初中数学方程与不等式之分式方程全集汇编及答案
- 格式:doc
- 大小:438.50 KB
- 文档页数:11
初二数学分式方程的解与不等式组一选择题1.若关于x的不等式组有解,关于y的分式方程有整数解,则符合条件的所有整数a的和为()A.3 B.4 C.8 D.92.关于x的不等式组有且仅有四个整数解,且关于x的分式方程﹣=1有非负整数解,则符合条件的所有整数m的和是()A.8 B.9 C.11 D.7 3.若关于x的一元一次不等式组的解集为x≥3,且关于y的分式方程有正整数解,则所有满足条件的整数a的值之和是()A.10 B.12 C.18 D.20 4.若实数a使得关于x的分式方程的解为负数,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和为()A.6 B.5 C.4 D.1 5.若关于x的一元一次不等式组的解集恰好有1个负整数解,且关于y的分式方程=1有非负数解,则符合条件的所有整数a的和为()A.5 B.6 C.9 D.106.关于x的不等式组有解且至多有4个整数解,关于y的分式方程的解为整数,则所有满足条件的整数a的和为()A.4 B.8 C.11 D.157.若关于x的方程的解为负数,且关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.3 B.2 C.1 D.08.若关于x的一元一次不等式组的解集为x≤﹣5,且关于x的分式方程有正整数解,则符合条件的所有整数a的和为()A.-6 B.-4 C.-2 D.0二填空题9.若关于x的一元一次不等式组有解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为.10.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解.则满足条件的所有整数m的和是.11.若实数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y>a,求符合条件的所有整数a的和为.12.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程有正数解,则所有满足条件的整数a的和为.13.若数a关于x的不等式组恰有两个整数解,且使关于y的分式方程的解为正数,则所有满足条件的整数a的值之和是.14.若数a使关于x的分式方程的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为.15.若关于x的一元一次不等式组的解集为x≥m;且关于y的分式方程有负整数解,则所有满足条件的m的整数值之和是.16.如果关于x的不等式组的解集为x<1,且关于x的分式方程有非负整数解,则符合条件的m的所有值的和是.17.若关于x的不等式组有且仅有4个整数解,且使得关于y的分式方程﹣1=有整数解,则满足条件整数a的和为.18.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是.19.若关于x的不等式组有且只有五个整数解,且关于y的分式方程=1的解为非负整数,则符合条件的所有整数a的和为.20.已知不等式组的解集为﹣1<x<1,且关于y的方程+1=的解为正数,则m的取值范围是.初二数学分式方程的解与不等式组参考答案与解析1.分析:解不等式组可得a≤5,解分式方程可得y=,由题意可求符合条件的a的值有1,3,0,4,5,﹣4.解:,由①得,x≤7,由②得,x≥2+a,∵方程有解,∴7≥2+a,∴a≤5;,ay﹣2y+4=﹣2,(a﹣2)y=﹣6,y=,∵方程有整数解,∴2﹣a=±1或2﹣a=±2或2﹣a=±3或2﹣a=±6,解得a=1,3,0,4,﹣1,5,﹣4,8,∵y≠2,∴2﹣a≠3,∴a≠﹣1,∴a=1,3,0,4,5,﹣4,∴符合条件的所有整数a的和为9,故选:D.2.分析:解不等式组和分式方程得出关于x的范围及x的值,根据不等式组有且仅有三个整数解和分式方程的解为非负整数得出m的值,即可求解.解:解不等式m﹣4x>4,得:x<,解不等式x﹣<3(x+),得:x>,∵不等式组有且仅有四个整数解,∴0<≤1,解得:4<m≤8,解关于x的分式方程﹣=1,得:x=,∵分式方程有非负整数解,且≠2,m﹣1≠0,解得:m=7,所以所有满足条件的整数m值的和为7.故选:D.3.分析:首先根据不等式组的已知解集求出a的取值范围,然后利用分式方程的正整数解求出a的取值范围,最后结合两个条件即可求出a的所有正整数解决问题.解:,解①得:x≥3,解②得:x>,∵x的一元一次不等式组的解集为x≥3,∴<3,∴a<8,∵,∴y=,此方程有正整数解,∴a﹣2>0,∴a>2,∴2<a<8,∴a的整数解且使y有正整数解有a=4或6,∴所有满足条件的整数a的值之和是10.故选A.4.分析:首先分别根据分式方程的解为负数和不等式组至少有三个整数解求出a的取值范围,然后取整即可解决问题.解:,去分母得2+2(x+1)=a﹣x,∴x=,而此方程的解为负数,∴x=<0,且x=≠﹣1,∴a<4且a≠1,,解①得y≥﹣,解②得y<a+1,又不等式至少有三个整数解,∴0<a+1,∴﹣1<a,∴﹣1<a<4且a≠1,∴整数a的值有0,2,3,∴符合条件a的值的和为5.故选B.5.分析:首先根据不等式组的解集的条件求出a的取值范围,然后根据分式方程的解为非负数求出a的取值范围,最后求出满足所有条件的a的取值范围即可解决问题.解:,解①得x≥,解②得x<﹣1,而不等式组的解集恰好有1个负整数解,∴﹣3<≤﹣2,∴1<a≤4,=1,解之得y=,又分式方程有非负数解,∴x=≥0,且x=≠1,∴a≥﹣1且a≠3,∴1<a≤4,且a≠3,∴a的整数值有2,4,∴符合条件的所有整数a的和为6.故选B.6.分析:求出不等式组的解集,根据解集的限制条件确定a的取值范围,再解关于y的分式方程,是分式方程的解为整数,进而确定a的取值,再进行计算即可.解:解关于x的不等式组得,,所以﹣2≤x≤,由于这个关于x的不等式组有解且至多有4个整数解,∴﹣2≤<2,∴﹣3≤a<5,解关于y的分式方程的解为y=,由于这个分式方程的解是整数,且y≠3,∴2a﹣5=±1或2a﹣5=﹣3或2a﹣5=±9,当2a﹣5=±1时,a=3或a=2,当2a﹣5=﹣3时,a =1,当2a﹣5=±9时,a=7或a=﹣2,又∵a为整数,且﹣3≤a<5,∴a=3或a=2或a =1或a=﹣2,∴所有满足条件的整数a的和为3+2+1﹣2=4,故选:A.7.分析:分别解分式方程和不等式组,从而得出a的范围,从而得整数a的取值,进而得所有满足条件的整数a的值之积.解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1),解得:x=﹣2a﹣1,∵解为负数,∴﹣2a﹣1<0,∴a>﹣,∵当x=1时,a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:,∵不等式组无解,∴a≤2,∴a的取值范围为:﹣<a≤2,且a≠0,∴满足条件的整数a的值为:1,2,∴所有满足条件的整数a的值之积是2.