角平分线和线段垂直平分线的性质
- 格式:doc
- 大小:135.67 KB
- 文档页数:5
1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. . 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.图1一、选择题:1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒B .65︒C .80︒D .95︒2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:A B C A C D S S ∆∆= ( )A .3:4B .4:3C .16:19D .不能确定3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 几何语言:∵ CD 是线段AB 的垂直平分线 ∴CA=CB 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 几何语言:∵ CA=CB ∴ 点C 在线段AB 的垂直平分线定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等. 4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 几何语言表示:∵ OE 是∠AOB 的平分线,CF ⊥OA ,DF ⊥OB ∴CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 几何语言表示:∵ PC ⊥OA ,PD ⊥OB , PC =PD ,∴点P 在∠AOB 的平分线上. 定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系. 6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.图1图2图4线段垂直平分线练习题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm , 求AC 的长度 2已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm , 那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度,那么∠EBC 是3、已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 。
几何中的角平分线与垂直平分线在几何学中,角平分线和垂直平分线是两个重要的概念。
它们不仅帮助我们理解和解决各种几何问题,还具有广泛的应用。
本文将介绍角平分线和垂直平分线的定义、性质以及它们在实际问题中的应用。
一、角平分线的定义和性质角平分线是指将一个角平分为两个相等角的线段。
设角BAC是一个角,如果直线AD将该角分为两个相等的角,即∠BAD = ∠DAC,则称直线AD为角BAC的角平分线。
角平分线具有以下性质:1. 角平分线将原角分为两个相等的角。
根据定义可知,角平分线将原角BAC分为∠BAD和∠DAC,且∠BAD = ∠DAC。
2. 角平分线上的点到角两边的距离相等。
设点D为角BAC的角平分线,点E、F分别位于边BA和边AC 上,且DE = DF。
根据三角形的性质可知,∠BDE ≌∠CDF(角平分线AD将角BAC分为两个相等角),因此△BDE ≌△CDF。
根据全等三角形的性质可得,BE = CF,即角平分线上的点到角两边的距离相等。
3. 角平分线与角的两边垂直。
根据性质2可知,点D到边BA的距离等于点D到边CA的距离,即DE = DF。
而∠BED和∠CED为角内角,因此根据三角形的性质可得,△BED ≌△CED,进而得出BE = CE。
根据等腰三角形的性质可知,BE = CE,则∠BDE = ∠CDE = 90°。
因此,角平分线与角的两边垂直。
二、垂直平分线的定义和性质垂直平分线是指将线段垂直平分为两个相等线段的线。
设线段AB为一条线段,如果直线CD同时垂直于线段AB并将其等分,即AC = CB,则称直线CD为线段AB的垂直平分线。
垂直平分线具有以下性质:1. 垂直平分线将原线段分为两个相等线段。
根据定义可知,垂直平分线CD将线段AB分为AC和CB,且AC = CB。
2. 垂直平分线上的点到线段两端点的距离相等。
设点D为线段AB的垂直平分线,点E、F分别为线段AB的两个端点,且DE = DF。
