最新初高中数学衔接教案优秀名师资料
- 格式:doc
- 大小:922.00 KB
- 文档页数:33
初中与高中的衔接数学教案教学目标:通过本课学习,学生将能够熟练掌握初中数学知识,为高中数学学习奠定良好基础。
教学内容:初中与高中数学知识的衔接,包括初中数学知识的复习与延伸,高中数学知识的引入。
教学重点:初中数学知识的回顾与巩固,高中数学知识的初步引入与理解。
教学难点:初中数学知识与高中数学知识的衔接,学生需要跨越知识的边界,理清逻辑关系。
教学准备:教师准备好教案、教材、多媒体设备等教学工具;学生准备好课本、笔记本和笔等学习用具。
教学步骤:1.复习初中数学知识。
教师可以通过课堂互动让学生回顾和巩固初中数学知识,如方程、函数、几何等内容。
2.引入高中数学知识。
教师可以简要介绍高中数学的内容和学习方法,让学生做好学习准备。
3.进行知识衔接。
教师可以通过案例讲解初中数学知识与高中数学知识的联系和衔接,引导学生拓展思路,加深理解。
4.分组讨论。
教师让学生小组合作讨论与解决一些涉及初中和高中数学知识的问题,培养学生的合作与解决问题的能力。
5.总结与反思。
教师带领学生总结本节课的学习内容,学生反思自己的学习收获和不足之处,并提出问题。
教学评价:通过教师的现场观察、学生的表现以及课后作业的完成情况,对学生的学习情况进行评价,并提出建议和指导。
教学反思:教师根据教学过程和学生的反馈,总结本节课的教学效果和不足之处,为下一节课的教学改进提供参考。
扩展活动:为学生提供相关拓展资料或参加数学竞赛等活动,激发学生学习兴趣,促进数学能力的提升。
教学结束语:本节课的目标是让学生理清初中数学与高中数学之间的联系,帮助学生顺利过渡到高中数学学习阶段。
希望大家在今后的学习中能够积极探索,勇攀高峰!谢谢大家的认真听讲,下节课见!。
初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。
教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。
教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。
教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。
教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。
第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。
第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。
第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。
第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。
第六步:作业布置(5分钟)布置相关作业,巩固所学知识。
教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。
在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。
同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。
初高中数学衔接教材【学生版】{新课标人教A版}典型试题举一反三理解记忆成功衔接第一部分初中数学与高中数学衔接紧密的知识点第二部分分章节讲解第一部分初中数学与高中数学衔接紧密的知识点1 绝对值:⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:;或2 乘法公式:⑴平方差公式:⑵立方差公式:⑶立方和公式:⑷完全平方公式:,⑸完全立方公式:3 分解因式:⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
⑵方法:①提公因式法,②运用公式法,③分组分解法,④十字相乘法。
4 一元一次方程:⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
⑶关于方程解的讨论①当时,方程有唯一解;②当,时,方程无解③当,时,方程有无数解;此时任一实数都是方程的解。
5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。
(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
(4)解二元一次方程组的方法:①代入消元法,②加减消元法。
6 不等式与不等式组(1)不等式:①用符不等号(>、≠、<)连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
(2)不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
初中到高中的数学衔接教案教学目标:1. 复习和巩固初中数学知识,尤其是数学基础知识;2. 引导学生了解高中数学学科的性质和要求,培养学生的学习兴趣和学科自信心;3. 培养学生的数学思维,提高他们的数学问题解决能力;4. 帮助学生树立正确的学习态度,促使他们主动学习和积极思考。
教学重点:1. 复习和巩固初中数学知识点;2. 讲解高中数学学科的性质和要求;3. 引导学生进行数学综合应用训练,提高他们的解决问题能力。
教学难点:1. 如何将初中数学知识与高中数学知识进行衔接;2. 如何引导学生逐步适应高中数学的学习节奏和难度。
教学过程:一、复习阶段1. 复习初中数学知识,包括代数、几何、概率等知识点;2. 引导学生进行相关练习和整理知识点。
二、引入高中数学学科1. 讲解高中数学学科的性质和要求,引导学生了解高中数学学科的内容和发展方向;2. 带领学生了解高中数学课程结构和考试要求。
三、数学综合应用训练1. 给学生提供一些数学综合应用题,让他们运用所学知识进行解答;2. 引导学生讨论解题方法和策略,加深对数学问题解决过程的理解;3. 鼓励学生积极思考和探究,激发他们对数学学科的兴趣和热情。
四、课堂总结1. 总结本节课的学习要点和重点,强调数学学科的学习态度和方法;2. 鼓励学生继续努力,加强数学知识的掌握和应用能力。
五、课后作业1. 布置适量的数学综合应用题,让学生巩固和深化所学知识;2. 鼓励学生主动思考和解决问题,培养他们的自主学习能力。
教学反思:通过本节课的教学,学生对高中数学学科有了初步的了解,对数学问题的解决能力也有所提高。
在后续的教学过程中,应根据学生的实际情况和学习需求,进一步引导他们逐步适应高中数学学科,并努力提高数学能力和综合素质。
初中高中数学衔接教案年级:初中、高中主题:数学知识衔接与拓展教学目标:通过本节课的学习,学生能够了解初中数学与高中数学之间的衔接关系,掌握初中数学的知识点,并为将来的高中数学学习打下良好的基础。
教学内容:1. 复习初中数学的知识点,包括整数、分数、代数、几何等内容。
2. 探讨初中数学与高中数学之间的联系,了解高中数学对初中数学知识点的深度和拓展。
3. 学习高中数学的一些基本概念,如函数、导数、积分等。
教学重点:初中数学与高中数学的知识衔接关系,高中数学基本概念的学习。
教学难点:初中数学知识的深入理解和高中数学概念的把握。
教学过程:1. 导入:通过提出一个数学问题或者对初中数学知识进行简单回顾,引起学生的兴趣和思考。
