角平分线和线段垂直平分线的性质
- 格式:doc
- 大小:135.67 KB
- 文档页数:5
1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. . 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.图1一、选择题:1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒B .65︒C .80︒D .95︒2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:A B C A C D S S ∆∆= ( )A .3:4B .4:3C .16:19D .不能确定3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 几何语言:∵ CD 是线段AB 的垂直平分线 ∴CA=CB 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 几何语言:∵ CA=CB ∴ 点C 在线段AB 的垂直平分线定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等. 4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 几何语言表示:∵ OE 是∠AOB 的平分线,CF ⊥OA ,DF ⊥OB ∴CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 几何语言表示:∵ PC ⊥OA ,PD ⊥OB , PC =PD ,∴点P 在∠AOB 的平分线上. 定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系. 6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.图1图2图4线段垂直平分线练习题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm , 求AC 的长度 2已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm , 那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度,那么∠EBC 是3、已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 。
几何中的角平分线与垂直平分线在几何学中,角平分线和垂直平分线是两个重要的概念。
它们不仅帮助我们理解和解决各种几何问题,还具有广泛的应用。
本文将介绍角平分线和垂直平分线的定义、性质以及它们在实际问题中的应用。
一、角平分线的定义和性质角平分线是指将一个角平分为两个相等角的线段。
设角BAC是一个角,如果直线AD将该角分为两个相等的角,即∠BAD = ∠DAC,则称直线AD为角BAC的角平分线。
角平分线具有以下性质:1. 角平分线将原角分为两个相等的角。
根据定义可知,角平分线将原角BAC分为∠BAD和∠DAC,且∠BAD = ∠DAC。
2. 角平分线上的点到角两边的距离相等。
设点D为角BAC的角平分线,点E、F分别位于边BA和边AC 上,且DE = DF。
根据三角形的性质可知,∠BDE ≌∠CDF(角平分线AD将角BAC分为两个相等角),因此△BDE ≌△CDF。
根据全等三角形的性质可得,BE = CF,即角平分线上的点到角两边的距离相等。
3. 角平分线与角的两边垂直。
根据性质2可知,点D到边BA的距离等于点D到边CA的距离,即DE = DF。
而∠BED和∠CED为角内角,因此根据三角形的性质可得,△BED ≌△CED,进而得出BE = CE。
根据等腰三角形的性质可知,BE = CE,则∠BDE = ∠CDE = 90°。
因此,角平分线与角的两边垂直。
二、垂直平分线的定义和性质垂直平分线是指将线段垂直平分为两个相等线段的线。
设线段AB为一条线段,如果直线CD同时垂直于线段AB并将其等分,即AC = CB,则称直线CD为线段AB的垂直平分线。
垂直平分线具有以下性质:1. 垂直平分线将原线段分为两个相等线段。
根据定义可知,垂直平分线CD将线段AB分为AC和CB,且AC = CB。
2. 垂直平分线上的点到线段两端点的距离相等。
设点D为线段AB的垂直平分线,点E、F分别为线段AB的两个端点,且DE = DF。
角平分线和线段垂直平分线的性质1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCA .2个B .3个C .4个D .1个4.如图4,AD ∥BC ,∠D=90,AP 平分∠DAB ,PB平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )PDCBA EDCB A DCB AE D CB A图图图图A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④7题图8题图 9题图 8、如图所示,在ABC 中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝DECBADECBAcb aD、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。
线段的垂直平分线与角平分线线段是几何学中非常基础的概念之一,而线段的垂直平分线与角平分线则是与线段相关的两个重要概念。
本文将详细介绍线段的垂直平分线和角平分线的定义、性质以及应用。
一、线段的垂直平分线线段的垂直平分线是指将一条线段平分,并与该线段垂直的线。
具体来说,对于给定的线段AB,如果存在一条线段CD,满足以下条件:1. 线段CD的长度等于线段AB的长度;2. 线段CD与线段AB垂直。
那么线段CD就是线段AB的垂直平分线。
线段的垂直平分线有以下几个重要性质:1. 垂直平分线与线段的中点相交;2. 垂直平分线上的任意一点到线段两端的距离相等;3. 线段的垂直平分线唯一存在,且与线段垂直。
应用举例:在建筑设计中,垂直平分线可以用来确定一个长方形或正方形的中心位置,帮助确定对称的放置家具或装饰品等物品。
二、线段的角平分线线段的角平分线是指将一条角平分成两个相等的角,并且该线段在原角的内部。
具体来说,对于给定的角AOB,如果存在一条线段OC,满足以下条件:1. 线段OC与线段OB和线段OA的夹角相等;2. 线段OC将角AOB平分。
那么线段OC就是角AOB的角平分线。
线段的角平分线有以下几个重要性质:1. 角的角平分线可以将角平分成两个相等的角;2. 角的角平分线唯一存在。
应用举例:在几何证明或构造中,角平分线的性质被广泛应用。
例如,在正方形中,线段的角平分线即为正方形的对角线,利用这一性质可以证明正方形的对角线互相垂直且平分彼此。
总结:线段的垂直平分线与角平分线都是线段在几何中的重要应用。
垂直平分线可用于确定线段的中点和建筑设计中的对称性;角平分线可用于证明和构造多边形等几何图形。
了解并掌握线段的垂直平分线和角平分线的性质对于解决几何问题以及理解几何学的基本概念和定理都具有重要意义。
通过本文的介绍,相信读者对线段的垂直平分线与角平分线有了更加深入的了解,希望对读者在学习和应用几何学知识时能够提供帮助。
角平分线与垂直平分线的性质一、角平分线1.定义:从一个角的顶点出发,把这个角平分成两个相等的小角的一条射线,称为这个角的角平分线。
(1)一个角只有一条角平分线;(2)角平分线上的任意一点,到这个角的两边的距离相等;(3)角的角平分线与这个角的两边构成等腰三角形;(4)角的角平分线与这个角的对边平行。
二、线段的垂直平分线1.定义:在线段的中点垂直于线段的一条直线,称为线段的垂直平分线。
(1)线段的垂直平分线唯一;(2)线段的垂直平分线垂直于线段;(3)线段的垂直平分线将线段平分成两个相等的部分;(4)线段的垂直平分线上的任意一点,到线段的两个端点的距离相等。
三、角平分线与垂直平分线的联系1.圆的角平分线和垂直平分线都是圆的半径;2.圆的直径的垂直平分线也是圆的角平分线;3.线段的垂直平分线是线段的角平分线的垂直平分线。