故选:B.8.分析:先求出每个不等式的解集,再根据关于x的一元一次不等式组的解集为x≤﹣5,列3+2a>﹣5,求出解集;解分式方程得x=﹣,再根据关于x的分式方程有正整数解,x≠3,求出a<2,a≠﹣2,综合两个解集得4<a<2且a≠﹣2,再根据分式方程有正整数解,求出a.解:,解不等式①,得x≤﹣5,解不等式②,得x<3+2a,∵关于x的一元一次不等式组的解集为x≤﹣5,∴3+2a>﹣5,∴a>﹣4,原分式方程化为:+2=,2+ax+2(3﹣x)=﹣4,解得:x=﹣,∵关于x的分式方程有正整数解,x≠3,∴﹣>0,﹣≠3,解得a<2,a≠﹣2,综上所述:﹣4<a<2且a≠﹣2,∵关于x的分式方程有正整数解,∴a﹣2=﹣12,a﹣2=﹣6,a﹣2=﹣3,a﹣2=﹣4,a﹣2=﹣2,a﹣2=﹣1,∴a=﹣10,a=﹣4,a=﹣1,a=﹣2,a=0,a=1,∵﹣4<a<2且a≠﹣2,∴a=﹣1或a =0或a=1,﹣1+0+1=0,故选:D.9.分析:由一元一次不等式组有解,可求出a的范围,根据分式方程=1有非负整数解,可得a的值,即可得答案.解:由一元一次不等式组得x<5且x≥2a+1,∵一元一次不等式组有解,∴2a+1<5,∴a<2,解分式方程=1得y=,∵y﹣1≠0,即y≠1,∴≠1,∴a≠﹣6,∵分式方程=1有非负整数解,∴是非负整数,∴a的值为0或﹣2或﹣4或﹣8,∴符合条件的所有整数a的和为0+(﹣2)+(﹣4)+(﹣8)=﹣14.故答案为:﹣14.10.分析:先解不等式组得﹣5≤x<m,再由题意可知﹣2≤m≤3;再解分式方程得x=,由方程有整数解,则3m﹣1是2的倍数,因为x≠1,所以m≠1,则可求满足条件的整数为2.解:,由①得,x≥﹣5,∵不等式组至少有3个整数解,∴﹣2≤m,∵2x﹣5≤1的解集是x≤3,∴m≤3,∴﹣2≤m≤3,,方程两边同时乘x﹣1,得4x﹣2﹣3m+1=2x﹣2,移项、合并同类项得,2x=3m﹣1,解得x=,∵分式方程有整数解,∴3m﹣1是2的倍数,∵x≠1,∴m≠1,∵m是整数,∴m=﹣1,3,∴满足条件的所有整数m的和是2,故答案为:2.11.分析:先解分式方程得x=,再由题意可得>0,且≠1,可求得a<6且a≠2;再解不等式组,结合题意可得a>1,则可得所有满足条件的整数为1,3,4,5,求和即可.解:+=4,2﹣a=4(x﹣1),2﹣a=4x﹣4,4x=6﹣a,x=,∵方程的解为正数,∴6﹣a>0,∴a<6,∵x≠1,∴≠1,∴a≠2,∴a<6且a≠2,,由①得y≥1,由②得y>a,∵不等式组的解集为y>a,∴a≥1,∴符合条件a的整数有1,3,4,5,∴符合条件的所有整数a的和为13,故答案为:13.12.分析:解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a的整数解为3,4,6,和为13.解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为≤x<5,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x−1)得:ax−2−3=x−1,解得:x=,∵x−1≠0,∴x≠1,∵方程有正数解,∴>0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,∴3+4+6=13,故答案为:13.13.分析:解不等式组得≤a≤2,根据其有两个整数解得出0<≤1,解之求得a的范围;解分式方程求出y=2a﹣1,由解为正数且分式方程有解得出,解之求得a的范围;综合以上a的范围得出a的整数值,从而得出答案.解:解不等式﹣1≤(x﹣2),得:x≤2,解不等式3x﹣a≥2(1﹣x),得:x≥,∵不等式组恰有两个整数解,∴0<≤1,解得﹣2<a≤3,解分式方程,得y =2a﹣1,由题意知,解得a>且a≠1,则满足﹣2<a≤3,且a>且a≠1的所有整数有2、3,所以所有满足条件的整数a的值之和是2+3=5,故答案为:5.14.分析:解分式方程得出x=,由关于x的分式方程的解为正数,得出>0且≠1,解得:a<6且a≠2,解不等式组及关于y的不等式组的解集为y<﹣2,得出a≥﹣2,进而得出﹣2≤a<6且a≠2,再由a为整数,得出a=﹣2、﹣1、0、1、3、4、5,进一步求出它们的和,即可得出答案.解:去分母得:2﹣a=4(x﹣1),∴x=,∵关于x的分式方程的解为正数,∴>0且≠1,解得:a<6且a≠2,,解不等式①得:y<﹣2,解不等式②得:y≤a,∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2,∴﹣2≤a<6且a≠2,∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,﹣2﹣1+0+1+3+4+5=10,故答案为:10.15.分析:化简一元一次不等式组,根据解集为x≥m得到m的取值范围;解分式方程,根据解是负整数,且不是增根,确定整数m的取值,从而求解.解:,解不等式①,得:x≥﹣7,解不等式②,得:x≥m,又∵不等式组的解集为x≥m,∴m≥﹣7,分式方程去分母,得:3y+4﹣(y+2)=m﹣y,解得:y=,又∵分式方程有负整数解,且y≠﹣2,∴符合条件的整数m可以取﹣7,﹣1,其和为﹣7+(﹣1)=﹣8,故答案为:﹣8.16.分析:先根据不等式组的解求m的范围,再根据分式方程的整数解求m.解:,由①得:x<m,由②得:x﹣4>3x﹣6.∴x<1.∵原不等式组的解集为:x<1.∴m≥1.∵﹣=3.∴x+2﹣m=3x﹣3.∴x=,∵方程的解是非负整数,∴符合条件的整数m为:1,3,5.当m=3是,x=1,x﹣1=0不合题意,∴m=1,5.1+5=6.故答案为:6.17.分析:解关于x的不等式组,然后根据“该不等式组有且仅有4个整数解”,确定a的取值范围,解分式方程并根据分式方程解的情况,结合a为整数,取所有符合题意的整数a,即可得到答案.解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故答案为:﹣2.18.分析:解一元一次不等式组的解集,根据不等式组的解集为x≥6,列出<6,求出a 的范围a<7;解出分式方程的解,根据方程的解是正整数,列出>0,求得a的范围a >﹣5;检验分式方程,列出≠1,即a≠﹣3,求得a的范围﹣5<a<7,且a≠﹣3,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴<6,∴a<7,分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴≠1,∴a≠﹣3,∴﹣5<a<7且a≠﹣3,∴能是正整数的a是:﹣1,1,3,5,∴所有满足条件的整数a 的值和为8,故答案为:8.19.分析:解不等式组,利用已知条件得到a的不等式,利用分式方程的解为非负整数点的关于a的不等式,将两个不等式组成新的不等式组,解不等式组取整数解即可.解:解x的不等式组得:<x≤6.∵若关于x的不等式组有且只有五个整数解,∴1≤<2.关于y的分式方程=1的解为:y=.∵关于y的分式方程=1可得产生增根2,∴≠2.∵关于y的分式方程=1的解为非负整数,∴≥0且≠2.∴.解得:4<a≤8.∵a为整数,且为整数,∴a=6,8.∴符合条件的所有整数a的和为:6+8=14.故答案为:14.20.分析:先解不等式,求出解集,进行比对,列出关于a,b的方程,求出a、b的值.然后解分式方程,根据解为正数和方程最简公分母不等于零,可以确定m的取值范围.解:不等式组,解得,即2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,=1,解得:a=1,b=﹣2.∴分式方程为:,去分母得:2﹣y+1﹣2y=m,解得:y=,∵解为正数,∴>0,且1﹣≠0.∴m<3,.故答案为m <3,且.。