角平分线和线段垂直平分线的性质1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCA .2个B .3个C .4个D .1个4.如图4,AD ∥BC ,∠D=90,AP 平分∠DAB ,PB平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )PDCBA EDCB A DCB AE D CB A图图图图A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④7题图8题图 9题图 8、如图所示,在ABC 中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝DECBADECBAcb aD、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。
线段的垂直平分线与角平分线线段是几何学中非常基础的概念之一,而线段的垂直平分线与角平分线则是与线段相关的两个重要概念。
本文将详细介绍线段的垂直平分线和角平分线的定义、性质以及应用。
一、线段的垂直平分线线段的垂直平分线是指将一条线段平分,并与该线段垂直的线。
具体来说,对于给定的线段AB,如果存在一条线段CD,满足以下条件:1. 线段CD的长度等于线段AB的长度;2. 线段CD与线段AB垂直。
那么线段CD就是线段AB的垂直平分线。
线段的垂直平分线有以下几个重要性质:1. 垂直平分线与线段的中点相交;2. 垂直平分线上的任意一点到线段两端的距离相等;3. 线段的垂直平分线唯一存在,且与线段垂直。
应用举例:在建筑设计中,垂直平分线可以用来确定一个长方形或正方形的中心位置,帮助确定对称的放置家具或装饰品等物品。
二、线段的角平分线线段的角平分线是指将一条角平分成两个相等的角,并且该线段在原角的内部。
具体来说,对于给定的角AOB,如果存在一条线段OC,满足以下条件:1. 线段OC与线段OB和线段OA的夹角相等;2. 线段OC将角AOB平分。
那么线段OC就是角AOB的角平分线。
线段的角平分线有以下几个重要性质:1. 角的角平分线可以将角平分成两个相等的角;2. 角的角平分线唯一存在。
应用举例:在几何证明或构造中,角平分线的性质被广泛应用。
例如,在正方形中,线段的角平分线即为正方形的对角线,利用这一性质可以证明正方形的对角线互相垂直且平分彼此。
总结:线段的垂直平分线与角平分线都是线段在几何中的重要应用。
垂直平分线可用于确定线段的中点和建筑设计中的对称性;角平分线可用于证明和构造多边形等几何图形。
了解并掌握线段的垂直平分线和角平分线的性质对于解决几何问题以及理解几何学的基本概念和定理都具有重要意义。
通过本文的介绍,相信读者对线段的垂直平分线与角平分线有了更加深入的了解,希望对读者在学习和应用几何学知识时能够提供帮助。
角平分线与垂直平分线的性质一、角平分线1.定义:从一个角的顶点出发,把这个角平分成两个相等的小角的一条射线,称为这个角的角平分线。
(1)一个角只有一条角平分线;(2)角平分线上的任意一点,到这个角的两边的距离相等;(3)角的角平分线与这个角的两边构成等腰三角形;(4)角的角平分线与这个角的对边平行。
二、线段的垂直平分线1.定义:在线段的中点垂直于线段的一条直线,称为线段的垂直平分线。
(1)线段的垂直平分线唯一;(2)线段的垂直平分线垂直于线段;(3)线段的垂直平分线将线段平分成两个相等的部分;(4)线段的垂直平分线上的任意一点,到线段的两个端点的距离相等。
三、角平分线与垂直平分线的联系1.圆的角平分线和垂直平分线都是圆的半径;2.圆的直径的垂直平分线也是圆的角平分线;3.线段的垂直平分线是线段的角平分线的垂直平分线。
4.求角的度数:利用角的角平分线和已知角的度数,可以求解未知角的度数;5.证明线段相等:利用线段的垂直平分线,可以证明线段相等;6.证明三角形全等:利用三角形的角平分线和垂直平分线,可以证明三角形全等;7.求解几何图形的面积:利用角平分线和垂直平分线的性质,可以求解几何图形的面积。
以上是关于角平分线与垂直平分线的性质的详细介绍,希望对您有所帮助。
习题及方法:1.习题:求证:在一个等腰三角形中,底角的角平分线与顶角的角平分线相等。
(1)画出等腰三角形ABC,其中AB=AC,BC为底边;(2)分别画出底角B和顶角A的角平分线,交于点D;(3)连接BD和AD;(4)利用等腰三角形的性质,得到∠ABC=∠ACB;(5)利用角平分线的性质,得到∠ABD=∠CBD和∠ADB=∠ADC;(6)根据∠ABC=∠ACB和∠ABD=∠CBD,得到∠ADB=∠ADC;(7)因此,底角的角平分线与顶角的角平分线相等。
2.习题:求证:一个三角形的角平分线与这个三角形的外接圆相切。
(1)画出三角形ABC;(2)画出三角形ABC的外接圆,圆心为O;(3)分别画出三角形ABC的三个角的角平分线,交于点D、E、F;(4)连接OD、OE、OF;(5)利用角平分线的性质,得到OD=OE=OF;(6)利用圆的性质,得到OD垂直于AC,OE垂直于AB,OF垂直于BC;(7)因此,三角形的角平分线与这个三角形的外接圆相切。
