计算机组成原理实验
- 格式:doc
- 大小:730.50 KB
- 文档页数:18
实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理数据通路实验报告计算机组成原理实验报告计算机组成原理实验报告实验一基本运算器实验一、实验目的1. 了解运算器的组成结构2. 掌握运算器的工作原理3. 深刻理解运算器的控制信号二、实验设备PC机一台、TD-CMA实验系统一套三、实验原理1. (思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。
①算术逻辑运算单元ALU (Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。
在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。
整数单元有时也称为IEU(IntegerExecution Unit)。
我们通常所说的“CPU 是XX位的”就是指ALU所能处理的数据的位数。
②浮点运算单元FPU(Floating Point Unit)FPU主要负责浮点运算和高精度整数运算。
有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。
③通用寄存器组通用寄存器组是一组最快的存储器,用来保存参加运算的操作数和中间结果。
④专用寄存器专用寄存器通常是一些状态寄存器,不能通过程序改变,由CPU自己控制,表明某种状态。
而运算器内部有三个独立运算部件,分别为算术、逻辑和移位运算部件,逻辑运算部件由逻辑门构成,而后面又有专门的算术运算部件设计实验。
下图为运算器内部原理构造图2. 运算器的控制信号实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。
T4由时序单元的TS4提供(脉冲信号),其余控制信号均由CON单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。
计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
②掌握简单运算器的数据传输通道。
③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。
④能够按给定数据,完成实验指定的算术/逻辑运算。
要求:完成实验接线和所有练习题操作。
实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。
实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。
实验完成后,要求每个学生写出实验报告。
2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。
2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。
寄存器的输入端于数据总线相连。
3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。
数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。
4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。
5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。
6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关。
7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
《计算机组成原理》实验报告
一、实验目的
1.搭建并操作一个最基本的模型计算机。
2.建立对计算机组成及其原理的基本认识。
二、实验设备
1.TDN-CM+教学实验系统一套。
2.排线31条:8芯8条,6芯3条,4芯3条,2芯17条。
3.PC 机一台。
三、实验内容
1.一台简单模型计算机的结构