2. 学习初中数学知识:教师对初中数学知识进行系统地复习和讲解,让学生回顾并巩固知识点。
3. 探讨数学衔接关系:让学生分组或小组讨论初中数学和高中数学之间的联系,引导学生思考其中的规律和逻辑关系。
4. 学习高中数学概念:教师简要介绍一些高中数学基本概念,让学生初步了解高中数学的内容和要求。
5. 练习与巩固:设计一些练习题让学生巩固所学的知识点,帮助他们更好地理解和掌握初中数学和高中数学的衔接关系。
6. 总结与展望:引导学生总结本节课的学习内容,并展望将来高中数学学习的挑战和机遇。
教学方式:讲授、讨论、练习、总结。
教学工具:黑板、书本、习题册等。
教学评价:通过学生的课堂表现、课后作业和考试成绩等多种方式对学生的学习情况进行评价和反馈,及时发现问题和改进教学方法。
教学反思:教师要不断思考和总结教学过程中的不足之处,积极寻求改进和提高教学质量,为学生的数学学习营造更好的环境和条件。
补充说明:本节课仅为初中数学与高中数学衔接教学的一次尝试,希望能够通过合理的设计和教学方式,为学生的数学学习之路打下坚实的基础。
初高中知识衔接教案数学
教学目标:
1.了解初中数学和高中数学之间的知识差距和联系
2.掌握初中数学和高中数学知识的衔接技巧
3.培养学生良好的学习习惯和数学思维能力
教学内容:
1.初中数学与高中数学的知识差距分析
2.初中数学与高中数学知识的延伸和深化
3.初中数学知识在高中数学中的应用
教学步骤:
一、导入:
1.通过谈论学生对初中数学和高中数学的认识和感受,引出本次课的主题。
二、讲解:
1.介绍初中数学和高中数学知识的差距和联系,并列举具体例子进行讲解。
2.讲解初中数学知识在高中数学中的应用和延伸。
三、练习:
1.让学生通过习题练习,感受初高中数学知识的衔接。
2.分组讨论,帮助学生找到初高中数学知识的联系和延伸。
四、巩固:
1.布置作业,让学生通过作业巩固本节课的知识点。
2.鼓励学生主动学习,培养他们对数学知识的兴趣。
五、总结:
1.回顾本节课的内容,强调初高中数学知识的衔接和延伸的重要性。
2.激励学生努力学习,提高数学水平。
教学反思:
通过本节课的教学,学生能够逐渐认识到初高中数学知识的联系和差距,同时也培养了学生对数学的兴趣和学习能力。
在未来的教学中,需要更加注重启发学生的思维能力和培养他们的解决问题的能力。
初高中课程衔接数学教案
主题:初高中数学课程衔接
教学目标:
1. 了解初中数学和高中数学之间的衔接关系;
2. 理解初中数学知识在高中数学中的延续和拓展;
3. 能够运用初中数学知识解决高中数学问题;
4. 提高数学解题能力和思维逻辑能力。
教学内容:
1. 初中数学与高中数学之间的关系;
2. 初中数学知识在高中数学中的应用;
3. 初高中数学知识的渐进性和深入性。
教学过程:
1. 引入:通过简单例题引导学生思考初中数学和高中数学之间的关系;
2. 概念讲解:讲解初中数学和高中数学之间的衔接关系,指导学生理解初中数学知识在高中数学中的延续和拓展;
3. 练习:设计一些练习题,让学生运用初中数学知识解决高中数学问题;
4. 深化:引导学生思考初高中数学知识的渐进性和深入性,帮助他们提高数学解题能力和思维逻辑能力;
5. 小结:总结本节课的内容,强调初高中数学课程衔接的重要性。
教学反思:
1. 教师在引入阶段要注意启发学生思考,激发学生学习兴趣;
2. 练习环节要设计多样性的题型,让学生全面理解初高中数学知识的衔接和延续;
3. 在深化环节要引导学生发散性思维,提高数学解题能力和抽象思维能力。
注:此教案范本仅供参考,具体教学过程和内容根据实际情况灵活调整。
初高数学衔接课教案一、教学目标通过本节课的学习,学生将能够:1.回顾和巩固初中数学的基本概念和知识;2.理解和掌握高中数学的基本概念和知识;3.掌握初高数学衔接的关键知识点;4.培养解题思维和问题解决能力。
二、教学重点初高数学衔接的关键知识点。
三、教学难点培养解题思维和问题解决能力。
四、教学准备1.教案、课件、教具;2.PPT演示;3.学生练习册。
五、教学过程1.导入(5分钟)教师可通过提问学生关于初中和高中数学的概念和知识点,引导学生回忆初中数学的重点内容。
2.知识讲解(30分钟)2.1 初中数学回顾教师可以对初中数学的知识进行简要回顾,包括数的四则运算、代数与函数、几何与空间、数据与图表等。
通过提问和讲解,帮助学生快速回忆初中数学的基本概念和知识点。
2.2 高中数学讲解教师以PPT演示的形式,讲解高中数学的基本概念和知识点,包括集合与函数、数列与数学归纳法、平面向量、三角函数、微积分等。
教师可举例说明高中数学的应用场景,激发学生对数学的兴趣。
3.初高数学衔接知识点梳理(20分钟)根据初中和高中数学的内容,教师总结出初高数学衔接的关键知识点,并进行详细讲解和梳理,让学生掌握这些关键知识点。
教师可以通过例题和解题过程,引导学生理解和掌握这些知识点的应用方法。
4.练习与巩固(30分钟)教师发放学生练习册,并组织学生进行练习和巩固。
教师可以设计一些练习题,涵盖初高数学衔接的关键知识点,并引导学生进行解题。
在解题过程中,教师可以提供必要的帮助和指导,帮助学生理解问题的解题思路。
5.总结与展望(10分钟)教师对本节课的学习进行总结,并展望下节课的内容。
教师可以鼓励学生积极参与数学学习,提高数学解题能力,为高中数学学习打下坚实的基础。
六、板书设计初高数学衔接课教案七、教学反思本节课通过回顾初中数学的基本概念和知识,讲解高中数学的基本概念和知识点,以及总结初高数学衔接的关键知识点,帮助学生理解和掌握初高数学的衔接知识,并通过练习和巩固,培养学生的解题思维和问题解决能力。
数学初高中知识衔接课教案
教学目标:
1. 理解初中数学和高中数学之间的联系和衔接;
2. 掌握初中数学知识对后续高中数学学习的重要性;
3. 培养学生对数学知识的综合运用能力。
教学重点:
1. 初中数学和高中数学的知识点衔接;
2. 初中数学知识在高中数学学习中的应用。
教学难点:
1. 初中数学与高中数学之间的知识转换和深化;
2. 如何对初中数学知识进行有效的运用和延伸。
教学方法:
1. 讲授结合实例分析;
2. 实例演练,引导学生思考。
教学过程:
一、导入(5分钟)
教师引入数学初高中知识衔接的话题,激发学生学习的兴趣。
二、复习初中数学知识(10分钟)
教师复习初中数学知识,让学生回顾和巩固基础知识。
三、初高中数学知识的联系与衔接(15分钟)
教师讲解初中数学和高中数学之间的知识联系,引导学生理解初中知识在高中学习中的重要性。
四、实例分析与演练(20分钟)
教师通过实例分析初中数学知识如何在高中数学学习中运用,引导学生进行实例演练并展示解题过程。
五、课堂讨论与总结(10分钟)
教师组织学生进行课堂讨论,总结初高中数学知识的衔接关系,引导学生总结学习收获。
六、作业布置(5分钟)
教师布置作业,要求学生结合初中数学知识,尝试解决高中数学题目,巩固学习成果。
教学反思:
通过本节课的教学,学生初步了解了初高中数学知识的联系与衔接,并对如何在高中数学学习中运用初中数学知识有了初步的认识。
但在以后的教学中,应进一步拓展学生对数学知识的理解和运用能力,促进初高中数学知识的深度衔接,培养学生综合运用数学知识的能力。
夏老师的初高中数学衔接课程(完整版)目录•课程介绍与背景•初中数学知识点回顾•高中数学知识点引入•初高中数学知识衔接点分析•典型例题解析与讨论•学习方法与技巧分享01课程介绍与背景填补知识空白适应教学要求提升学习兴趣初高中数学衔接的重要性初中数学与高中数学在知识点上存在较大差异,通过衔接课程可以帮助学生填补这一知识空白,为高中数学学习打下坚实基础。
