信号与系统公式常用的连续傅里叶变换
- 格式:docx
- 大小:14.07 KB
- 文档页数:2
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种非常重要的工具,它可以将一个时域信号转换为频域信号,从而帮助我们更好地理解和分析信号的特征。
为了方便使用,人们总结出了一些常用的傅里叶变换对,形成了常用傅里叶变换表。
傅里叶变换的基本思想是将一个复杂的信号分解为不同频率的正弦和余弦波的叠加。
这就像是把一道混合了各种食材的大菜分解成各种单一的原料,让我们能够更清楚地了解每一种成分的特性。
首先,让我们来看看单位冲激函数δ(t) 的傅里叶变换。
单位冲激函数在 t = 0 处取值为无穷大,在其他时刻取值为 0,其积分值为 1。
它的傅里叶变换是 1,也就是说,在频域中,它是一个常数。
这一结果从某种程度上反映了单位冲激函数包含了所有频率的成分,且各个频率成分的强度相同。
再来看常数信号 c 的傅里叶变换。
假设常数信号在整个时间轴上都取值为 c,那么它的傅里叶变换是2πcδ(ω),其中δ(ω) 是频域中的单位冲激函数。
这意味着常数信号在频域中只在ω = 0 处有值,其他频率处的值均为 0。
接着是指数函数 e^(at)u(t)(其中 a > 0,u(t) 是单位阶跃函数)的傅里叶变换。
它的傅里叶变换是 1/(a +jω)。
这个变换结果表明,指数函数的频率特性随着 a 的增大而衰减得更快。
对于正弦函数sin(ω₀t),它的傅里叶变换是πjδ(ω ω₀) jδ(ω +ω₀)/2 。
而余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀)/2 。
这两个结果反映了正弦和余弦函数在频域中只在±ω₀处有值,体现了它们的频率单一性。
矩形脉冲函数 rect(t/T)(在 T/2 到 T/2 之间取值为 1,其他地方取值为 0)的傅里叶变换是T sinc(ωT/2),其中 sinc(x) = sin(x) / x 。
这个变换结果展示了矩形脉冲的频谱是一个 sinc 函数的形状,其主瓣宽度与脉冲宽度 T 成反比。
傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信系统等领域都有着广泛的应用。
傅里叶变换的原理是将一个信号分解成不同频率的正弦和余弦函数的叠加,从而可以分析信号的频谱特性。
在本文中,我们将详细介绍傅里叶变换的原理及其在实际应用中的重要性。
首先,让我们来了解一下傅里叶变换的数学表达式。
对于一个连续信号 f(t),它的傅里叶变换F(ω) 定义为:F(ω) = ∫f(t)e^(-jωt)dt。
其中,e^(-jωt) 是复指数函数,ω 是频率。
这个公式表示了信号 f(t) 在频域上的表示,也就是说,它将信号 f(t) 转换成了频率域上的复数函数F(ω)。
通过傅里叶变换,我们可以得到信号的频谱信息,从而可以分析信号的频率成分和能量分布。
傅里叶变换的原理可以通过一个简单的例子来说明。
假设我们有一个周期为 T 的正弦信号f(t) = Asin(2πft),其中 A 是振幅,f 是频率。
对这个信号进行傅里叶变换,我们可以得到频谱F(ω)= A/2 (δ(ω-f) δ(ω+f)),其中δ(ω) 是狄拉克δ函数。
这个频谱表示了信号只包含了频率为 f 的正弦成分,而其他频率成分的能量为零。
这样,我们就可以通过傅里叶变换来分析信号的频率特性。
在实际应用中,傅里叶变换有着广泛的应用。
在信号处理中,我们可以通过傅里叶变换来对信号进行滤波、频谱分析等操作。
在图像处理中,傅里叶变换可以用来进行图像的频域滤波、频谱分析等操作。
在通信系统中,傅里叶变换可以用来对调制信号进行频谱分析、信道估计等操作。
可以说,傅里叶变换已经成为了现代科学技术中不可或缺的数学工具。
总之,傅里叶变换是一种非常重要的数学工具,它可以将一个信号从时域转换到频域,从而可以分析信号的频率特性。
通过傅里叶变换,我们可以对信号进行频谱分析、滤波等操作,从而可以更好地理解和处理信号。
傅里叶变换在信号处理、图像处理、通信系统等领域都有着广泛的应用,它已经成为了现代科学技术中不可或缺的数学工具。
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。
它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。
傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。
首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。
1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。
2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。
傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。
傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。
假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。
例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。
基本概念一维信号:信号是一个独立变量的函数时,称为一维信号。
多维信号:如果信号是n 个独立变量的函数,就称为n 维信号。
归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。
能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。
功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。
门函数:()g t τ常称为门函数,其宽度为τ,幅度为1因果性:响应(零状态响应)不出现于激励之前的系统称为因果系统。
因果信号:把t=0时接入的信号(即在t<0时,f(t)=0的信号)称为因果信号,或有始信号。
卷积公式:1212()()*()()()f t f t f t f f t d τττ∞-∞==-⎰梳妆函数:相关函数:又称为相关积分。
意义:衡量某信号与另一延时信号之间的相似程度。
延时为0时相似程度是最好的。
1212()()()R f t f t dt ττ∞-∞==-⎰前向差分: ()(1)()f k f k f k ∆=+-后向差分:()()(1)f k f k f k ∇=--单位序列:()k δ单位阶跃序列:()k ε基本信号:时间域:连续时间系统以冲激函数为基本信号,离散时间系统以单位序列为基本信号。
任意输入信号可分解为一系列冲积函数(连续)或单位序列(离散)的加权和。
频率域:连续时间系统以正弦函数或虚指数函数jwt e 为基本信号,将任意连续时间信号表示为一系列不同频率的正弦信号或虚指数信号之和(对于周期信号)或积分(对于非周期信号)。
DTFT :离散时间信号,以虚指数函数2j kn N e π或j k e θ为基本信号,将任意离散时间信号表示为N 个不同频率的虚指数之和(对于周期信号)或积分(对于非周期信号)。
系统响应:()j t j t Ye H j Fe ωωω=正交函数集:n 个函数构成一函数集,如在区间 内满足正交特性。
复变函数的正交性均方误差:误差的均方值2ε帕斯瓦尔方程:j j j t t K C dt t f ∑⎰∞==12221)( 含义:)(t f 在区间),(21t t 信号所含能量恒等于此信号在完备正交函数集中各正交分量能量的总和。
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
傅里叶变换简表
傅里叶变换(Fourier Transform)是一种将信号从时域(时间域)转换到频域(频率域)的数学方法。
傅里叶变换在信号处理、图像处理、通信等领域都有广泛的应用。
下面是傅里叶变换的简表:
傅里叶变换函数:
傅里叶变换F(k) = ∫[f(x) * e^(-2πikx)] dx
反变换函数:
反傅里叶变换f(x) = ∫[F(k) * e^(2πikx)] dk
常见信号的傅里叶变换:
1. 矩形函数(方波)的傅里叶变换:
F(k) = T * sin(πkT) / (πk)
2. 三角波的傅里叶变换:
F(k) = 2AT * sinc(2πATk)
3. 周期函数的傅里叶级数展开:
f(x) = a0 + Σ(an * cos(nωt) + bn * sin(nωt))
4. 高斯函数的傅里叶变换:
F(k) = σ * sqrt(2π) * e^(-π^2σ^2k^2)
5. 常见频率域运算的傅里叶变换:
a. 时移:f(x - x0) 的傅里叶变换F(k) * e^(2πikx0)
b. 频移:e^(2πik0x) 的傅里叶变换 F(k - k0)
c. 放大:f(ax) 的傅里叶变换 F(k/a) / a
d. 缩小:f(bx) 的傅里叶变换 F(k/b) * b
这只是一些傅里叶变换的简单例子,实际上傅里叶变换的应用十分广泛,还有很多复杂的数学关系和公式。
需要根据具体的问题和需求来进行深入研究和学习。
信号与系统公式总结信号与系统是电子工程、通信工程、自动控制等领域中的重要基础课程,它研究了信号的传输、处理以及系统的行为特性。
在学习信号与系统的过程中,我们需要掌握一些基本的数学公式,以便更好地理解和分析信号与系统的特性。
本文将对信号与系统中常用的公式进行总结和归纳,以帮助读者更好地掌握和应用。
一、信号的表示在信号与系统中,我们常常遇到时域信号、频域信号和复域信号。
它们分别通过不同的数学表示方法来描述。
1. 时域信号时域信号使用时间作为自变量进行描述,常用的时域信号表示方法有:- 脉冲函数(Impulse Function):δ(t)是一个函数,当t=0时取值为无穷大,其他时刻取值为零,即δ(t) = ∞,t = 0;δ(t) = 0,t ≠ 0。
- 阶跃函数(Step Function):u(t)是一个函数,当t≥0时取值为1,t<0时取值为0。