我们将算术逻辑运算器、控制器、寄存器、内部总线等部件搭接起来构
成一个CPU,然后再加上存储器、输入设备、输出设备即构成一台完
整的模型计算机。
其逻辑框图如下。
2.构造一台模型计算机
将组成一台计算机的基本模块组合起来。
在TDN-CM+实验系统中使用
连接导线(排线)将模型计算机的各个部件连接在一起,构成一台完整
的模型计算机。
连线图如下。
四、模型计算机的运行操作
1.打开实验系统的电源开关,点击图标CMP运行软件。
2.联机正常后,可测试连线是否正确。
先选择“【运行】--【通路图】”,再
选“【测试】--【开始】”(否则该菜单呈灰色显示),即弹出“系统测试
对话框”。
计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
一、实验装置组成(一)硬件部分实验装置是为计算机组成原理的工作流程专门设计的。
它能够让学生通过手动和自动的操作弄清和掌握计算机工作的基本原理。
程序实验主要包括:数据传输程序各种运算程序控制转移程序数码转换程序(二)软件部分软件系统由编辑程序、编译程序、程序执行、调式程序几个部分组成,完成由源程序输入、语法分析排错、指令汇编、应用程序调试的全过程。
二、软件使用说明(一)界面说明软件系统采用集成化的窗口,各种软件功能分类设置在程序中,软件系统的主窗口界面如上图所示,现将界面各组成部位说明如下:1 ——寄存器在程序执行过程中,观察各寄存器的值2 ——存储器在程序执行过程中,观察各存储器的值3 ——信息显示当前指令对应的微程序4 ——编辑源程序从汇编状态或运行状态返回到编辑源程序状态5 ——汇编对编辑好的源程序进行汇编连接6 ——程序复位让程序指针指向程序的第一条指令7 ——运行运行已通过汇编连接的程序8 ——停止停止程序的运行9 ——单步单步运行程序(逐条指令执行)10 ——单拍单拍运行程序(逐条微指令执行)11 ——设置/取消断点设置/取消断点,调试程序时用12 ——连接/断开串行口连接/断开串行口,连通/断开程序和模型机通信13 ——源程序编辑区在该区域内编辑源程序14 ——寄存器/存储器显示区显示各寄存器/存储器的值15 ——微程序显示区显示当前指令对应的微程序(二)编辑程序编辑源程序采用文本的编辑方式,按照给定的模型机指令系统,用汇编语言格式编(三)汇编程序汇编程序先对源程序进行语法检查,排除源程序中的语法错误,再将源程序编译为机器码,在调试的窗口中显示指令行、机器码、助记符等信息。
(四)运行方式程序的运行有单拍、单步和连续执行三种方式。
单拍方式是逐条执行微程序中的微指令,屏幕显示信息(微指令、积存器和存储器状态)与实验板显示信息(微指令对应的数据流向以及相应的控制信号)互相配合,可以将单拍微指令执行的结果从不同角度显示出来,以便观察。
计算机组成原理实验报告实验⼀静态随机存取存贮器实验⼀.实验⽬的了解静态随机存取存贮器的⼯作原理;掌握读写存贮器的⽅法。
⼆.实验内容实验仪的存贮器MEM单元选⽤⼀⽚静态存贮器6116(2K×8bit)存放程序和数据。
CE:⽚选信号线,低电平有效,实验仪已将该管脚接地。
OE:读信号线,低电平有效。
WE:写信号线,低电平有效。
A0..A10: 地址信号线。
I/O0..I/O7:数据信号线。
SRAM6116存贮器挂在CPU的总线上,CPU通过读写控制逻辑,控制MEM的读写。
实验中的读写控制逻辑如下图:读写控制逻辑M_nI/O⽤来选择对MEM还是I/O读写,M_nI/O = 1,选择存贮器MEM;M_nI/O = 0,选择I/O设备。
nRD = 0为读操作;nWR = 0为写操作。
对MEM、I/O的写脉冲宽度与T2⼀致;读脉冲宽度与T2+T3⼀致,T2、T3由CON单元提供。
存贮器实验原理图存贮器数据信号线与数据总线DBus相连;地址信号线与地址总线ABus相连,6116的⾼三位地址A10..A8接地,所以其实际容量为256字节。
数据总线DBus、地址总线ABus、控制总线CBus与扩展区单元相连,扩展区单元的数码管、发光⼆极管上显⽰对应的数据。
IN单元通过⼀⽚74HC245(三态门),连接到内部数据总线iDBus上,分时提供地址、数据。
MAR由锁存器(74HC574,锁存写⼊的地址数据)、三态门(74HC245、控制锁存器中的地址数据是否输出到地址总线上)、8个发光⼆极管(显⽰锁存器中的地址数据)组成。
