线性方程组练习题
- 格式:pdf
- 大小:328.50 KB
- 文档页数:7
线性方程组练习题及解析线性方程组是数学中的重要概念,在各个领域都有广泛的应用。
解线性方程组需要掌握一定的求解方法和技巧。
本文将提供一些线性方程组的练习题,并给出详细解析,帮助读者更好地理解和应用线性方程组的知识。
练习题一:解下列线性方程组:1) 2x + y = 83x - y = 42) -3x + 4y = 72x - y = -33) x + 2y = 53x - y = 10解析一:1) 首先,将方程组进行消元,将y消去。
将第一个方程乘以3,得到6x + 3y = 24。
与第二个方程相加,得到9x = 28。
解得x = 28/9。
将x的值代入第一个方程,解得y = 16/9。
因此,该方程组的解为x = 28/9,y = 16/9。
2) 将第一个方程乘以2,得到-6x + 8y = 14。
与第二个方程相加,得到7y = 11。
解得y = 11/7。
将y的值代入第一个方程,解得x = 1/7。
因此,该方程组的解为x = 1/7,y = 11/7。
3) 将第一个方程乘以3,得到3x + 6y = 15。
与第二个方程相加,得到6x + 5y = 25。
解得x = 25/6。
将x的值代入第一个方程,解得y =5/6。
因此,该方程组的解为x = 25/6,y = 5/6。
练习题二:解下列线性方程组:1) x + 2y - z = 52x - y + 3z = 23x + y - 2z = 12) 2x - y + z = 4x + 3y - z = -33x - y + 2z = 73) x - 2y + z = 12x - y + 3z = -33x + y + 2z = 2解析二:1) 首先,将方程组进行消元,将y和z消去。
将第一个方程乘以2,得到2x + 4y - 2z = 10。
与第三个方程相加,得到5x + 3y = 11。
将第一个方程乘以3,得到3x + 6y - 3z = 15。
与第二个方程相加,得到5x +3z = 17。
解线性方程组练习题
在解决数学问题中,线性方程组是一种常见的形式。
解决线性方程组可以帮助我们找到一组值,使得所有方程都得到满足。
练题
以下是一些解线性方程组的练题,供参考:
1. 解下列线性方程组:
2x + 3y = 8
4x - 5y = 2
2. 解下列线性方程组:
x + 2y - z = 5
2x - 3y + 4z = 10
3x + y + 2z = -4
3. 解下列线性方程组:
x + 2y + 3z = 7
2x - y + 2z = 1
3x + 3y - 4z = 5
4. 解下列线性方程组:
3x + 2y - z = 10
2x - 4y + 3z = -4
5x + 3y + z = 7
5. 解下列线性方程组:
x + 3y - z = -1
2x - y + 4z = 8
3x - 2y + 2z = -3
以上练题可以帮助提高解线性方程组的能力。
解题时,可以使用消元法、代入法或矩阵方法等不同的策略。
希望通过这些练题,你能更好地掌握解线性方程组的技巧。
结论
解线性方程组是数学中重要的基础概念之一。
掌握解线性方程组的方法和技巧,对于理解和解决实际问题具有重要意义。
通过不断练习和探索,相信你能够在解线性方程组上取得更大的进步!。
第2章 线性方程组 练习题1、已知1 = ( 1 , 1 , 0 , 1 )T,2 = ( 2 , 1 , 3 , 1 )T ,3 = ( 1 , 1 , 0 , 0 )T ,4 = ( 0 , 1 , 1 ,1 )T , = ( 0 , 0 , 0 , 1 )T ,(1)求向量组 1,2 ,3,4 的秩,(2)判定 是否可以表为1,2 ,3 ,4 的线性组合,说明理由。
( 4,可以 )2、设向量组1 = ( 1 , 1 , 1 )T,2 = ( 1 , 2 , 3 )T ,3 = ( 1 , 3 , t )T ,求(1)当 t 为何值时,1 ,2 ,3 线性无关(2)当 t 为何值时,1,2,3 线性相关此时将 3表为 1 与2的线性组合。
( t5 时,1,2 ,3 线性无关;t = 5时,1 ,2 ,3 线性相关,且 3 = 1+ 22 )3、确定 为何值时,向量 = ( 0 , 1 , )T 可以表为向量组1 = (1 ,2 ,3 )T ,2 = ( 2 , 1 ,1 )T ,3 = ( 1 ,1 ,2 )T ,4 = ( 2 , 1 , 1 )T 的线性组合,并求出一个具体表达式。
( =1; =1 +2 +3 +4){4、设 ⎪⎪⎪⎭⎫ ⎝⎛=111k α,⎪⎪⎪⎭⎫ ⎝⎛=112k α,⎪⎪⎪⎭⎫ ⎝⎛=k 113α,⎪⎪⎪⎭⎫⎝⎛---=223k β,讨论 k 为何值时,(1) 不能由1 ,2 ,3 线性表出;(2) 能由 1 ,2 ,3 线性表出,且表示法唯一;(3) 能由 1 ,2,3线性表出,且表示法不唯一,并求出一个具体表示。
