想实验。
考虑一下如何在纸上记录如肌球素这类蛋白质的三维球棒模型的所有细节和尺度关系。
一条开始的途径是从由三维模型主干描绘出的氨基酸序列入手。
从N’端开始,我们通过将每个残基的化学结构与20种普通氨基酸化学结构(其结构的图解可以从教科书中找到)比较,以识别每个氨基酸侧链。
一旦序列被写出来,我们将绘制生物高聚物的二维草图,草图中包括所有的原子、基本符号、化学键,可能会占用几页纸。
亚化血红素配合基的绘制即为一例。
将它的化学结构画在纸上后,我们可以通过量测模型中每个原子在设定的直角坐标系中的距离记录三维数据。
同时也提供了球�棒结构中每个原子“球”的x,y,z坐标距离数据。
下一步是提出一个系统的分门别类的记录方案以保存与识别有关的每个原子的(x,y,z)坐标信息。