方程与不等式之分式方程经典测试题及答案解析一、选择题1.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.2.方程10020x +=6020x-的解为( ) A .x =10 B .x =﹣10C .x =5D .x =﹣5【答案】C 【解析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.3.解分式方程11222xx x-+=--的结果是()A.x="2" B.x="3" C.x="4" D.无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.考点:解分式方程.4.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m.求该市今年居民用水的价格.设去年居民用水价格为x元/3m,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A 【解析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3得出方程即可. 【详解】解:设去年居民用水价格为x 元/3m ,根据题意得:30155113x x -=⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.5.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A 【解析】 【分析】根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=,∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误; 故选:A . 【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.6.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为 A . B .C .D .【答案】B 【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得: ,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.7.若关于x 的分式方程2xx -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1 B .0C .5D .6【答案】A 【解析】 【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可. 【详解】解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩,解得:﹣2<y ≤52m +,∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得 x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数, ∴m +5是2的倍数, ∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3, ∵x ≠2,∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1, 故选:A . 【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.8.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x=- D .90606x x=+ 【答案】A 【解析】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得:90606x x =-.故选A .9.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且 B . 2 B 3m m >≠C .m<2m 3≠且D .m>2【答案】B 【解析】 【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠. 【详解】方程两边同乘以()1x -,得2x m =- ∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠ 故选:B. 【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.10.若关于x 的分式方程233x mx x -=--有增根,则m 的值是( ) A .1- B .1C .2D .3【答案】B 【解析】 【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m , ∴x=2+m ∵分式方程233x mx x -=--有增根, ∴x-3=0, ∴x= 3, ∴2+m=3, 所以m=1, 故选:B . 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( ) A .-2 B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B .本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.13.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A . B . C .D .【答案】A 【解析】 【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解. 【详解】∵今年1~5月份每辆车的销售价格为x 万元, ∴去年每辆车的销售价格为(x+1)万元, 则有【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.14.