高中数学相对于初中数学难度增加,对学生的思维能力、创新能力等要求更高。
通过衔接课程,学生可以逐步适应高中数学的教学要求,提高学习效果。
衔接课程可以帮助学生更好地理解和掌握数学知识,激发学生的学习兴趣和自信心,为未来的数学学习奠定良好基础。
课程目标与内容课程目标通过本课程的学习,学生将能够熟练掌握初中数学与高中数学的衔接知识点,提高数学思维能力、创新能力和解决问题的能力。
课程内容本课程主要包括数与式、方程与不等式、函数与图像、几何与图形等方面的知识,通过讲解、练习、测试等多种方式帮助学生掌握相关知识点。
01020304讲解与演示练习与讨论测试与反馈多媒体辅助教学教学方法与手段通过教师的详细讲解和演示,帮助学生理解和掌握相关知识点。
通过大量的练习和讨论,提高学生的数学思维和解决问题的能力。
利用多媒体技术,如PPT 、视频等辅助教学,提高教学效果和学生的学习兴趣。
通过定期的测试和反馈,及时了解学生的学习情况,针对问题进行调整和改进。
02初中数学知识点回顾整数、有理数、无理数和实数的概念和性质代数式的化简和因式分解分式的运算和化简一元一次方程、一元二次方程的解法和应用0102030405平面几何的基本概念和性质,如点、线、面、角、三角形等平行线和相交线的性质及判定四边形的性质和判定,包括平行四边形、矩形、菱形和正方形等相似三角形和全等三角形的性质和判定圆的基本性质和定理,如切线长定理、割线定理等01020304概率的基本概念和性质,包括事件的关系和运算、概率的加法公式和乘法公式等随机事件的概率计算,包括古典概型和几何概型等统计图表的认识和制作,如条形图、折线图、扇形图等数据的收集、整理和描述,包括平均数、中位数、众数、方差等统计量的计算和应用概率与统计初步03高中数学知识点引入集合与函数集合的基本概念包括元素与集合的关系、集合的表示方法、集合间的关系(子集、真子集、相等)等。
数学初高中衔接优秀教案教案名称:数列的性质及应用教学内容:初中数学中的数列的性质及应用,与高中数学中数列的进一步拓展的衔接教学目标:1. 理解数列的概念和性质,掌握各种数列的表示方式;2. 掌握数列的求和公式,并能应用求和公式解决实际问题;3. 能够分析数列的性质,找出规律,推导数列的通项公式;4. 能够灵活运用数列的性质和公式解决复杂问题。
教学过程:一、复习初中数列的性质和求和公式(10分钟)1. 复习等差数列、等比数列的定义和性质;2. 复习等差数列、等比数列的通项公式和求和公式。
二、引入高中数列的概念(10分钟)1. 引入高中数列的概念,讲解高中数列与初中数列的区别;2. 引入等差数列的前n项和的泛化公式;3. 引入等比数列的通项公式和前n项和的泛化公式。
三、练习数列的求和公式(20分钟)1. 练习应用等差数列、等比数列的求和公式解决实际问题;2. 练习运用泛化公式解决数量关系题。
四、探究数列的通项公式(20分钟)1. 利用数学归纳法推导等差数列的通项公式;2. 利用数学归纳法推导等比数列的通项公式。
五、综合练习(15分钟)1. 综合运用等差数列、等比数列的性质和公式解决综合题;2. 练习分析题目,找出数列的规律,推导数列的通项公式。
六、课堂总结(5分钟)1. 总结数列的性质和公式;2. 总结数列的求和方法和推导通项公式的步骤。
教学反思:本节课以初中数列的性质和应用为基础,引入了高中数列的基本概念和进一步深化的内容,通过练习和探究的方式,使学生在初高中数学的衔接过程中能够顺利过渡,提高数学应用能力和解决问题的能力。
在教学中,教师要注重引导学生分析问题,找出规律,培养学生的逻辑思维能力和创新能力。
初中和高中衔接课数学教案教学内容:初中与高中数学的衔接教学目标:1. 了解初中数学和高中数学的主要区别和衔接关系;2. 掌握初中数学和高中数学部分知识的延续和拓展;3. 提升学生在高中数学学习中的自信和能力。
教学重点:1. 初中数学和高中数学的主要区别;2. 高中数学的学习目标和要求;3. 初中数学部分知识的延续和拓展。
教学难点:1. 如何理解初中数学和高中数学之间的衔接关系;2. 如何顺利过渡和适应高中数学的学习要求。
教学过程:一、导入(5分钟)教师简要介绍今天的教学内容和目标,让学生了解初中与高中数学之间的差异和衔接关系,并激发学生的学习兴趣。
二、总结初中数学知识(10分钟)通过课堂讨论和小组合作,回顾和总结初中数学的主要知识点,包括代数、几何、概率等内容,并探讨这些知识在高中数学中的延续和拓展。
三、高中数学学习目标和要求(15分钟)介绍高中数学的学习目标和要求,包括学科知识的拓展、数学思维能力的培养、数学方法的应用等方面,让学生了解高中数学学习的重点和难点。
四、初中数学知识的延续和拓展(20分钟)通过案例分析和练习题讲解,引导学生掌握初中数学部分知识在高中数学中的延续和拓展,培养学生的逻辑思维和数学推理能力。
五、课堂练习与讨论(15分钟)组织学生进行课堂练习和讨论,检验学生对初中数学和高中数学之间的衔接掌握情况,激发学生的学习积极性和参与度。
六、作业布置(5分钟)布置相关练习和思考题,让学生通过课后自主复习和巩固,进一步提升数学学习能力和水平。
教学反思:通过本节课的教学,学生理解了初中与高中数学之间的衔接关系,掌握了初中数学知识在高中数学中的延续和拓展,提升了数学学习的自信和能力。
在今后的教学实践中,应注重将数学知识与生活实际结合,培养学生的数学兴趣和应用能力,促进学生全面发展。
数学初高中知识衔接教案
教学目标:
1. 了解初中数学知识与高中数学知识的衔接关系;
2. 掌握初中数学知识对于高中数学学习的重要性;
3. 提高学生的数学学习兴趣,培养数学学习能力。
教学内容:
1. 初中数学知识复习与巩固;
2. 高中数学知识预习与引导;
3. 初高中数学知识的衔接与延伸。
教学步骤:
第一步:引入新知识
- 通过讨论和展示初中数学知识与高中数学知识的关系,引导学生思考知识的延续性和重要性。
第二步:复习与巩固
- 组织学生对初中数学知识进行复习,强化基础知识的掌握和应用能力。
第三步:预习与导入
- 引导学生预习高中数学知识,并通过案例分析和示范,帮助学生理解新知识的概念和应用方法。
第四步:知识延伸与拓展
- 设计一些跨学科或实际生活中的问题,让学生探索初高中数学知识之间的联系,并激发他们的创新思维和解决问题的能力。
第五步:总结与提升
- 结合学生的学习情况,总结本节课学到的知识,并提出下节课的学习目标和计划,引导学生自主学习和提升。
教学手段:
- 教师讲授
- 学生合作
- 案例分析
- 实例演练
- 课堂讨论
教学评价:
- 教师可以通过课堂练习、作业和考试等方式对学生学习情况进行评价,及时发现问题并进行指导和辅导。
教学反思:
- 教师可以结合学生的学习反馈和自身教学经验,及时调整教学方法和内容,不断提升教学效果和学生学习水平。
初高中数学知识衔接教案1.了解初中数学和高中数学之间的知识衔接关系;2.掌握初高中数学知识的衔接技巧;3.提高学生数学学习的整体水平。
教学重点:1.初高中数学知识衔接的重要性;2.初高中数学知识衔接的方法和技巧;3.提高学生数学学习的整体水平。
教学内容:1.初中数学和高中数学的知识衔接关系;2.初中数学知识在高中数学学习中的应用;3.初中数学知识和高中数学知识的差异和联系。
教学过程:一、导入(5分钟)教师向学生介绍初高中数学知识衔接的重要性,引导学生对数学学习有更深入的理解。
二、讲解(15分钟)1.学生通过课堂讨论,了解初中数学知识对于高中数学学习的重要性;2.讲解初中数学和高中数学知识之间的衔接关系,指导学生如何有效地掌握初高中数学知识的衔接技巧。
三、练习(20分钟)1.组织学生进行初高中数学知识的练习,检验学生的掌握情况;2.针对学生在练习中的问题,及时给予指导和辅导。