- 矩形函数(Rectangular Pulse):rect(t/T)是一个函数,在|t| < T/2时取值为1,其他时刻取值为零。
2. 频域信号频域信号使用频率作为自变量进行描述,常用的频域信号表示方法有:- 正弦函数(Sine Function):f(t)=A*sin(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 余弦函数(Cosine Function):g(t)=A*cos(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 脉冲函数的频谱:脉冲函数的频谱是一个常数,即频率的绝对值小于无穷大的所有频率分量都具有相同的幅度。
3. 复域信号复域信号使用复数表示,并且可以同时描述时域信息和频域信息。
常用的复域信号表示方法有:- 复指数函数(Complex Exponential Function):x(t) = Ae^(2πft+jφ),其中A为振幅,f为频率,φ为相位。
二、线性时不变系统在信号与系统中,线性时不变系统(LTI system)是一类重要的系统。
常用傅里叶变换表在数学和工程领域,傅里叶变换是一种非常重要的工具,它能够将一个时域信号转换为频域表示,从而帮助我们更好地理解和处理各种信号。
为了方便使用,人们总结出了常用的傅里叶变换表。
傅里叶变换的基本概念是将一个函数表示为不同频率的正弦和余弦函数的线性组合。
通过这种变换,我们可以从不同的角度分析信号的特性,例如频率成分、能量分布等。
常见的函数及其傅里叶变换如下:1、单位冲激函数(δ函数)单位冲激函数在时域中是一个在某一时刻瞬间出现的极大值,而在其他时刻为零。
它的傅里叶变换是常数 1。
2、单位阶跃函数单位阶跃函数在时域中从某一时刻开始值为 1。
其傅里叶变换为 1 /(jω) +πδ(ω) 。
3、正弦函数正弦函数sin(ω₀t) 的傅里叶变换为π δ(ω ω₀) δ(ω +ω₀) 。
4、余弦函数余弦函数cos(ω₀t) 的傅里叶变换为π δ(ω ω₀) +δ(ω +ω₀) 。
5、指数函数指数函数 e^(αt) u(t) (其中 u(t) 为单位阶跃函数,α > 0)的傅里叶变换为 1 /(α +jω) 。
6、矩形脉冲函数矩形脉冲函数在一定区间内值为 1,其他区间为 0。
其傅里叶变换可以通过计算得到特定的表达式。
这些只是傅里叶变换表中的一部分常见函数。
在实际应用中,我们常常需要对复杂的信号进行傅里叶变换。
通过将复杂信号分解为上述常见函数的组合,再利用傅里叶变换的线性性质(即多个函数之和的傅里叶变换等于各个函数傅里叶变换之和),可以方便地求出复杂信号的频域表示。
傅里叶变换在许多领域都有广泛的应用。
在通信领域,它用于信号的调制和解调、频谱分析等。
在图像处理中,傅里叶变换可以帮助我们分析图像的频率特性,从而进行图像增强、滤波等操作。
在控制系统中,它可以用于分析系统的频率响应,帮助设计控制器。
例如,在音频处理中,我们可以通过傅里叶变换将声音信号从时域转换到频域,从而识别出不同的频率成分,实现音频的滤波、降噪等处理。
傅里叶变换magnitude 和phase 傅里叶变换是一种十分重要的数学工具,在信号处理、图像处理、通信系统等领域具有广泛的应用。
傅里叶变换可以将一个连续或离散的时间域信号转换为频域信号,通过分析频域信号的幅度与相位信息,我们可以获得关于信号频谱的重要信息。
在傅里叶变换中,幅度和相位是两个最重要的概念,它们分别描述了频域信号的振幅和相对于时间域信号的延迟或者相位差。
首先,我们来谈谈傅里叶变换的幅度谱,也称为magnitude spectrum。
幅度谱描述了频域信号的振幅特性,它告诉我们频域信号中不同频率成分的强弱。
通过分析幅度谱,我们可以得到信号中频率成分的增益或衰减情况。
对于连续时间域信号,我们可以通过连续傅里叶变换(Continuous Fourier Transform)得到幅度谱。
连续傅里叶变换的公式如下:F(ω) = ∫[f(t) * e^(-jωt)] dt其中,F(ω)表示频域信号的复数形式,f(t)是原始信号,ω为角频率,e^(-jωt)是复指数形式的正弦函数。
对于离散时间域信号,我们可以通过离散傅里叶变换(Discrete Fourier Transform)得到幅度谱。
离散傅里叶变换的公式如下:F(k) = Σ[f(n) * e^(-j2πkn/N)]其中,F(k)表示频域信号的复数形式,f(n)是原始信号,k为频率索引,N为信号的长度。
得到频域信号后,我们可以通过计算每个频率分量的幅度,得到幅度谱。
幅度谱的计算公式如下:M agnitude = |F(ω)|其中,|F(ω)|表示频域信号的振幅。
幅度谱通常以频率为横轴,振幅为纵轴进行绘制。
通过分析幅度谱,我们可以得到信号中不同频率成分的强弱,从而可以判断信号的频谱特性。
接下来,我们来讨论傅里叶变换的相位谱,也称为phase spectrum。
相位谱描述了频域信号相对于时间域信号的延迟或者相位差。
相位谱可以告诉我们信号不同频率成分之间的时间关系,从而可以重构信号或者改变信号的相位。