“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,设原计划工作时每天绿化面积为x 万平方米,则下面所到方程中正确的是( )A .()006060-30x 125x =+ B .()6060-30125%x x=+ C .()60125%60-30x x⨯+=D .()60125%60-30x x⨯+= 【答案】A 【解析】 【分析】根据实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,可列出方程. 【详解】解:设原计划工作时每天绿化面积为x 万平方米,则根据题意可得:()00606030125x x-=+, 故答案为:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,列出方程.15.方程31144x x x --=--的解是( ) A .-3 B .3C .4D .-4【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:3-x-x+4=1, 解得:x=3,经检验x=3是分式方程的解. 故选:B .此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.。
人教版初中数学方程与不等式之分式方程技巧及练习题附答案解析一、选择题1.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.如果关于x 的不等式(a +1)x >2的解集为x <-1,则a 的值是( ). A .a =3 B .a ≤-3C .a =-3D .a >3【答案】C 【解析】 【分析】根据不等式的解集得出关于a 的方程,解方程即可. 【详解】解:因为关于x 的不等式(a +1)x >2的解集为x <-1, 所以a+1<0,即a <-1,且21a +=-1,解得:a=-3. 经检验a=-3是原方程的根 故选:C .【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.5.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.6.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x=- D .90606x x=+ 【答案】A 【解析】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得:90606x x =-.故选A .7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()A.4116xx x+=+-B.416xx x=-+C.4116xx x+=--D.4116xx x+=-+【答案】D 【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的11x-,而乙每天完成总工程的16x+,据此根据题意最终如期完成了工程进一步列出方程即可.【详解】∵工程期限为x天,∴甲每天完成总工程的11x-,乙每天完成总工程的16x+,∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,∴可列方程为:4116xx x+=-+,故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+ B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.13.方程31144x x x --=--的解是( ) A .-3 B .3C .4D .-4【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:3-x-x+4=1, 解得:x=3,经检验x=3是分式方程的解. 故选:B . 【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.15.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x-= B .3030101.5x x-= C .3630101.5x x -= D .3036101.5x x+=【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.16.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+. 故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x ax -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( ) A .1个 B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可以列出方程为( )A .480360140x x =-B .480480140x x =-C .480360140x x +=D .360480140x x-= 【答案】A【解析】【分析】设甲每天做x 个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x个零件,根据题意得:480360140x x=-,故选:A.【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.。
新初中数学方程与不等式之分式方程难题汇编及答案(1)一、选择题1.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( ) A .3个 B .4个C .5个D .6个【答案】B 【解析】 【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案. 【详解】解:根据题意,得:12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个; 故选:B . 【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.2.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( ) A .240024008(120%)x x -=+ B .240024008(120%)x x -=+C .240024008(120%)x x-=-D .240024008(120%)x x-=- 【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8. 【详解】原计划用的时间为:2400x,实际用的时间为:()2400120%x +.所列方程为:2400x-()2400120%x +=8.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.