( (1) 2;(2)k1且 k2 ;(3)1 ,=21)5、已知向量组 1 = ( 1 , 0 , 2 , 3 )T ,2 = ( 1 , 1 , 3 , 5 )T,3 = ( 1 , 1 , a+2 , 1 )T ,4 = ( 1 ,2 , 4 , a+8 )T 及= ( 1 , 1 , b+3 , 5 )T ,求(1)a 、b 为何值时, 不能表示成1,2 ,3 ,4的线性组合;(2)a 、b 为何值时, 有 1,2 ,3 ,4 的唯一线性表示式,写出该表示式。
初中数学代数经典练习题(含答案)初中数学代数经典练题(含答案)一、线性方程组1. 某数的三分之一减去5的结果等于8,求这个数的值是多少?答案:272. 解方程组:$$\begin{align*}2x + 3y &= 7 \\3x - 4y &= 1\end{align*}$$答案:$x=5, y=-3$3. 解方程组:$$\begin{align*}2x - y &= 1 \\3x + 2y &= 14\end{align*}$$答案:$x=5, y=8$二、一元一次方程1. 解方程:$2x+1=9$答案:$x=4$2. 解方程:$5x-3=22$答案:$x=5$3. 解方程:$3(2x-1) = 15$ 答案:$x=3$三、一元二次方程1. 解方程:$x^2-3x+2=0$答案:$x=1, x=2$2. 解方程:$x^2-5x+6=0$答案:$x=2, x=3$3. 解方程:$-x^2+7x-10=0$答案:$x=2, x=5$四、等比数列1. 求等比数列的通项公式,已知首项$a=2$,公比$r=3$。
答案:$a_n = 2 \times 3^{n-1}$2. 已知等比数列的首项$a=4$,第二项$b=12$,求公比$r$。
答案:$r=3$3. 求等比数列的前$n$项和,已知首项$a=1$,公比$r=2$。
答案:$S_n = a\frac{1-r^n}{1-r}$五、函数定义1. 定义函数$f(x)=2x-3$,求$f(5)$的值。
答案:$f(5)=7$2. 定义函数$g(x)=3x^2+4$,求$g(-2)$的值。
答案:$g(-2)=16$3. 定义函数$h(x)=\frac{1}{x}$,求$h(2)$的值。
答案:$h(2)=\frac{1}{2}$以上是初中数学代数的经典练习题及其答案。
希望对你的学习有所帮助!。
线性方程组练习题引言:线性方程组是数学中的重要概念之一,它对于解决实际问题和研究抽象数学理论都有着重要意义。
本文将通过一些线性方程组的练习题,以帮助读者更好地理解线性方程组的概念、性质和解法。
一、一元一次线性方程组1、已知线性方程组:{ 2x + 3y = 7 (1)4x - 5y = 1 (2)求解方程组。
解:首先,我们可以使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的x消去:(2) * 2 - (1) * 4,得到:-14y = -13解得 y = 13/14。
将y的值代入方程(1)中,得到:2x + 3 * (13/14) = 7化简,得到:2x = 7 - 39/142x = 98/14 - 39/142x = 59/14解得x = 59/28。
综上所述,方程组的解为:x ≈ 2.107,y ≈ 0.929。
2、练习题:考虑以下线性方程组:{ 3x + 2y = 5 (1)5x - y = 1 (2)请你解答:该线性方程组有无解?若有解,求解方程组。
解:我们同样使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的x消去:(2) * 3 - (1) * 5,得到:-11y = 2解得 y = -2/11。
将y的值代入方程(1)中,得到:3x + 2 * (-2/11) = 5化简,得到:3x = 55/11 + 4/113x = 59/11解得x = 59/33。
综上所述,方程组的解为:x ≈ 1.788,y ≈ -0.181。
二、二元一次线性方程组1、已知线性方程组:{ 3x - 2y = 5 (1)2x + y = 1 (2)求解方程组。
解:我们可以使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的y消去: (2) * 3 + (1) * 2,得到:7x = 8解得 x = 8/7。
将x的值代入方程(2)中,得到:2 * (8/7) + y = 1化简,得到:y = 1 - 16/7y = -9/7综上所述,方程组的解为:x ≈ 1.143,y ≈ -1.286。
线性方程组的解的存在唯一性练习题在线性代数中,解线性方程组是一个经常遇到的问题。
解线性方程组的存在和唯一性是我们关注的核心问题之一。
本文将解答一些关于线性方程组解存在唯一性的练习题,帮助读者更好地理解这一概念。
