鸡兔同笼总复习
- 格式:pptx
- 大小:69.53 KB
- 文档页数:12
鸡兔同笼解题技巧汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。
下面就为大家汇总一些常见的解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的脚数与假设情况下的脚数差异来计算鸡和兔的数量。
假设全是鸡:如果笼子里全是鸡,那么每只鸡有 2 只脚。
假设笼子里一共有 n 个头,那么脚的总数就是 2n 只。
但实际的脚数比这个假设的脚数要多,多出来的部分就是因为把兔当成鸡来计算造成的。
每只兔有 4 只脚,而每只鸡只有 2 只脚,每把一只兔当成鸡,就少算了 2 只脚。
所以用实际脚数与假设脚数的差值除以 2,就可以得到兔的数量。
假设全是兔:同理,如果假设笼子里全是兔,那么每只兔有 4 只脚,脚的总数就是 4n 只。
但实际脚数比这个假设的脚数要少,少的部分就是因为把鸡当成兔来计算造成的。
每把一只鸡当成兔,就多算了 2 只脚。
所以用假设脚数与实际脚数的差值除以 2,就可以得到鸡的数量。
例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。
假设全是鸡,脚的总数为:35×2 = 70(只)实际脚数比假设多:94 70 = 24(只)每只兔比鸡多的脚数:4 2 = 2(只)兔的数量:24÷2 = 12(只)鸡的数量:35 12 = 23(只)二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据头的总数和脚的总数列出方程组来求解。
根据头的总数:x + y =总头数根据脚的总数:2x + 4y =总脚数例如:还是上面的例子,设鸡有 x 只,兔有 y 只。
x + y = 35 (1)2x + 4y = 94 (2)由(1)式得:x = 35 y (3)将(3)式代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式:x + 12 = 35,x = 23所以鸡有 23 只,兔有 12 只。
专题35 鸡兔同笼问题知识梳理1.意义。
已知“鸡兔”的总头数和总腿数,求“鸡”和“兔”各有多少只的问题,通常称为鸡兔问题,又称鸡兔同笼问题。
2.解题关键。
解答鸡兔同笼问题一般采用假设法。
假设全是一种动物(如全是“鸡”或全是“兔”),然后根据出现的腿数差,推算出另一种动物的只数。
也可以采用列表法、画图法、方程法等。
3.解题方法。
假设全是鸡,兔的只数 = (总腿数 - 2 × 总头数) ÷ (4 - 2);假设全是兔,鸡的只数 = (4 × 总头数 - 总腿数) ÷ (4 - 2)。
例题精讲【例1】一次数学测验只有两道题,结果全班有12人全做对,其中第一道题有24人做对,第二道题有20人做错。
两道题都做错的有多少人?【点拨分析】本班学生的答题情况分为四种:① 全部做对;② 第一道题做错,第二道题做对;③ 第一道题做对,第二道题做错;④ 两道题都做错。
全班有12人全做对,第一道题有24人做对,说明有12人只有第一道题做对。
又知道第二道题做错的人数是20人,说明有8人第二道题做错第一道题也做错。
借助图形分析,用一个长方形表示全班人数,在里面画两个相交的圆,一个圆表示做对第一道题的人,用A表示;另一个圆表示做对第二道题的人,用B表示;两个圆相交的部分表示两道题都做对的人,用C表示;两个圆外部分表示两道题都做错的人,用 D 表示。
【答案】24-12=12(人) 20-12=8(人)答:两道题都做错的有8人。
举一反三1.某班有学生48人,其中21人参加数学竞赛,13人参加作文竞赛,有7人既参加数学竞赛又参加作文竞赛。
那么:(1)只参加数学竞赛的有多少人?(2)参加竞赛的一共有多少人?(3)没有参加竞赛的一共有多少人?2.在1~100的整数中,不是5的倍数的数与不是6的倍数的数共有多少个?3.某校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,这两种都能表演的有7人。
小升初数学经典题型『鸡兔同笼问题·专题复习』一、解题规律:假设全是鸡,兔的头数=(总腿数-鸡腿数)÷2即兔的头数=(总腿数-2×总头数)÷2假设全是兔,鸡的只数=(兔子腿数-总腿数)÷2即鸡的只数=(4×总头数-总腿数)÷2二.常见题型:1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只?已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时:(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数2、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题)〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
3、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数三.例题解析:1.小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:大船:(6×15+22)÷(6+10)=7(只);小船:15-7=8(只)答:大船7只,小船8只。
鸡兔同笼复习一:鸡兔同笼——基本题型例 1. 笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有多少只?练1. 鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?例 2.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?练2. 运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。
例 3. 开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?练习3.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。
小华参加了这次竞赛,得了64 分。
问:小华做对几道题?二:鸡兔同笼——复杂型例 1. 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?练习1.鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?例2. 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对,蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀。