已知关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6【答案】A 【解析】方程两边同时乘以x -1得, 1-m -(x -1)+2=0, 解得x =4-m . ∵x 为正数,∴4-m >0,解得m <4. ∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3. 故选A .5.如果关于x 的不等式(a +1)x >2的解集为x <-1,则a 的值是( ). A .a =3 B .a ≤-3C .a =-3D .a >3【答案】C 【解析】 【分析】根据不等式的解集得出关于a 的方程,解方程即可. 【详解】解:因为关于x 的不等式(a +1)x >2的解集为x <-1, 所以a+1<0,即a <-1,且21a +=-1,解得:a=-3. 经检验a=-3是原方程的根 故选:C . 【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.6.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-,2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.7.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( ) A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x-=- 【答案】D 【解析】 【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可. 【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D. 【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.8.下列运算正确的是( )A .25=B .()33626x x =C .3222x x x ÷=D .若111x x -=-则211x x -+= 【答案】C 【解析】【分析】分别计算出每一项的结果,再进行判断即可. 【详解】A. 2=B. ()33928x x =,故原选项错误;C. 3222x x x ÷= ,计算正确;D. 若111x x -=-则22=0x -,,故原选项错误 故选C. 【点睛】本题主要考查了二次根式的混合运算、积的乘方与幂的乘方、单项式除以单项式和解分式方程,熟练运用法则是解题关键.9.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且 B . 2 B 3m m >≠C .m<2m 3≠且D .m>2【答案】B 【解析】 【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠. 【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠ 故选:B. 【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.10.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ). A .120012002(120%)x x -=+ B .120012002(120%)x x -=- C .120012002(120%)x x-=+D .120012002(120%)x x -=-【答案】A 【解析】设原计划每天修建道路xm ,则实际每天修建道路为(1+20%)xm ,由题意得,()12001200 2120%x x-=+. 故选A.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x-+=2 C .1000100030x x --=2 D .1000100030x x--=2 【答案】A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x=- C .405012x x =+ D .405012x x=+ 【答案】B 【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .13.已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶 15 千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是A .354515x x =- B .3545+15x x= C .3545-15x x = D .3545+15x x = 【答案】D【解析】【分析】首先根据甲车的速度为x千米/小时,表示出乙车的速度为(x+15)千米/小时,再根据关键是语句“甲车行驶35千米与乙车行驶45千米所用时间相同”列出方程即可.【详解】解:设甲车的速度为x千米/小时,则乙车的速度为(x+15)千米/小时,由题意得:3545+15x x=,故选D.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出甲乙两车的速度,再根据关键是语句列出方程即可.此题用到的公式是:路程÷速度=时间.14.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.15.若整数a使得关于x的方程3222ax x-=--的解为非负数,且使得关于y的不等式组3221223y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a的和为().A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】 【分析】设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程. 【详解】设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,由题意得,5x =52x +16所以答案为B. 【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱, 却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程( ) A .24x 2+ -20x=1 B .20x -24 x 2+ =1 C .24x - 20x 2+ =1 D .20x 2+ -24x=1 【答案】B 【解析】试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【答案】C 【解析】 【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a<2且a≠1中所有的整数,将其相加即可得出结论.【详解】解分式方程26344axx x-+=---得:x=43a-,因为分式方程的解为正数,所以43a->0且43a-≠4,解得:a<3且a≠2,解不等式1722xa xx>⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解,∴a+7>1,解得:a>-6,综上,-6<a<3,且a≠2,则满足上述要求的所有整数a的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a<3且a≠2是解题的关键.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x +=-; A 、3212x x +=-,与上述方程不符,所以本选项符合题意; B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。