1. 练习题一考虑以下线性方程组:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,aᵢₙ为系数矩阵中的元素,bᵢ为常数向量中的元素,xₙ为待求解的变量。
问题:证明当且仅当线性方程组的系数矩阵的秩等于常数向量矩阵与系数矩阵的增广矩阵的秩时,线性方程组存在解且唯一。
解析:首先,我们需要了解秩的概念。
一个矩阵的秩是指矩阵的行(列)向量组的极大线性无关组的向量个数。
在这个练习题中,我们考虑系数矩阵的秩、增广矩阵的秩和常数向量矩阵的秩。
当系数矩阵的秩等于增广矩阵的秩时,即rank(A) = rank([A | b]),我们可以得出以下结论:1. 如果rank(A) = rank([A | b])且rank(A) = n(n为方程组的未知数个数),则线性方程组存在唯一解。
这是因为方程组中的未知数个数与系数矩阵的秩相同,说明方程组中每个未知数都构成了一个线性无关的方程,因此可以唯一地确定解。
2. 如果rank(A) = rank([A | b])且rank(A) < n,则线性方程组存在无穷多解。
这是因为方程组中的未知数个数大于系数矩阵的秩,即存在自由变量,从而导致方程组存在无穷多个解。
3. 如果rank(A) ≠ rank([A | b]),则线性方程组不存在解。
这是因为增广矩阵中的增广列b无法表示成系数矩阵的线性组合,即无法通过消元得到一个矛盾的等式,因此线性方程组无解。
2. 练习题二考虑以下线性方程组:2x + 3y = 74x + 6y = 14问题:判断线性方程组的解的存在唯一性。
第一章 练习题一、选择题1、向量组r ααα,,,21 线性相关,且秩为s ,则( )A.s r = B .s r ≤ C.r s ≤ D .r s <2、设A 为m ×n 矩阵,齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .A 的列向量组线性相关B .A 的列向量组线性无关C .A 的行向量组线性相关D .A 的行向量组线性无关3、设3元非齐次线性方程组b Ax =的两个解为T T )3,1,1(,)2,0,1(-=β=α,且系数矩 阵A 的秩2)(=A r ,则对于任意常数21,,k k k ,方程组的通解可表为( )A .T 2T 1)3,1,1()2,0,1(-+k kB .T T )3,1,1()2,0,1(-+kC .T T )1,1,0()2,0,1(-+kD .T T )5,1,2()2,0,1(-+k 4、设矩阵)2,1(=A ,⎪⎪⎭⎫⎝⎛=4321B ,⎪⎪⎭⎫ ⎝⎛=654321C 则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BACD .CBA 5、r ααα,,,21 线性无关⇔( )A.存在全为零的实数r k k k ,,,21 ,使得02211=α++α+αr r k k k .B.存在不全为零的实数r k k k ,,,21 ,使得02211≠α++α+αr r k k k .C.每个i α都不能用其他向量线性表示.D.有线性无关的部分组.6、设向量组321,,ααα线性无关,421,,ααα线性相关,则( )A. 1α必可由432,,ααα线性表示B.2α必不可由431,,ααα线性表示C. 4α必可由321,,ααα线性表示D.4α必不可由321,,ααα线性表示7、设4321,,,αααα是三维实向量,则( )A.4321,,,αααα一定线性无关B.1α一定可由432,,ααα线性表出C.4321,,,αααα一定线性相关D.321,,ααα一定线性无关8、设A 是4×6矩阵,2)(=A r ,则齐次线性方程组0=Ax 的基础解系中所含向量的个数是( )A.1B.2C.3D.49、下列命题中错误的是( )A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关10、已知向量T T )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则=β+α( )A .T )1,1,2,0(--B .T )1,1,0,2(--C .T )0,2,1,1(--D .T )1,5,6,2(--- 二、填空题1、设,,a a b b a a b b -⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭A B 则=AB __________. 2、设A 是4×3矩阵,若齐次线性方程组0=Ax 只有零解,则矩阵A 的秩._____)(=A r3、已知某个3元非齐次线性方程组b Ax =的增广矩阵~A 经初等行变换化为: ⎪⎪⎪⎭⎫ ⎝⎛-----→121)1(00120321~a a a A ,若方程组无解,则a 的取值为____________.4、向量组T 3T 2T 1)5,1,1,2(,)1,3,1,1(,)2,1,0,1(+-=α=α=αa 线性相关,则.