四、讨论(10分钟)1.组织学生就初中数学知识和高中数学知识的联系进行讨论,激发学生的学习兴趣;2.鼓励学生积极提出问题,促进学生对数学知识的更深入理解。
五、总结(5分钟)教师总结本节课的教学内容,强调初高中数学知识的衔接关系,并鼓励学生在学习中勇于探索和实践。
六、作业布置(5分钟)布置作业:学生复习今天学过的知识内容,对初高中数学知识的衔接关系进行总结。
教学反思:通过本节课的教学,学生对初高中数学知识的衔接关系有了更深入的理解,提高了数学学习的整体水平。
教师要根据学生的实际情况,设计更加贴近学生需求的教学内容,促进学生的学习兴趣,提高学生的学习效果。
初高中数学衔接问题教案
教学目标:通过本节课的学习,学生能够掌握初中和高中数学之间的衔接问题,提高数学的学习能力和解题能力。
教学重点和难点:初高中数学之间的衔接问题,理解和掌握数学公式和定理的应用。
教学准备:教材《初高中数学课程标准实验教科书》、黑板、彩色粉笔、教学PPT等。
教学过程:
一、导入新课
教师向学生介绍初高中数学之间的衔接问题,引导学生思考初中数学与高中数学之间的关系,为学生打下学习数学的基础。
二、教学内容
1. 总结初中数学知识,复习基础概念和公式。
2. 介绍高中数学的知识,引导学生理解高中数学的难点和重点。
3. 综合初高中数学知识,引导学生掌握数学公式和定理的应用。
三、课堂练习
老师提供一些相关的练习题,让学生独立或合作完成,巩固所学知识。
四、课堂反馈
教师将学生的作业进行点评,对答案进行讲解,并解答学生提出的疑问。
五、拓展延伸
学生可以自学更深入的数学知识,拓展延伸新的数学题目,提高数学解题能力。
六、课堂总结
教师总结本节课的教学内容,让学生对初高中数学的衔接问题有一个清晰的认识。
七、作业布置
布置相关作业,让学生巩固所学知识,提高解题能力。
教学反思:本节课授课内容清晰,学生互动积极,但仍需在课堂练习环节加强学生的解题能力和实践能力。
未来需要更多引导学生自主学习,提高数学思维和应用能力。
初高中数学衔接教材现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
目录1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4分式1.2 分解因式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程与不等式2.3.1 二元二次方程组解法2.3.2 一元二次不等式解法3.1 相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2 三角形3.2.1 三角形的“四心”3.2.2 几种特殊的三角形3.3圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4.又x ≥3,\点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式 ‘由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( ) (A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解: 2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3)2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y ++等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,等等. 一般地,与b与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1(20)a ≥; (30)x <.解: (1= (20)a ==≥;(3220)x x x ==-<.例2(3-.解法一:(3-=393-=1)6=12.解法二:(3=12. 例3 试比较下列各组数的大小:(1(2和解: (11===,1===,(2)∵1===又4>22,∴6+4>6+22,例4化简:20042005+⋅.解:20042005⋅-=20042004⋅⋅-=2004⎡⎤⋅-⋅-⎣⎦=20041⋅.例5 化简:(1;(21)x<<.解:(1)原式===2=2=.(2)原式1xx=-,∵01x<<,∴11xx>>,所以,原式=1xx-.例6已知x y==22353x xy y-+的值.解:∵2210x y+==+=,1xy==,∴22223533()1131011289x xy y x y xy-+=+-=⨯-=.练习1.填空:(1=__ ___;(2(x=-x的取值范围是_ ____;(3)=__ ___;2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A MB B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质. 2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯L ; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+L .(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++, ∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯L 11111(1)()()223910=-+-++-L1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+L =111111()()()23341n n -+-++-+L=1121n -+,又n ≥2,且n 是正整数, ∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+L <12 . 例3 设ce a =,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0, ∴e =12 <1,舍去;或e =2.∴e =2. 练 习 1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值.3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1=( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯L . 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++L <14 .1.1.1.绝对值1.(1)5±;4± (2)4±;1-或3 2.D 3.3x -181.1.2.乘法公式1.(1)1132a b -(2)11,24 (3)424ab ac bc --2.(1)D (2)A1.1.3.二次根式1. (12- (2)35x ≤≤ (3)- (4 2.C 3.1 4.>1.1.4.分式1.122.B 3.1- 4.99100习题1.1 A 组1.(1)2x <-或4x > (2)-4<x <3 (3)x <-3,或x >32.1 3.(1)2-(2)11a -≤≤ (31B 组1.(1)37 (2)52,或-15 2.4.C 组1.