最新初中数学方程与不等式之分式方程难题汇编及解析一.选择题X (11.若关于X的方程—- = 2 + —有增根,则a的值为()x-4 x-4A.-4B. 2C. 0D. 4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,X a•••关于x的方程— = 2 + —有增根.x — 4 x — 4:.x-4=0,・•・分式方程的增根是x=4.Y a关于x的方程一=2 + ——去分母得x=2(x-4)+a,x-4 x-4代入x=4得a=4故选D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即町求得相关字母的值.2.解分式方程—+2 = —的结果是()x—2 2 —xA.x="2"B. x="3"C. x="4"D.无解【答案】D【解析】【分析】【详解】解:去分母得:1 - x+2x - 4= - 1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.考点:解分式方程.3. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨小丽家去年12月份 的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月【答案】A 【解析】【分析】 利用总水费斗单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5口弓得 出方程即可.【详解】 解:设去年居民用水价格为久元/加‘,3015 _ _根据题意得:「匚一3丿故选:A. 【点睛】此题主要考查了由实际问题抽彖出分式方程,正确表示出用水量是解题关键・4・某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计 划生产450个零件所需时间相同.设原计划平均每天生产X 个零件,根据题意可列方程为()【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(X+25)个,根据现在生产600个零件所需 时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】 由题意得:现在每天生产(x+25)个,600 450 • ____ — _ ,x+25 x的用水量多5〃『・求该市今年居民用水的价格. 设去年居民用水价格为X 元/“F ,根据题意列方程,正确的是()30 15 一------ : ------- =5A. 1、 X1 + - IX3丿 3015 30XX< 3一=3D.15X30=5600 450A. ------------ =——x-25 x600 450B. --------------------- ——= --------------------x x-25600 450C. ----------- = --------x + 25 x600 450D. -------------------- ——= --------------------B.XC.故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.5. 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1・25倍,小进比小 俊少用了 40秒,设小俊的速度是X 米/秒,则所列方程正确的是()800 800 “C. -------------------- = 40x 1.25%【答案】C 【解析】【分析】 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了 40秒列出方程即 可.【详解】 小进跑8。
2020-2021初中数学方程与不等式之不等式与不等式组真题汇编附答案解析(1)一、选择题1.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.2.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.3.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8【答案】C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.4.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( )A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x<3.故选:B.【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.7.若不等式组0,122x ax x-≥⎧⎨->-⎩有解,则a的取值范围是()A.a>-1 B.a≥-1 C.a≤1D.a<1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a的取值范围是a<1.【详解】解:122x ax x-≥⎧⎨->-⎩①②,由①得:x≥a,由②得:x<1,∵不等式组有解,∴a<1,故选:D.【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x的取值范围为()A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.9.不等式组30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】【详解】 解:30240x x -≥⎧⎨+>⎩①②, 解不等式①得,x ≤3解不等式②得,x >﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.10.不等式组21512xx①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260{50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.