____=a5、向量组T 3T 2T 1)2,5,1,1(,)1,,1,2(,)0,3,1,1(--=α-=α-=αa 的秩为2,则.____=a 6、若T)0,3,1(=β不能由T 3T 2T 1)2,2,1(,),3,2(,)1,2,1(-+=α=α=αa a 线性表示,则.____=a7、任意3维向量 都可用T3T 2T 1)2,1,(,)3,2,1(,)1,0,1(a =α-=α=α线性表示,则.____=a8、齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为________________.9、已知向量组T 3T 2T 1)5,0,0,6(,)1,1,0,2(,)4,3,2,1(=α-=α=α,则该向量组的秩为_______,一个极大线性无关组是_______.10、设矩阵111111111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,且()3r A =,则k =. 三、计算题 1、求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的解.2、设向量T 4T 3T 2T 1)4,0,3,0(,)1,6,0,3(,)2,4,2,2(,)1,2,1,1(-=α-=α--=α-=α,(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.3、求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.4、问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)。
线性代数练习题集--线性方程组线性代数练习题第四章线性方程组系姓名第一节解线性方程组的消元法一.选择题:1.设A 是m ⨯n 矩阵,Ax =b 有解,则 [ C ] (A )当Ax =b 有唯一解时,m =n (B )当Ax =b 有无穷多解时,R (A )3.设A 是m ⨯n 矩阵,齐次线性方程组Ax =0仅有零解的充要条件是R (A ) [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题:1⎫⎛12⎛1⎫⎛x 1⎫⎪⎪⎪设A = 23a +2⎪,b = 3⎪,x = x 2⎪1a -2⎪ 0⎪ x ⎪⎝⎭⎝⎭⎝3⎭(1)齐次线性方程组Ax =0只有零解,则a ≠3或a ≠-1 (2)非齐次线性方程组Ax =b 无解,则a 三.计算题:⎧2x +y -z +w =1⎪1.求解非齐次线性方程组⎨4x +2y -z +w =2⎪2x +y -z -w =1⎩⎛21-111⎫r 2-2r 1⎛21-111⎫⎛21001⎫⎪r 3-r 1 ⎪r +r 2 ⎪42-112−−−→001-10−−−→001-10 ⎪⎪⎪ 21-1-11⎪ 000-20⎪ 000-20⎪⎝⎭⎝⎭⎝⎭⎧1-y⎪x =2=1⎧2x +y ⎧y =1-2x⎪⎪⎪z -w =0∴z =0或. ⎨⎨⎨z =0⎪⎪w =0-2w =0⎪w =0⎩⎩⎪⎩⎧λx 1+x 2+x 3=1⎪3.λ取何值时,非齐次线性方程组⎨x 1+λx 2+x 3=λ ⑴ 有唯一解⑵ 无解⑶ 有无穷多解⎪x +x +λx =λ223⎩1λ111λ111=λ3-3λ+2=(λ-1) 2(λ+2)λ11⎫⎛111⎪11⎪→ 00000011⎪⎭⎝111⎫⎛2⎪-21-2⎪→ 101-24⎪⎭⎝1⎫⎪0⎪,有无穷多解;0⎪⎭111⎫⎪-21-2⎪,方程组无解。
003⎪⎭当λ≠1,-2时,方程有唯一解⎛11当λ=1时 1111⎝⎛-2当λ=-2时 11⎝线性代数练习题第四章向量组的线性相关性系姓名第四节线性方程组的解一.选择题:T T1.设A 是5⨯4矩阵,A =(α1, α2, α3, α4) ,已知η1=(0, 2, 0, 4) ,η2=(3, 2, 5, 4) 是Ax =0的基础解系,则 [ D ] (A )α1, α3线性无关(B )α2, α4线性无关(C )α1不能被α3, α4线性表示(D )α4能被α2, α3线性表示η1, η2是其两个特解,2.设A 是5⨯4矩阵,若Ax =b 有解,导出组Ax =0的基础解系是α1, α2,则不正确的结论是 [ B ] (A )Ax =b 的通解是k 1α1+k 2α2+η1 (B )Ax =b的通解是k 1α1+k 2α2+(η1+η2) (C )Ax =b 的通解是k 1(α1+α2) +k2α2+(η1+η2) /2(D )Ax =b 的通解是k 1(α1+α2) +k 2(α2-α1) +2η1-η23.