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 课堂笔记:3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCm图2DABCjik图3OBCA课堂笔记:例2、 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
初中数学知识归纳角平分线和垂直平分线的性质和应用初中数学知识归纳:角平分线和垂直平分线的性质和应用角平分线和垂直平分线是初中数学中两个重要的概念。
它们具有各自独特的性质和应用。
本文将对这两个概念进行归纳总结,并分析它们在数学问题中的实际应用。
一、角平分线的性质和应用角平分线是指把一个角平分成两个相等的角的线段。
下面我们来归纳角平分线的性质和应用。
1. 性质:(1)角平分线把一个角分成两个相等的角。
(2)角平分线上的点到角的两边距离相等。
(3)角平分线是角的内切线。
2. 应用:(1)角平分线的性质可以用于解决角度相等或相似的证明问题,例如证明两条线段的夹角相等,证明两个三角形相似等。
(2)利用角平分线的性质,可以快速求解角平分线在三角形中的位置,从而解决与三角形相关的计算问题。
以上是角平分线的性质和应用的简要介绍。
二、垂直平分线的性质和应用垂直平分线是指垂直于线段并将其平分的线段。
下面我们来归纳垂直平分线的性质和应用。
1. 性质:(1)垂直平分线将线段分成两个相等的部分。
(2)垂直平分线与线段的两个端点和中点连线垂直。
(3)垂直平分线是线段的中垂线。
2. 应用:(1)垂直平分线的性质可用于证明线段的平分线与垂直平分线相交于线段的中点。
(2)利用垂直平分线的性质,我们可以求解线段的中点坐标,从而解决与平面几何相关的计算问题。
以上是垂直平分线的性质和应用的简要介绍。
三、角平分线和垂直平分线的实际应用举例角平分线和垂直平分线不仅在数学问题中有重要的应用,也在实际生活中有着广泛的应用。
以下是两个实际问题的举例:1. 实际问题1:假设我们要设计一个广告牌,使其以某个角度正好对准太阳光的照射方向。
根据角平分线的性质,我们可以确定广告牌的角度,并根据此角度来安装广告牌,以获取最佳的阳光照射效果。
2. 实际问题2:在制作家具的过程中,如果要确保家具的一条边是水平的,可以利用垂直平分线的性质,通过测量线段两个端点到垂直平分线的距离来调整线段的位置,以保证家具制作的精准度。
角平分线与垂直平分线在几何学中,角平分线和垂直平分线是两个重要的概念。
它们在解决几何问题和证明定理时起到了关键作用。
本文将介绍角平分线和垂直平分线的定义、性质以及它们在几何学中的应用。
一、角平分线角平分线是指将一个角分成两个相等角的直线或线段。
对于任意一个角ABC,如果直线AD将角ABC分成两个相等角,那么称直线AD 为角ABC的角平分线。
如图1所示,AD是角ABC的角平分线。
角平分线有以下的性质:1. 角平分线与角的两边垂直角平分线与角的两边垂直是角平分线的重要性质之一。
也就是说,角的两边与角平分线之间的夹角是90度。
这是很容易证明的,我们可以利用垂直角的性质来证明。
2. 角平分线相交于角的内部角平分线与角的两边相交于角的内部。
这可以通过反证法来证明。
假设角平分线与角的内部不相交,那么根据对角分线定理,该线段将角分成两个不等的角,与角平分线的定义相矛盾。
3. 角平分线将角分成两个相等角这是角平分线的定义所保证的。
通过角的内部一点作角的角平分线,可以将角分成两个相等的角。
这一性质在解决几何问题时经常会被应用。
二、垂直平分线垂直平分线是指将一条线段分成两个相等的线段,并且与该线段垂直的直线或线段。
对于线段AB,如果直线CD将线段AB平分,并且垂直于线段AB,那么称直线CD为线段AB的垂直平分线。
如图2所示,CD是线段AB的垂直平分线。
垂直平分线也有一些重要的性质:1. 垂直平分线与线段相交于线段的中点垂直平分线与线段相交于线段的中点,这是垂直平分线的定义所保证的。
线段的中点是指线段的两个端点的中点,可以通过连结线段的两个端点并取垂直平分线上的一点来证明。
2. 垂直平分线是线段的对称轴垂直平分线将线段分成两个相等的部分,并且对称于垂直平分线。
这是因为线段的两侧与垂直平分线之间的距离相等。
3. 垂直平分线垂直于线段垂直平分线与线段垂直是垂直平分线的重要性质之一。
也就是说,线段与垂直平分线之间的夹角是90度。
平面几何中的角平分线和垂直平分线在平面几何中,角平分线和垂直平分线是两个重要的概念。
它们在解决三角形和四边形等几何问题时起到了关键的作用。
本文将详细介绍角平分线和垂直平分线的定义、性质和应用。
一、角平分线角的平分线是指将一个角分成两个相等的角的直线。
具体而言,对于一个角ABC,如果有一条直线AD,使得∠DAB和∠DAC的度数相等,则称线段AD为角ABC的平分线。