关于x的不等式412x-≥-的正整数解有()A .0个B .1个C .3个D .4个【答案】C【解析】【分析】 先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.13.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】 解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.14.若关于x 的不等式组24x x a<⎧⎨-≤⎩的解集是2x <,则a 的取值范围是( )A .2a ≥-B .2a >-C .2a ≤-D .2a <-【答案】A【解析】【分析】 求出不等式的解集,根据已知不等式组的解集x<2,推出a 42+≥求解即可.【详解】因为不等式组24x x a <⎧⎨-≤⎩的解集是x<2 所以不等式组2+4<⎧⎨≤⎩x x a 的解集是x<2 根据同小取较小原则可知,a 42+≥ ,故2a ≥-故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集和已知得到a 42+≥是解此题的关键.15.不等式组354x x ≤⎧⎨+>⎩的最小整数解为( ) A .-1B .0C .1D .2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】 解:354x x ≤⎧⎨+>⎩①② 解①得x≤3,解②得x >-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x 的范围是本题的关键.16.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.17.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】B【解析】【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.18.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b >【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是()A.a<2 B.a>2 C.a≥2D.a≤2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】∵不等式组232x ax a+⎧⎨-⎩><无解,∴a+2≥3a﹣2,解得:a≤2.故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。
(专题精选)初中数学方程与不等式之分式方程难题汇编附解析一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个, ∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x=+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 【答案】A【解析】 设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .9.方程10020x +=6020x-的解为( ) A .x =10B .x =﹣10C .x =5D .x =﹣5 【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.14.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ). A .3B.CD.【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x -= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x -= 【答案】D【解析】【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x 小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D .【点睛】 此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】 此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。
初中数学方程与不等式之分式方程全集汇编及答案一、选择题1.已知关于x 的分式方程22124x mxx x --=+-无解,则m 的值为( ) A .0 B .0或-8C .-8或-4D .0或-8或-4【答案】D 【解析】 【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0. 【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2), 整理得:(4+m )x =8, 当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8; 当x =2时原方程分母为0,此时m =0, 故选:D . 【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.2.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( ) A .240024008(120%)x x -=+ B .240024008(120%)x x -=+C .240024008(120%)x x-=-D .240024008(120%)x x-=- 【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8. 【详解】原计划用的时间为:2400x ,实际用的时间为:()2400120%x +.所列方程为:2400x-()2400120%x +=8.故选A 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.3.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩„有解,则所有符合条件的整数a 的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x --=--,得: 12a x +=,∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩„有解,∴a-1<y ≤8-2a , 即a-1<8-2a , 解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1, 则符合题意的整数a 的值有0、2,有2个, 故选:B . 