T2、T3由CON单元提供,按⼀次CON单元的uSTEP键,时序单元发出T1信号;按⼀次uSTEP键,时序单元发出T2信号;按⼀次uSTEP键,时序单元发出T3信号;再按⼀次uSTEP键,时序单元⼜发出T1信号,……按⼀次STEP键,相当于按了三次uSTEP键,依次发出T1、T2、T3信号。
其余信号由开关区单元的拨动开关模拟给出,其中M_nI/O应为⾼(即对MEM 读写操作)电平有效,nRD、nWR、wMAR、nMAROE、IN单元的nCS、nRD 都是低电平有效。
计算机组成原理实验报告计算机组成原理实验报告姓名:专业:计算机科学与技术学号:计算机组成原理实验(⼀)实验题⽬:时标系统的设置和组合成绩:⼀、实验⽬的1、了解时标系统的作⽤2、会设计、组装简单的时标发⽣器⼆、实验内容参照时标系统的设计⽅法,⽤组合逻辑⽅法设计⼀个简单的节拍脉冲发⽣器,产⽣图1-6所⽰的节拍脉冲,并⽤单脉冲验证设计的正确性。
在实验报告中画出完整电路,写出1W 、0W 和1N 的表达式。
图1-6 简单的节拍脉冲发⽣器⼀周期的波形设计提⽰:1、由波形图求出节拍脉冲1W 和0W 的表达式,进⽽组合成1N 的表达式。
2、注意节拍电平1T 和0T 的翻转时刻应在0M 下降沿与M 的上升沿同时出现的时刻。
3、注意D 触发器的触发翻转要求。
三、实验仪器及器材1、计算机组成原理实验台和+5V 直流稳压电源2、集成电路由附录A “集成电路清单”内选⽤四、实验电路原理(实验电路原理图)时标系统主要由时钟脉冲发⽣器、启停电路和节拍脉冲发⽣器三部分组成成,结构如图1-1所⽰。
图1-1 时标系统组成1、时钟脉冲发⽣器主要由振荡电路、分频电路组成,其作⽤是产⽣⼀定频率的时钟脉冲,作为计算机中基准时钟信号。
如图1-2所⽰。
图1-2 时钟脉冲发⽣器组成2、启停电路计算机是靠⾮常严格的节拍脉冲,按时间的先后次序⼀步⼀步地控制各部件⼯作的,所以,机器启停的标志是有⽆节拍脉冲,⽽控制节拍脉冲按⼀定的时序发⽣和停⽌,不能简单地⽤电源开关来实现。
如图1-3所⽰。
图1-3 简单的启停电路为了使机器可靠地⼯作,要求启停电路在机器启动或停机时,保证每次从规定的第⼀个脉冲开始启动,到最后⼀个脉冲结束才停机,并且必须保证第⼀个和最后⼀个脉冲的波形完整。
如图1-4所⽰。
图1-4 利⽤维持阻塞原理的启停电路3、节拍脉冲发⽣器节拍脉冲发⽣器的作⽤是产⽣⼀序列的节拍电平和⼯作脉冲。
节拍电平是保证计算机微操作的时序性,⼯作脉冲是各寄存器数据的打⼊脉冲。
计算机组成原理实验指导实验一运算器实验一、实验目的1. 掌握简单运算器的数据传输方式。
2. 验证运算功能发生器(74LS1 81)及进位控制的组合功能。
二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用0三、实验原理实验中所用的运算器数据通路如图7-1-1所示。
其中运算器山两片74LS181以并/ 串形式构成8位字长的ALU 。
运算器的输出经过一个三态|' J(74LS245)以8芯扁平线方式 和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的 输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)川來给出参与运算 的数据,经一三态fJ(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT) 已和数据总线相连,用來显示数据总线内容。
图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接吋序启停单元时钟信号 來获得,剩余均为电平控制信号。
进行实验时,首先按动位于本实验装置右中侧 的复位按钮使系统进入初始待令状态,在LED 显示器闪动位岀现“P.”的状态下,按【增进! 二 I制' 开' 关• 单' 元I址】命令键使LED 显示器口左向右第4位切换到提示符“L” ,表示本装置已进入手动单 元实验状态,在该状态卜•按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、 LDDR2、ALU-B 、SW-B 、S3、S2、S1、SO 、CN 、M 各电平控制信号用位于LED 显示 器上方的26位二进制开关來模拟,均为高电平有效。