设α1, α2, α3是四元非齐次线性方程组Ax =b 的三个解向量,且R (A ) =3,α1=(1, 2, 3, 4) T ,α2+α3=(0, 1, 2, 3) T ,C 表示任意常数,则线性方程组Ax =b 的解是 [ C ](A )(1, 2, 3, 4) T +C (1, 1, 1, 1) T (B )(1, 2, 3, 4) T +C (0, 1, 2, 3) T (C )(1, 2, 3, 4) T +C (2, 3, 4, 5) T (D )(1, 2, 3, 4) T +C (3, 4, 5, 6)T⎧λx 1+x 2+λ2x 3=0⎪4.齐次线性方程组⎨x 1+λx 2+x 3=0 的系数矩阵记为A ,若存在三阶矩阵B ≠0使得⎪x +x +λx =023⎩1AB =0,则 [ C ](A )λ=-2且B =0,(B )λ=-2且B ≠0 (C )λ=1且B =0 (D )λ=1且B ≠0 二.填空题:1⎫⎛12⎛1⎫⎛x 1⎫⎪⎪⎪1.设A = 23a +2⎪,b = 2⎪,x = x 2⎪1a -2⎪ 3⎪ x ⎪⎝⎭⎝⎭⎝3⎭(1)齐次线性方程组Ax =0只有零解,则a (2)非齐次线性齐次组Ax =b 无解,则a = 三.计算题:1.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2, 3, 4, 5) T ,η2+η3=(1,2,3,4)T ,求该方程的通解解:设方程为Ax =b , 则A η1=A η2=A η3=b那么A (2η1-η2-η3) =2b -b -b =0故2η1-η2-η3是Ax =0的解.又n -R (A ) =4-3=1, 故Ax =0的基础解系只有一个向量⎛3⎫⎛2⎫⎪⎪4⎪ 3⎪所以Ax =b 的通解为k (2η1-η2-η3) +η1=k +. 5⎪ 4⎪⎪⎪⎝6⎭⎝5⎭⎧x 1-5x 2+2x 3-3x 4=11⎪2.求非齐次线性方程组⎨5x 1+3x 2+6x 3-x 4=-1的一个解及对应齐次方程组的基础解系。
线性方程组练习题§1 向量的线性关系1.判断下列向量组是否线性无关:(1)⎪⎪⎪⎭⎫ ⎝⎛-112,⎪⎪⎪⎭⎫ ⎝⎛-840,⎪⎪⎪⎭⎫ ⎝⎛-311; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01014,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1521,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1202,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7024。
2.讨论下面向量组的线性相关性:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛12211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-15120,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-141b a 。
3.设⎪⎪⎪⎭⎫ ⎝⎛=1111a ,⎪⎪⎪⎭⎫ ⎝⎛=3211a ,⎪⎪⎪⎭⎫ ⎝⎛=t 311a 。
(1)问当t 为何值时,321,,a a a 线性相关?(2)问当t 为何值时,321,,a a a 线性无关?(3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。
4.设有向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=11111t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=22222t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=33333t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=t 44444a 。
问:(1)当t 为何值时,4321,,,a a a a 线性相关?(2)当t 为何值时,4321,,,a a a a 线性无关?5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关?6.设m a a a ,,,21 线性无关,作211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。
判别m b b b ,,,21 的线性相关性。
7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示?8.设321,,a a a 线性相关,432,,a a a 线性无关。
问:(1)1a 能否由32,a a 线性表示;(2)4a 能否由321,,a a a 线性表示。