求蜘蛛、蜻蜓、蝉各有多少只?练习2.大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?例 3.鸡兔同笼,鸡和兔子的数量一样多,兔子和鸡的总腿数有30条,鸡和兔子各有多少只?练3.鸡兔同笼,鸡和兔子的数量一样多,兔子和鸡的总腿数有90条,鸡和兔子各有多少只?例4.鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和是110条,鸡和兔子各有多少只?练4.鸡兔同笼,兔子的数量是鸡的2倍,兔子和鸡的腿数总和是80条,鸡和兔子各有多少只?例5.鸡兔同笼,兔子的数量是鸡的3倍,且兔子比鸡多80条腿,鸡和兔子各有多少只?练5.有一群狗追一群鸭子,狗是鸭子的2倍,且狗腿比鸭子腿多60条腿,狗和鸭子各有多少只?作业1.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
小升初数学期末复习总复习练习题总结1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?3、在一个停车场上,停了汽车和摩托车一共32辆。
其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。
求汽车和摩托车各有多少辆?4、小华买了2元和5元纪念邮票一共34张,用去98元钱。
求小华买了2元和5元的纪念邮票各多少张?5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?7、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?8、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?9、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?10、“五一”国际劳动节期间,中百商场打特价搞促销活动,妈妈带500元去中百商场购物。
(1)如果都买上衣,最多能买几件?(2)妈妈买上衣和裤子各4件,她带的钱够吗?11、李老师买了4副羽毛球拍和3副网球拍,一共花了多少钱?12、样租车最省钱?13、实验小学四年级有7个班,每班有8位同学被选为“书香少年”,周老师要去为他们买奖品。
奖品单价见下表:商品钢笔笔袋书夹单价5元12元15元(1)如果每人一支钢笔,周老师至少要带多少钱?(2)如果周老师带672元,给每人的奖品都一样,钱正好全部用完,该买什么奖品?14、宿迁市第一实验小学四年级一到四班去春游。
四(1)班有48人,四(2)和四(3)班有51人,四(4)班有53人。
(1)每班分别购票,一班和三班各需多少元?(2)四个班合起来购票,共需要多少元?15、99口192≈99万。
小升初小学六年级数学复习总结·知识点专项练习题+答案(19)鸡兔同笼知识要点:1、鸡兔同笼作为数学名题,在人教版课本中位置稳固,只是新教材改版之后从六年级调整到了四年级,人教社教材编写的目的就是希望渗透假设思想,而不是方程搞定。
2、“鸡兔同笼”问题的经典思路“假设法”。
假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
当然新颖的“砍足法”也令古今中外数学家赞叹不已。
习题精选:1. 鸡兔同笼,头共46个,足共128条,鸡有()只。
A.26B.20C.18D.282. 在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有()辆。
A.37B.4C.27D.143. 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。
运完这批花瓶后,工人共得4400元,则损坏了()个。
A.3B.4C.5D.64. 李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明打了()天。
A.15B.10C.12D.135. 一辆卡车运粮食,每次能运5吨,晴天时每天能运8次,雨天时每天只能运3次,这辆卡车10天共运了325吨粮食,在这10天中,晴天有()天。
A.8B.7C.6D.56. 某旅游点有儿童票.成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120元,问这个旅游团一共有()人。
A.16B.18C.20D.247. 鸡兔同笼,鸡.兔共有107只,兔的脚数比鸡的脚数多56条,问兔有()只。
A.62B.61C.45D.318. 动物园里养了一些梅花鹿和鸵鸟,共有脚208条,鸵鸟比梅花鹿多20只,梅花鹿有()只。
小学数学鸡兔同笼知识点总结一、鸡兔同笼问题这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
二、数量关系第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)三、解题思路解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
四、鸡兔同笼问题五种基本题型1、小学奥数应用题鸡兔同笼:已知总头数和总脚数(两数之和)已知总头数和总脚数(两数之和)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
【例1】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【解】我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面的公式:"兔"数=(30-3×7)÷(5-3)=4.5,"鸡"数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.【例2 】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解】:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.2、小学奥数应用题鸡兔同笼:已知总头数和鸡兔脚数的差数首先,请先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。