四、实验连线両时序启停JUUTO O图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:① 总线接口连接:用8芯扁平线连接图7-1-2屮所有标明“U 帕”或“目儷”图 案的总线接口。
② 控制线与时钟信号“皿1”连接:用双头实验导线连接图7-1-2中所侑标明“O+C”O或“受”图案的插孔(注:Dais-CMH 的吋钟信号已作内部连接)。
计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。
具体包括:1、了解计算机内部各部件的工作原理和相互关系。
2、熟悉计算机指令的执行流程和数据的传输方式。
3、掌握计算机存储系统的组织和管理方法。
4、培养分析和解决计算机硬件相关问题的能力。
二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。
三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。
观察运算结果在寄存器中的存储和变化情况。
2、控制器实验模拟了指令的取指、译码和执行过程。
分析不同指令对计算机状态的影响。
3、存储系统实验研究了内存的读写操作和地址映射方式。
考察了缓存的工作原理和命中率的计算。
4、总线实验观察数据在总线上的传输过程和时序。
分析总线竞争和仲裁的机制。
四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。
打开实验软件,设置运算类型和操作数。
启动运算,通过逻辑分析仪观察运算过程中的信号变化。
记录运算结果,并与预期结果进行比较。
2、控制器实验步骤连接控制器模块到计算机。
输入指令序列,使用示波器监测控制信号的产生和变化。
分析指令执行过程中各个阶段的状态转换。
3、存储系统实验步骤搭建存储系统实验电路。
进行内存读写操作,改变地址和数据,观察存储单元的内容变化。
分析缓存的替换策略和命中率的影响因素。
4、总线实验步骤连接总线模块,配置总线参数。
多个设备同时发送数据,观察总线的仲裁过程。
测量数据传输的时序和带宽。
五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。
逻辑运算的结果也正确无误。
观察到在运算过程中,寄存器的值按照预定的规则进行更新。
分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。
2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。
实验八简单模型计算机实验一、实验目的1)通过实验分析简单模型机结构,了解计算机的工作原理。
2)掌握计算机微程序控制器的控制方法,掌握计算机指令执行过程二、实验原理基本整机模型数据框图如图所示,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
数据的通路从程序计数器PC的地址送到主存的地址寄存器,根据地址寄存器的内容找到相应的存储单元。
存储器中的数据是指令时,那么数据是从RAM送到总线,再从总线送到IR 中。
存储器中的数据是需要加工的数据时,那么数据是从RAM送到总线,再动总线送到通用寄存器中等待加工。
数据加工过程中,两个数据是从总线上将数据分别分时压入两个暂存器中,等待运算部件的加工,在数据加工完成以后。
运算结果是通过三太门送到总线上。
三态门的控制时由微控制器来控制。
图:模型机的数据通路图SW-G三、实验过程1.连线按实验逻辑原理图连接以下控制信号。
1)时钟单元(CLOCK UNIT)的T1-T4接到微程序控制单元(MAIN CONTROL UNIT)的T1-T4.2)手动控制开关单元(MANUAL UNIT)的KA ,KB接到指令单元(INS UNIT)的KA,KB。
3)指令单元(INS UNIT)的J(1)-J(5)、SE6-SE0、B-IR 接到的微程序控制单元(MAIN CONTROL UNIT)的J(1)-J(5)、SE6-SE0、B-IR。