【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为 A . B .C .D .【答案】B 【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得: ,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4,故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( ) A .400400(130%)x x-+=4 B .400400(130%)x x -+=4C .400400(130%)x x--=4 D .4004004(130%)x x-=-【答案】A 【解析】 【分析】根据“原计划所用时间-实际所用时间=4”可得方程. 【详解】设每月原计划生产的医疗器械有x 件, 根据题意,得:()4004004130%x x-=+ 故选A . 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.方程22111x x x x -=-+的解是( ) A .x =12 B .x =15C .x =14D .x =14【答案】B 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:去分母得:2x 2+2x =2x 2﹣3x+1, 解得:x =15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x人,则所列方程为()A.18018032x x-=+B.18018032x x-=+C.18018032x x-=-D.18018032x x-=-【答案】D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x =5; 故选:C . 【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 【答案】B 【解析】 【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可. 【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( ) A .-2 B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5 【答案】A 【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .13.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x 天,则可列方程为( ). A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯++ 【答案】A 【解析】 【分析】设规定时间为x 天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x 天,则慢马的时间为(x+1)天,快马的时间是(x-3)天, ∵快马的速度是慢马的2倍,∴900900213x x ⨯=+-, 故选:A. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.14.如果解关于x 的分式方程2122m xx x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-4【答案】D 【解析】 【详解】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2. 当x =2时,m +4=2﹣2,m =﹣4,15.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.某单位向一所希望小学赠送1080本课外书,现用A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为( ) A . B . C .D .【答案】C设每个A 型包装箱可以装书x 本,则每个B 型包装箱可以装书(x+15)本,根据单独使用B 型包装箱比单独使用A 型包装箱可少用6个,列方程得:,故选C.17.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A 【解析】 【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程. 【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍∴900900213x x ⨯=+- 故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.18.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x-=+B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x-=+ 【答案】C 【解析】 【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程. 【详解】解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C 【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( ) A .3212x x +=- B .32212x x x ++=- C .3+2212x x +=-D .3112()12x x x ++=- 【答案】A 【解析】 【分析】设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断. 【详解】解:设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据题意,得:5212x x +=-; A 、3212x x +=-,与上述方程不符,所以本选项符合题意; B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A . 【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.下列运算正确的是( )A .25=B .()33626x x =C .3222x x x ÷=D .若111x x -=-则211x x -+= 【答案】C【解析】【分析】分别计算出每一项的结果,再进行判断即可.【详解】A. 2=B. ()33928x x =,故原选项错误;C. 3222x x x ÷= ,计算正确;D. 若111x x -=-则22=0x -,,故原选项错误 故选C.【点睛】 本题主要考查了二次根式的混合运算、积的乘方与幂的乘方、单项式除以单项式和解分式方程,熟练运用法则是解题关键.。