数学课程线性方程组练习题及答案1. 练习题1.1 求解下列线性方程组:(1)3x + 2y = 72x - y = 4(2)2x + y - z = 6x - 3y + 2z = 43x - 2y - z = 1(3)x - 2y + z = 32x + y - 2z = -53x - y + 3z = 72. 答案(1)解:首先,我们可以通过消元法来求解该线性方程组。
将第二个方程的两边乘以2,得到2(2x - y) = 2(4),化简得4x - 2y = 8。
将这个结果与第一个方程相加,得到(3x + 2y) + (4x - 2y) = 7 + 8,化简得7x = 15,所以 x = 15/7。
接下来,将求得的 x 值代入任意一个方程(如第一个方程)中,可以得到:3(15/7) + 2y = 7,化简得2y = 7 - 45/7,化简得2y = -14/7,所以 y = -7/7。
因此,该线性方程组的解为 x = 15/7,y = -1。
(2)解:同样使用消元法求解该线性方程组。
将第二个方程的两边乘以2,得到2(x - 3y + 2z) = 2(4),化简得2x - 6y + 4z = 8。
将第三个方程的两边乘以3,得到3(3x - 2y - z) = 3(1),化简得9x - 6y - 3z = 3。
现在我们有以下三个方程:2x + y - z = 62x - 6y + 4z = 89x - 6y - 3z = 3将第一个方程中的 z 用第二个方程中的 z 的代数式表示,得到 z = 2x + y - 6。
将这个结果代入第三个方程中,可以得到:9x - 6y - 3(2x + y - 6) = 3,化简得3x - 3y = 15,所以 x - y = 5。
我们可以再次将 x - y = 5 代入第一个方程,得到:2x + y - (2x + 5) = 6,化简得 y = 11。
将求得的 y 值代入 x - y = 5,可以解得 x = 16。
线性方程组练习题§1 向量的线性关系1.判断下列向量组是否线性无关:(1)⎪⎪⎪⎭⎫ ⎝⎛-112,⎪⎪⎪⎭⎫ ⎝⎛-840,⎪⎪⎪⎭⎫ ⎝⎛-311; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01014,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1521,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1202,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7024。
2.讨论下面向量组的线性相关性:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛12211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-15120,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-141b a 。
3.设⎪⎪⎪⎭⎫ ⎝⎛=1111a ,⎪⎪⎪⎭⎫ ⎝⎛=3211a ,⎪⎪⎪⎭⎫ ⎝⎛=t 311a 。
(1)问当t 为何值时,321,,a a a 线性相关?(2)问当t 为何值时,321,,a a a 线性无关?(3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。
4.设有向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=11111t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=22222t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=33333t a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=t 44444a 。
问:(1)当t 为何值时,4321,,,a a a a 线性相关?(2)当t 为何值时,4321,,,a a a a 线性无关?5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关?6.设m a a a ,,,21 线性无关,作211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。
判别m b b b ,,,21 的线性相关性。
7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示?8.设321,,a a a 线性相关,432,,a a a 线性无关。
问:(1)1a 能否由32,a a 线性表示;(2)4a 能否由321,,a a a 线性表示。
9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一地线性表示,求k 。