4)输入/输出单元(INPUT/OUTPUT UNIT)IO-W,IO-R接到微程序控制单元(MAINCONTROL UNIT)的IO-W,IO-R,Ai接到地址单元(ADDRESS UNIT)的A0. 5)主存储器单元(MEM UNIT)M-W、M-R接到微程序控制单元(MAIN CONTROL UNIT)的M-W、M-R,A7-A0 接到地址单元(ADDRESS UNIT)的A7-A0.6)地址单元(ADDRESS UNIT)的B-AR、B-PC、PC+1、PC-B接到微程序控制单元(MAIN CONTROLUNIT)的B-AR、B-PC、PC+1、PC-B.7)通用寄存器单元(REG UNIT)的B-R、R0-B 接到微程序控制单元(MAIN CONTROLUNIT)的B-DR、DR-B。
计算机组成原理实验报告计算机组成原理课程设计报告指导教师:班级:姓名:学号:一、目的和要求1.实验目的:深入了解计算机各种指令的执行过程,以及控制器的组成,指令系统微程序设计的具体知识,进一步理解和掌握动态微程序设计的概念;完成微程序控制的特定功能计算机的指令系统设计和调试。
2、实验要求:要进行这项大型实验,必须清楚地懂得:(1)TEC-2机的功能部件及其连接关系;(2)TEC-2机每个功能部件的功能与具体组成;(3)TEC-2机支持的指令格式;(4)TEC-2机的微指令格式,AM2910芯片的用法;(5)已实现的典型指令的执行实例,即相应的微指令与其执行次序的安排与衔接;(6)要实现的新指令的格式与功能。
二、实验环境PC机模拟TEC-2机三、具体内容一、实验内容:选定指令格式、操作码,设计如下指令:(1)把用绝对地址表示的内存单元ADDR1中的内容与内存单元ADDR2中的内容相减,结果存于内存单元ADDR3中。
指令格式:D4××,ADDR1,ADDR2, ADDR3 四字指令(控存功能: [ADDR3]=[ADDR1]-[ADDR2](2)将一通用寄存器内容减去某内存单元内容,结果放在另一寄存器中。
指令格式:E0 DR SR,ADDR (SR,DR源、目的寄存器各4位)双字指令(控存入口130H)功能: DR=SR+ [ADDR](3)转移指令。
判断两个通用寄存器内容是否相等,若相等则转移到指定绝对地址,否则顺序执行。
指令格式:E5 DR SR,ADDR 双字指令(控存入口140H)功能: if DR==SR goto ADDR else 顺序执行。
设计:利用指令的CND字段,即IR10~8,令IR10~8=101,即CC=Z则当DR==SR时Z=1,微程序不跳转,接着执行MEM PC(即ADDR PC)而当DR!=SR时Z=0,微程序跳转至A4。
二、实验要求:(1)根据内容自行设计相关指令微程序;(务必利用非上机时间设计好微程序)(2)设计测试程序、实验数据并上机调试。
计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
成绩:计算机原理实验室实验报告课程:计算机组成原理姓名:姜香玉专业:网络工程学号:132055215日期:2015年12月太原工业学院计算机工程系实验一:运算器实验实验环境PC机+Win 2003+emu8086+proteus仿真器实验日期2015年.10 一.实验内容1.熟悉proteus仿真系统2.设计并验证4位算数逻辑单元的功能3.实现输入输出锁存4.实现8位算数逻辑单元二.理论分析或算法分析实验原理:算术逻辑运算单元的核心是由74LS181 构成,它可以进行二进制数的算术逻辑运算,74LS181 的各种工作方式可通过设置其控制信号来实现。
当正确设置74LS181的各个控制信号,74LS181 会运算数据锁存器内的数据。
由于数据锁存器已经把数据锁存,只要74LS181的控制信号不变,那么74LS181 的输出数据也不会发生改变。
输出缓冲器采用74LS245,当控制信号为低电平时,74LS245导通,把74LS181 的运算结果输出到数据总线,高电平时,74LS245 的输出为高阻。