(1)C (2)C 2.121,22x x == 3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6).(3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法 例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-.解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+--1 -2x x图1.2-1-1 -21 1图1.2-2 -2 61 1图1.2-3-ay -byx x图1.2-4-1 1x y图1.2-5=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +-++.练 习 1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x 2+x -(a 2-a ).1.2分解因式1. B2.(1)(x +2)(x +4) (2)22(2)(42)a b a ab b -++(3)(11x x ---+ (4)(2)(22)y x y --+. 习题1.21.(1)()()211a a a +-+ (2)()()()()232311x x x x +-+- (3)()()2b c b c a +++ (4)()()3421y y x y -++-2.(1)x x ⎛- ⎝⎭⎝⎭; (2)(x x --+;(3)3x y x y ⎛⎫⎛⎫++ ⎪⎪ ⎪⎪⎝⎭⎝⎭; (4)()3(1)(11x x x x -+--. 3.等边三角形 4.(1)()x a x a -++2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x = (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1;②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根 . 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a,x 1·x 2=ca.这一关系也被称为韦达定理. 特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)程x 2+px +q =0的两根,出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21,∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元大方向个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ②由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根. 解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求| x 1-x 2|的值; (2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则,2x=,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4, 由②得 a <174 .∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7; ③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = . (2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 . (2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . 3.已知关于x 的方程x 2-kx -2=0.4.-1 提示:(x 1-3)( x 2-3)=x 1 x 2-3(x 1+x 2)+9习题2.12.(1)2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006.(2)-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根. (2)∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1.4.(1)| x 1-x 2|122x x +=2b a -;(2)x 13+x 23=333abc b a -.5.∵| x 1-x 2|2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B (2)A(3)C 提整数的实数k 的整数值为-2,-3和-5. (3)当k =-2时,x 1+x 2=1,① x 1x 2=18, ② ①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴3λ=± 4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①若x 1≤0,x 2≥0,则x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴11x =21x =②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a , 由一根大于1、另一根小于1,得(x 1-1)( x 2-1)2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.从表中不难看出,要得到22的值,只要把相应的2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x+h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 图2.2-2图2.2-1所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题. 例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之x /元 130 150 165 y /件705035若日销售量是销售价的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000=-(x -160)2+1600, ∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = . (2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象.(1)y =x 2-2x -3; (2)y =1+6 x -x 2.4.已知函数y =-x 2-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.①图2.2-6②③2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式: 1.一般式:y =ax 2+bx +c (a ≠0);2.顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交点个数.