10.已知两个n 维向量组m a a a ,,,21 和m b b b ,,,21 。
证明:若存在两组不全为零的数m λλλ,,,21 和m μμμ,,,21 使得,)()()()()()(2221112221110b b b a a a =-++-+-+++++++m m m m m m μλμλμλμλμλμλ 则m m m m b a b a b a b a b a b a ---+++,,,,,,,22112211 线性相关。
11.设m a a a ,,,21 是n 维向量组,A 是n m ⨯矩阵。
证明:若m a a a ,,,21 线性相关,则m Aa Aa Aa ,,,21 也线性相关。
12.已知向量b 可由m a a a ,,,21 线性表示,但不能被121,,,-m a a a 线性表示。
证明:m a 不能被121,,,-m a a a 线性表示,但能被b a a a ,,,,121-m 线性表示。
13.设n a a a ,,,21 是n 个n 维向量,证明:n a a a ,,,21 线性无关的充分必要条件是任何n 维向量都可以被它们线性表示。
14.设有向量组m a a a ,,,21 ,其中任意1-m 个向量都线性无关。
证明:等式0a a a =+++m m x x x 2211中的系数m x x x ,,,21 或者全为零,或者全不为0。
15.证明:线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111,, 对于任何n b b b ,,,21 都有解的充分必要条件是其系数行列式不等于0。
16.设A 为n m ⨯矩阵,B 为p n ⨯矩阵。
若C AB =,且矩阵C 的行向量线性无关,证明A 的行向量也线性无关。
17.设m a a a ,,,21 都是非零向量。
证明:若每个j a (m j ≤<1)都不能由121,,,-j a a a 线性表示,则m a a a ,,,21 线性无关。
18.设r a a a ,,,21 是线性方程组0Ax =的r 个线性无关的解。
而向量b 不是该方程的解,即0Ab ≠。
证明:向量组r a b a b a b b +++,,,,21 线性无关。
19.证明:n 个n 维列向量n a a a ,,,21 线性无关的充分必要条件是:0212221212111≠nT n T n T n n T T T n T T T a a a a a a a a a a a a a a a a a a。
§2 秩1.求下列矩阵的秩:(1)⎪⎪⎪⎭⎫ ⎝⎛--321265131321; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---6512556411140121112; (3)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----121101010a a a a n n 。
2.设矩阵⎪⎪⎪⎭⎫ ⎝⎛---25400021121t 的秩为2,求t 。
3.判定下述向量组是否线性相关:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1143,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0124,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1021; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-3312,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2101,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0120,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2131。
4.求向量组=1a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2532,=2a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121,=3a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121,=4a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--3231,=5a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-4121 的秩与一个极大无关组。