实验中所用的运算器数据通路如图所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实现电路图:1.设计并验证4位算数逻辑单元的功能2.实现8位算数逻辑单元四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并验证4位算数逻辑单元、实现输入输出锁存、实现8位算数逻辑单元的功能.运行结果:图一图二:(二)思考问题:单总线,双总线和三总线结构在设计上的异同答:单总线结构:对这种结构的运算器来说,在同一时间内,只能有一个操作数放在单总线上。
为了把两个操作数输入到ALU,需要分两次来做,而且还需要A,B两个缓冲寄存器。
这种结构的主要缺点是操作速度较慢。
虽然在这种结构中输入数据和操作结果需要三次串行的选通操作,但它并不会对每种指令都增加很多执行时间。
只有在对全都是CPU寄存器中的两个操作数进行操作时,单总线结构的运算器才会造成一定的时间损失。
但是由于它只控制一条总线,故控制电路比较简单。
双总线结构:在这种结构中,两个操作数同时加到ALU进行运算,只需一次操作控制,而且马上就可以得到运算结果。
两条总线各自把其数据送至ALU的输入端因而必须在ALU输出端设置缓冲寄存器。
为此,操作的控制要分两步完成:(1)在ALU的两个输入端输入操作数,形成结果并送入缓冲寄存器;(2)把结果送入目的寄存器。
三总线结构:在三总线结构中,ALU的两个输入端分别由两条总线供给,而ALU 的输出则与第三条总线相连。
这样,算术逻辑操作就可以在一步的控制之内完成。
另外,设置了一个总线旁路器。
如果一个操作数不需要修改,而直接从总线2传送到总线3,那么可以通过控制总线旁路器把数据传出;如需要修改,那么就借助于ALU。
五.结论完成了本次实验要求的设计并验证4位算数逻辑单元、实现输入输出锁存、实现8位算数逻辑单元的实验内容。
学会了如何使用proteus仿真系统,掌握了运算器工作原理,熟悉了算术运算的运算过程以及控制这种运算的方法。
实验二:寄存器实验实验环境PC机+Win 2003+emu8086+proteus仿真器实验日期2015.10 一.实验内容1.理解CPU运算器中寄存器的作用2.设计并验证寄存器组(至少四个寄存器)3.实现更多的寄存器(至少8个)二.理论分析或算法分析单元电路:实验中所用的寄存器数据通路如图所示。
由74LS373组成寄存器组成。
寄存器的输入接口用一8芯扁平线连至BUS总线接口,而寄存器的输出接口用一8芯扁平线连至BUS 总线接口。
经CBA二进制控制开关译码产生数据输出选通信号,LDR0、LDR1、LDR2为数据写入允许信号,由二进制控制开关模拟,均为高电平有效。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实验电路:1.设计并验证寄存器组2.扩展成四组(由于空间有限,只能实现两组)四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并验证寄存器组(至少四个寄存器)、实现更多的寄存器(至少8个)的功能.运行结果:图一(二)思考问题:随着寄存器的增多,电路设计的复杂度是什么比例增大答:在电路设计中,随着寄存器的增多,电路设计的复杂程度是成倍增大的。
五.结论完成了本次实验要求的设计并验证寄存器组(至少四个寄存器)、实现更多的寄存器(至少8个)的功能的实验内容。
学会了如何扩展多组寄存器以及寄存器的工作原理.明白了CPU运算器中计算器的作用:(1)可将寄存器内的数据执行算术及逻辑运算。
(2)存于寄存器内的地址可用来指向内存的某个位置,即寻址。
(3)可以用来读写数据到电脑的周边设备。
实验三:输入输出实验实验环境ISIS仿真软件实验日期2015.11 实现方法:实验(1)实验(2)实验结果分析实验四:微程序控制器实验实验环境PC机+Win7+proteus仿真器实验日期2015.12一.实验内容基本要求:1.掌握微程序控制器工作原理2设计并实现指令的微程序片段二.理论分析或算法分析程序查询方式是最简单、经济的I/O方式,通常接口中至少有两个寄存器,一个是数据缓冲寄存器,即数据端口,用来存放与方式,通常接口中至少有两个寄存器,一个是数据缓冲寄存器,即数据端口,用来存放与CPU进行传送的数据信息;另一个是供进行传送的数据信息;另一个是供CPU查询的设备状态寄存器,这个寄存器由多个标志位组成,其中最重要的是“外设准备就绪”标志(输入或输出设备的准备就绪标志可以不是同一位)。