4.求角的度数:利用角的角平分线和已知角的度数,可以求解未知角的度数;5.证明线段相等:利用线段的垂直平分线,可以证明线段相等;6.证明三角形全等:利用三角形的角平分线和垂直平分线,可以证明三角形全等;7.求解几何图形的面积:利用角平分线和垂直平分线的性质,可以求解几何图形的面积。
以上是关于角平分线与垂直平分线的性质的详细介绍,希望对您有所帮助。
习题及方法:1.习题:求证:在一个等腰三角形中,底角的角平分线与顶角的角平分线相等。
(1)画出等腰三角形ABC,其中AB=AC,BC为底边;(2)分别画出底角B和顶角A的角平分线,交于点D;(3)连接BD和AD;(4)利用等腰三角形的性质,得到∠ABC=∠ACB;(5)利用角平分线的性质,得到∠ABD=∠CBD和∠ADB=∠ADC;(6)根据∠ABC=∠ACB和∠ABD=∠CBD,得到∠ADB=∠ADC;(7)因此,底角的角平分线与顶角的角平分线相等。
2.习题:求证:一个三角形的角平分线与这个三角形的外接圆相切。
(1)画出三角形ABC;(2)画出三角形ABC的外接圆,圆心为O;(3)分别画出三角形ABC的三个角的角平分线,交于点D、E、F;(4)连接OD、OE、OF;(5)利用角平分线的性质,得到OD=OE=OF;(6)利用圆的性质,得到OD垂直于AC,OE垂直于AB,OF垂直于BC;(7)因此,三角形的角平分线与这个三角形的外接圆相切。
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 课堂笔记:3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCm图2DABCjik图3OBCA课堂笔记:例2、 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
1、线段垂直平分线的性质
(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点
的距离相等.
定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.
3、关于三角形三边垂直平分线的定理
(1)关于三角形三边垂直平分线的定理:
三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.
例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm
4、角平分线的性质定理:
角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. . 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.
6、关于三角形三条角平分线的定理:
(1)关于三角形三条角平分线交点的定理:
三角形三条角平分线相交于一点,并且这一点到三边的距离相等.
定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.
(2)三角形三条角平分线的交点位置与三角形形状的关系:
三角形三个内角角平分线的交点一定在三角形的内部.
m
图1
D
A
B
C
图4
C
D
O
B F
E F
D
I
P R
Q A
一、选择题:
1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒
,则∠ACD 等于 ( ) A .50︒
B .65︒
C .80︒
D .95︒
2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图3,在△ABC 中,∠C=90︒
,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;
②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有 ( )
A .2个
B .3个
C .4个
D .1个 4.如图4,AD ∥BC ,∠D=90︒
,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是 ( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( ) A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( )
A 、①②③④
B 、①③
C 、②④
D 、②③④
7题图 8题图 9题图
8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定
D
E
C B A D
E C B A P
D C
B
A
E
D
C
B A D
C
B A
E D C
B
A
图3 图4
图1
图2
c b a
9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。
A 、1
B 、2
C 、3
D 、4 二、填空题:
1、已知:线段AB 及一点P ,PA=PB ,则点P 在 上。
2、已知:如图,∠BAC=1200
,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= 。
3、△ABC 中,∠A=500
,AB=AC,AB 的垂直平分线交AC 于D 则∠DBC 的度数 。
4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260
,则∠EAG= 。
5、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 。
第2题 第4题 第5题
6、在△ABC 中,AB 、AC 的垂直平分线相交于点P ,则PA 、PB 、PC 的大小关系是 。
7、在△ABC 中,AB=AC, ∠B=580
,AB 的垂直平分线交AC 于N,则∠NBC=
8.如图,已知AB ∥CD ,O 是∠ACD 和∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE =2,则两平行线AB 、CD 间的距离为______。
9.如图所示,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB ,∠MON =50°,∠OPC =30°,则∠PCA =_____。
10.如图所示,在ABC 中,∠C =90°,折叠后,使A 、B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于____度。
8题图 9题图 10题图
E O
D
C B A N
O
P M
C B
A E
D
C
B
A
三、解答题
1、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E 求证:(1)∠EAD=∠EDA ;
(2)DF ∥AC (3)∠EAC=∠B
3、如图12,PA=PB ,∠1+∠2=180︒。
求证:OP 平分∠AOB 。
2
1)O
P
B
A
16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.
4、如图13,△ABC 中,P 、Q 分别是BC 、AC 上的点,PR ⊥AB 于R ,PS ⊥AC 于S , 若AQ=PQ ,RP=PS 。
则PQ 与AB 是否平行?请说明理由。
S Q R
P
C
B A
10.如图,AD ⊥DC ,BC ⊥DC :,E 是DC 上一点,AE 平分∠DAB . (1)如果BE 平分∠ABC ,求证:点E 是DC 的中点; (2)如果E 是DC 的中点,求证:BE 平分∠ABC .
F
E
D C
B
A
1. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,
求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC
2.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?
(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。
3.正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
A
B。