5.设有向量组:T a )1,1,1,1(1+=a , T a )2,2,2,2(2+=a , T a )3,3,3,3(3+=a , T a )4,4,4,4(4+=a 。
问a 为何值时,1a ,2a ,3a ,4a 线性相关?当1a ,2a ,3a ,4a 线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表示。
6.证明:若向量组1S 能由向量组2S 线性表示,且rank(1S )=rank(2S ),则1S 与2S 等价。
7.设有两个向量组(I ):T )1,1,0,1(1-=a ,T )0,2,1,1(2-=a ,T )2,8,3,1(3---=a ;(II ):T )0,1,1,1(1-=b ,T )1,0,1,0(2=b ,T )1,2,1,2(3--=b 。
问它们是否等价?8.设有两个向量组T a ),1,1(1=a ,T a )1,,1(2=a ,T a )1,1,(3=a 和T a ),1,1(1=b ,T a )4,,2(2-=b ,T a a ),,2(3-=b 。
问:当a 为何值时1a ,2a ,3a 可以由321,,b b b 线性表示,但321,,b b b 不能由1a ,2a ,3a 线性表示?9.设有两个向量组(I ):T )0,0,1,1(1=a ,T )0,1,1,0(2=a ,T )1,1,0,0(3=a ;(II ):T b a )1,,,1(1=b ,T )2,1,1,2(2=b ,T )1,2,1,0(3=b 。
问当a ,b 为何值时它们会等价?10.设有两个n 维向量组(I )m a a a ,,,21 和(II )m b b b ,,,21 (n m ≤),证明:若(I )可以由(II )线性表示,且m a a a ,,,21 线性无关,则m b b b ,,,21 也线性无关。
11.设A ,B 为n 阶方阵,满足A A =2,B B =2,且B A I --可逆。
证明rank(A ) = rank(B )。
12.设m A A A ,,,21 为m 个n 阶方阵,若O A A A =m 21。
试证:rank +)(1A rank ++ )(2A rank n m m )1()(-≤A 。
13.设A ,B 为n 阶方阵,满足1-=B ABA 。
证明:rank +-)(AB I rank(AB I +)n ≤。
14.设A 为n m ⨯矩阵,B 为m n ⨯矩阵,证明:(1)若rank(A )n =,则rank(AB ) = rank(B );(2)若rank(B )n =,则rank(AB ) = rank(A )。
15.设⎪⎪⎪⎭⎫ ⎝⎛=963742321A ,3阶非零矩阵B 满足O BA =,求rank )(B 。
16.设A 是n m ⨯矩阵,证明:(1)A 是列满秩矩阵的充分必要条件是存在m 阶可逆矩阵P ,使得⎪⎪⎭⎫ ⎝⎛=O I P A n 。
(2)A 是行满秩矩阵的充分必要条件是存在n 阶可逆矩阵Q ,使得()Q O I A ,m =。
17.设A 为n m ⨯矩阵,且rank(A )r =。
证明:存在r m ⨯矩阵B 和n r ⨯矩阵C ,满足rank(B )=rank(C )r =,使得BC A =。
§3 线性方程组1.求下列线性方程组的通解:(1)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++;03345,0622,0323,05432154325432154321x x x x x x x x x x x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=--+-=-++--=-++--=+++-=-++;462,92232,4222,7432,6254315432154321543214321x x x x x x x x x x x x x x x x x x x x x x x(3)⎪⎪⎩⎪⎪⎨⎧=-++=-++=--+=+++=+--.72342,232,123,622,02243214321432143214321x x x x x x x x x x x x x x x x x x x x2.问a ,b 为何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0,0,0321321321bx x x x ax x x x x有非零解,此时并求出其解。
3.若已知线性方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,求a 。
4.求线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+-=++-=++-533,2,322,1242143143214321x x x x x x x x x x x x x x 的通解,并求出满足2221x x =的全部解。