当要的是“外设准备就绪”标志(输入或输出设备的准备就绪标志可以不是同一位)。
当CPU得到这位标志后就进行判断,以决定下一步是继续循环等待还是进行得到这位标志后就进行判断,以决定下一步是继续循环等待还是进行I/O传送。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实验电路图将数据送入锁存器:CPU从锁存器中读取数据:准备读取下一个数据:四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)过程分析:在输入设备准备好数据时,发出一个选通信号KEY-BUS,将数据通过总线接收器74LS245送入总线,然后通过总线把数据传送到锁存器74LS373(图中的U2),同时将D触发器U3:B的Q输出端置为1(即灯READ_NEXT亮),表示接口中已经有数据(即准备就绪)。
CPU要从外设输入数据时,先执行输入指令读取状态字,如READ_NEXT=1,再执行输入指令从锁存器中读取数据,同时把DE_C2D 置为1,表示可以准备从外设接收下一个数据;如果READ_NEXT=0;则踏步等待,直至READ_NEXT=1为止。
五.结论通过本次实验,我掌握了程序查询的基本思想以及工作流程。
通过仿真电路,虽然实验中遇到问题,但在老师和同学的帮助下,最终还是实现了程序查询方式的输入接口和输出接口的工作流程仿真,完成了本次实验。
实验五:微程序设计实验实验环境PC机+Win 2003+proteus仿真器实验日期2015.12 一.实验内容1.了解微程序执行过程2.设计并实现指令的微程序执行过程3.分析取指过程与微地址的关系二、理论分析或算法分析1、微程序的设计理论分析或算法分析⑴ 微地址显示灯显示的是后续微地址,而26位显示灯显示的是当前微单元的二进制控制位。
⑵ 微控制代码输出锁存器273(0-2)、175及后续微地址输出锁存器M7~M2(74LS74)。
⑶ CK0、CK1、CK2、CK3为微控制器微代码锁存输出控制位。
⑷ T2为后续微地址输出锁存控制位,在模型机运行状态有效。
⑸ 微控制程序存贮器(6116)片选端CS0、CS1、CS2、CS3受控于管理CPU(89C52)。
⑹ 微控制程序存贮器(6116)读、写端OE、WE均受控于管理CPU(89C52)。
⑺ SE5~SE0是指令译码的输入端,通过译码器确定相应机器指令的微代码入口地址。
⑻ 4片245在CPU管理下产生装载微代码程序所需的四路8位数据总线及低5位地址线。
⑼ 管理CPU(89C52)及大规模可编程逻辑器件MACH128N是系统的指挥与控制中心。
这种方式的特点是微程序控制部件中的微地址中的微地址产生线路主要是微地址计数器MPC,MPC的初值由微程序首址形成线路根据指令操作码编码形成,在微程序执行过程中该计数器增量计数,产生下一条微指令地址。
这使得微指令格式中可以不设置“下地址场”,缩短了微指令长度,也使微程序控制部件结构较简单。
但微程序必须存放在控存若干连续单元中。
2)断定方式微程序控制部件示意图微指令中设有“下地址场”,他指出下条微指令的地址,这使一条指令的微程序中的微指令在控存中不一定要连续存放。
在微程序执行过程中。
微程序控制部件中的微地址形成电路直接接受微指令下地址场信息来产生下条微指令地址,微程序的首址也由此微地址形成线路根据指令操作码产生三、实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)将全部微程序微指令格式变址的二进制代码表四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并实现指令的微程序执行过程、分析取指过程与微地址的关系的功能.五.结论完成了本次实验要求的设计并实现指令的微程序执行过程、分析取指过程与微地址的关系的内容,并了解微程序执行过程,微程序即实现程序的一种手段,具体就是将一条机器指令编写成一段微程序。
每一个微程序包含若干条微指令,每一条微指令对应一条或多条微操作。
在有微程序的系统中,CPU内部有一个控制存储器,用于存放各种机器指令对应的微程序段。
当CPU执行机器指令时,会在控制存储器里寻找与该机器指令对应的微程序,取出相应的微指令来控制执行各个微操作,从而完成该程序语句的功能。