当抛物线y =ax 2+bx +c (a ≠0)与x 轴相交时,其函数值为零,于是有ax 2+bx +c =0. ①并且方程①的解就是抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:(1)当Δ>0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点(抛物线的顶点);反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以x 1+x 2=b a -,x 1x 2=ca, 即 b a =-(x 1+x 2), ca=x 1x 2.所以,y =ax 2+bx +c =a (2b c x x a a++)= a [x 2-(x 1+x 2)x +x 1x 2] =a (x -x 1) (x -x 2).由上面的推导过程可以得到下面结论:若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1) (x -x 2) (a ≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2. 又顶点在直线y =x +1上, 所以,2=x +1,∴x =1. ∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点(3,-1), ∴21(32)1a -=-+,解得a =-2.∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0), 展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2, ∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1. 又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2. ∴a =-12,或a =12. 所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练 习 1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( ) (A )0个 (B )1个 (C )2个 (D )无法确定 (2)函数y =-12 (x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x =3时,函数有最小值5,且经过点(1,11);。
第一讲数与式1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.练习1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)若,则(B)若,则(C)若,则(D)若,则3.化简:|x-5|-|2x-13|(x>5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式;(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差公式;(3)三数和平方公式;(4)两数和立方公式;(5)两数差立方公式.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:.例2 已知,,求的值.练习1.填空:(1)();(2);(3 ) .2.选择题:(1)若是一个完全平方式,则等于()(A)(B)(C)(D)(2)不论,为何实数,的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如,等是无理式,而,,等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等.一般地,与,与,与互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式的意义例1 将下列式子化为最简二次根式:(1);(2);(3).例2 计算:.例3试比较下列各组数的大小:(1)和;(2)和.例4 化简:.例 5 化简:(1);(2).例 6 已知,求的值.练习1.填空:(1)=__ ___;(2)若,则的取值范围是_ _ ___;(3)__ ___;(4)若,则______ __.2.选择题:等式成立的条件是()(A)(B)(C)(D)3.若,求的值.4.比较大小:2--(填“>”,或“<”).1.1.4.分式1.分式的意义形如的式子,若B中含有字母,且,则称为分式.当M≠0时,分式具有下列性质:;.上述性质被称为分式的基本性质.2.繁分式像,这样,分子或分母中又含有分式的分式叫做繁分式.例1若,求常数的值.解得.例2 (1)试证:(其中n是正整数);(2)计算:;(3)证明:对任意大于1的正整数n,有.例3 设,且e>1,2c2-5ac+2a2=0,求e的值.练习1.填空题:对任意的正整数n, ();2.选择题:若,则=()(A)1(B)(C)(D)3.正数满足,求的值.4.计算.习题1.11.解不等式:(1) ; (2) ;(3) .2.已知,求的值.3.填空:(1)=________;(2)若,则的取值范围是________;(3)________.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x2-3x+2;(2)x2+4x-12;(3);(4).解:(1)如图1.2-1,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以,有x2-3x+2=(x-1)(x-2).图1.2-4图1.2-3图1.2-2图1.2-1说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x用1来表示(如图1.2-2所示).(2)由图1.2-3,得x2+4x-12=(x-2)(x+6).(3)由图1.2-4,得图1.2-5=(4)=xy+(x-y)-1=(x-1) (y+1) (如图1.2-5所示).2.提取公因式法与分组分解法例2 分解因式:(1);(2).(2)===.或===.3.关于x的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x的方程的两个实数根是、,则二次三项式就可分解为.例3 把下列关于x的二次多项式分解因式:(1);(2).练习1.选择题:多项式的一个因式为()(A)(B)(C)(D)2.分解因式:(1)x2+6x+8;(2)8a3-b3;(3)x2-2x-1;(4).习题1.21.分解因式:(1);(2);(3);(4).2.在实数范围内因式分解:(1);(2);(3);(4).3.三边,,满足,试判定的形状.4.分解因式:x2+x-(a2-a).第二讲函数与方程2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为.①因为a≠0,所以,4a2>0.于是(1)当b2-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2=;(2)当b2-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-;(3)当b2-4ac<0时,方程①的右端是一个负数,而方程①的左边一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx+c=0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax2+bx+c=0(a≠0),有(1)当Δ>0时,方程有两个不相等的实数根x1,2=;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-;(3)当Δ<0时,方程没有实数根.例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x+3=0;(2)x2-ax-1=0;(3)x2-ax+(a-1)=0;(4)x2-2x+a=0.说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根,,则有;.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=,x1·x2=.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)x+x1·x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例2已知方程的一个根是2,求它的另一个根及k的值.例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.例4 已知两个数的和为4,积为-12,求这两个数.例5 若x1和x2分别是一元二次方程2x2+5x-3=0的两根.(1)求| x1-x2|的值;(2)求的值;(3)x13+x23.例6 若关于x的一元二次方程x2-x+a-4=0的一根大于零、另一根小于零,求实数a的取值范围.练习1.选择题:(1)方程的根的情况是()(A)有一个实数根(B)有两个不相等的实数根(C)有两个相等的实数根(D)没有实数根(2)若关于x的方程mx2+ (2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()(A)m<(B)m>-(C)m<,且m≠0(D)m>-,且m≠02.填空:(1)若方程x2-3x-1=0的两根分别是x1和x2,则=.(2)方程mx2+x-2m=0(m≠0)的根的情况是.(3)以-3和1为根的一元二次方程是.3.已知,当k取何值时,方程kx2+ax+b=0有两个不相等的实数根?4.已知方程x2-3x-1=0的两根为x1和x2,求(x1-3)( x2-3)的值.习题2.11.选择题:(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是()(A)-3 (B)3 (C)-2 (D)2(2)下列四个说法:①方程x2+2x-7=0的两根之和为-2,两根之积为-7;②方程x2-2x+7=0的两根之和为-2,两根之积为7;③方程3 x2-7=0的两根之和为0,两根之积为;④方程3 x2+2x=0的两根之和为-2,两根之积为0.其中正确说法的个数是()(A)1个(B)2个(C)3个(D)4个(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是()(A)0 (B)1 (C)-1 (D)0,或-12.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=.(2)方程2x2-x-4=0的两根为α,β,则α2+β2=.(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是.(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|=.3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图象的开口大小及方向;h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”.由上面的结论,我们可以得到研究二次函数y=ax2+bx+c(a≠0)的图象的方法:由于y=ax2+bx+c=a(x2+)+c=a(x2++)+c-,所以,y=ax2+bx+c(a≠0)的图象可以看作是将函数y=ax2的图象作左右平移、上下平移得到的,于是,二次函数y=ax2+bx+c(a≠0)具有下列性质:(1)当a>0时,函数y=ax2+bx+c图象开口向上;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而减小;当x>时,y随着x的增大而增大;当x=时,函数取最小值y=.(2)当a<0时,函数y=ax2+bx+c图象开口向下;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而增大;当x>时,y随着x的增大而减小;当x=时,函数取最大值y=.例1 求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.例2 把二次函数y=x2+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数y=x2的图像,求b,c的值.例 3 已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2 (B)y=2x2-4x+2(C)y=2x2-1 (D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2 ()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n =.(2)已知二次函数y=x2+(m-2)x-2m,当m=时,函数图象的顶点在y轴上;当m=时,函数图象的顶点在x轴上;当m =时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;(2)y=1+6 x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x 轴交点的横坐标.例1 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.例 2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.例3已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.练习1.选择题:(1)函数y=-x2+x-1图象与x轴的交点个数是()(A)0个(B)1个(C)2个(D)无法确定(2)函数y=-(x+1)2+2的顶点坐标是()(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)2.填空:(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a (a≠0) .(2)二次函数y=-x2+2x+1的函数图象与x轴两交点之间的距离为.3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x=3时,函数有最小值5,且经过点(1,11);(3)函数图象与x轴交于两点(1-,0)和(1+,0),并与y轴交于(0,-2).习题2.21.选择题:(1)把函数y=-(x-1)2+4的图象的顶点坐标是()(A)(-1,4)(B)(-1,-4)(C)(1,-4)(D)(1,4)(2)函数y=-x2+4x+6的最值情况是()(A)有最大值6 (B)有最小值6(C)有最大值10 (D)有最大值2 (3)函数y=2x2+4x-5中,当-3≤x<2时,则y值的取值范围是()(A)-3≤y≤1(B)-7≤y≤1(C)-7≤y≤11(D)-7≤y<11 2.填空:(1)已知某二次函数的图象与x轴交于A(-2,0),B(1,0),且过点C(2,4),则该二次函数的表达式为.(2)已知某二次函数的图象过点(-1,0),(0,3),(1,4),则该函数的表达式为.3.把已知二次函数y=2x2+4x+7的图象向下平移3个单位,在向右平移4个单位,求所得图象对应的函数表达式.4.已知某二次函数图象的顶点为A(2,-18),它与x轴两个交点之间的距离为6,求该二次函数的解析式.2.3 方程与不等式2.3.1 二元二次方程组解法方程是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中,,叫做这个方程的二次项,,叫做一次项,6叫做常数项.我们看下面的两个方程组:第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组.下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法.一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解.①②例1 解方程组①②例2 解方程组练习1.下列各组中的值是不是方程组的解?(1)(2)(3)(4)2.解下列方程组:(1)(2)(3)(4)2.3.2 一元二次不等式解法(1)(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c=0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.例3解不等式:(1)x2+2x-3≤0;(2)x-x2+6<0;(3)4x2+4x+1≥0;(4)x2-6x+9≤0;(5)-4+x-x2<0.例4已知函数y=x2-2ax+1(a为常数)在-2≤x≤1上的最小值为n,试将n 用a表示出来.练习1.解下列不等式:(1)3x2-x-4>0;(2)x2-x-12≤0;(3)x2+3x-4>0;(4)16-8x+x2≤0.2.解关于x的不等式x2+2x+1-a2≤0(a为常数).习题2.31.解下列方程组:(1)(2)(3)2.解下列不等式:(1)3x2-2x+1<0;(2)3x2-4<0;(3)2x-x2≥-1;(4)4-x2≤0.第三讲三角形与圆3.1 相似形3.1.1.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.如图 3.1-2,,有.当然,也可以得出.在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.例1如图3.1-2,,且求.例2 在中,为边上的点,,求证:.平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.例3 在中,为的平分线,求证:.例3的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的两边之比).练习11.如图3.1-6,,下列比例式正确的是()A. B.C. D.图3.1-62.如图3.1-7,求.图3.1-73.如图,在中,AD是角BAC的平分线,AB=5cm,AC=4cm,BC=7cm,求BD的长.图3.1-83.1.2.相似形我们学过三角形相似的判定方法,想一想,有哪些方法可以判定两个三角形相似?有哪些方法可以判定两个直角三角形相似?例6 如图3.1-12,在直角三角形ABC中,为直角,.求证:(1),;(2)练习21.如图 3.1-15,D是的边AB上的一点,过D点作DE//BC交AC于E.已知AD:DB=2:3,则等于()图3.1-15A. B. C. D.2.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是,则梯形的上、下底长分别是__________.3.已知:的三边长分别是3,4,5,与其相似的的最大边长是15,求的面积.图3.1-164.已知:如图3.1-16,在四边形ABCD中,E、F、G、H 分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH是什么四边形,试说明理由;(2)若四边形ABCD是平行四边形,对角线AC、BD满足什么条件时,EFGH 是菱形?是正方形?习题3.11.如图 3.1-18,中,AD=DF=FB,AE=EG=GC,FG=4,则()A.DE=1,BC=7 B.DE=2,BC=6图3.1-18C.DE=3,BC=5 D.DE=2,BC=82.如图 3.1-19,BD、CE是的中线,P、Q分别是BD、CE的中点,则等于()A.1:3 B.1:4C.1:5 D.1:6图3.1-193.如图3.1-20,中,E是A B延长线上一点,DE 交BC于点F,已知BE:AB=2:3,,求.图3.1-204.图3.1-21如图3.1-21,在矩形ABCD中,E是CD的中点,交AC于F,过F作FG//AB交AE于G,求证:.3.2 三角形3.2.1 三角形的“四心”三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.图3.2-3例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知D、E、F分别为三边BC、CA、AB的中点,求证AD、BE、CF交于一点,且都被该点分成2:1.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)图3.2-5例2 已知的三边长分别为,I为的内心,且I在的边上的射影分别为,求证:.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图3.2-8)图3.2-8例4 求证:三角形的三条高交于一点.已知中,AD与BE交于H点.求证.过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.练习11.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.2.(1)若三角形ABC的面积为S,且三边长分别为,则三角形的内切圆的半径是___________;(2)若直角三角形的三边长分别为(其中为斜边长),则三角形的内切圆的半径是___________. 并请说明理由.练习21.直角三角形的三边长为3,4,,则________.2.等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.3.已知直角三角形的周长为,斜边上的中线的长为1,求这个三角形的面积.习题3.2A组1.已知:在中,AB=AC,为BC边上的高,则下列结论中,正确的是()A. B. C. D.2.三角形三边长分别是6、8、10,那么它最短边上的高为()A.6 B.4.5 C.2.4 D.83.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________.4.已知:是的三条边,,那么的取值范围是_________。