如下图所示:[图]角平分线具有以下性质:1. 角平分线将原始角分成两个度数相等的角。
2. 角平分线与角的两边相交,且交点在角的内部。
3. 如果一条线段是角的平分线,则这条线段上的所有点到角的两边的距离相等。
角平分线的应用广泛。
在解决几何问题时,我们常常需要根据已知条件来确定角的度数,进而研究其他相关性质。
在构造角的平分线时,可以帮助我们将一个角划分为两个相等的部分,从而简化问题的处理。
二、垂直平分线垂直平分线是指将一个线段分成两个相等部分,并且与该线段垂直的直线。
具体来说,对于一个线段AB,如果有一条直线CD,使得CD与AB垂直且AD=BD,则称线段CD为线段AB的垂直平分线。
如下图所示:[图]垂直平分线具有以下性质:1. 垂直平分线将线段分成两个相等的部分。
2. 垂直平分线与线段的中点重合。
垂直平分线的应用也非常广泛。
在解决几何问题时,我们经常需要将线段平分成相等的部分,以便进行进一步的研究。
垂直平分线的存在可以帮助我们确定线段的中点,并且可以方便地构造出与线段垂直的直线。
综上所述,角平分线和垂直平分线在平面几何中具有重要的地位和作用。
它们的定义和性质为我们解决各种几何问题提供了有力的工具和方法。
熟练掌握角平分线和垂直平分线的性质,对于理解和应用几何知识具有重要的意义。
因此,在学习和研究平面几何的过程中,我们应该注重对角平分线和垂直平分线的理解和运用。
相信通过不断的练习和实践,我们将能够灵活地应用它们,解决各类几何问题。
线段垂直平分线和角平分线的性质
和判定
线段垂直平分线:
它是在一条线段上的两个端点之间画出的一条垂直于该线段的线段,其中两段等长。
性质:
1.线段垂直平分线是一条垂直于给定线段的线段;
2.它将给定线段分成两段等长的线段;
3.它的端点位于给定线段的端点。
判定:
可以使用叉乘或者勾股定理来判断线段垂直平分线,如果a×b=0,则a线段垂直于b线段;如果|a–
b|=|a+b|,则a线段和b线段等长;如果a和b都满足上述条件,则a线段就是给定线段的垂直平分线。
角平分线:
它是在一个角的两边画出的一条线段,其中两段之间的夹角是该角的一半。
性质:
1.角平分线是一条穿过角的线段;
2.它将角分割成两个等分的角;
3.它的端点位于角的两条边上。
判定:
可以使用叉乘法判断角平分线,如果a×b=0,则a线段和b线段垂直;如果|a+b|= 2*|a|,则a和b之间的夹角是180°的一半;如果a和b都满足上述条件,则a线段就是角的平分线。
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB于点D , ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,图1图2图4∵点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,且PC=PD,∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___.例2、已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE.【跟踪练习】已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角C∠B的大小为_______________。
角的平分线与垂直平分线角是几何学中常见的重要概念,平分线是指将一个角平分为两个相等部分的线段。
垂直平分线则是指从一个角的顶点到对边中点的垂线。
角的平分线与垂直平分线在几何学中有着广泛的应用,并且具有一些重要的性质和定理。
本文将详细介绍角的平分线与垂直平分线的概念、性质以及应用。
1. 角的平分线角的平分线是指从角的顶点出发,将角分成两个相等的部分的线段。
平分线可以是直线、射线或线段。
当平分线是直线时,它穿过角的顶点并且将角分成两个相等的角度。
当平分线是射线或线段时,它起始于角的顶点但不穿过角的顶点,并且将角分成两个相等的一部分。
平分线有时候也被称为角的二等分线。
平分线是角的重要性质之一。
在几何学中,平分线可以帮助我们解决各种角相关的问题。
例如,当我们需要将一个角分成两个相等的角度时,可以通过构造该角的平分线来达到目的。
平分线也可以用来证明两个角相等,当且仅当它们的平分线重合时,这是角的平分线的一个重要性质。
2. 垂直平分线垂直平分线是指从一个角的顶点作垂线,且该垂线与对边重合的线段。
换句话说,垂直平分线是从一个角顶点到对边中点的垂线。
垂直平分线有时候也被称为角的垂直二等分线。
与平分线类似,垂直平分线也有许多重要的性质和应用。
首先,垂直平分线将一个角分成两个相等的角度。
其次,垂直平分线是角的对称轴,即通过对称操作,将角绕垂直平分线旋转180度,可以得到一个重合的角。
这个性质在角的对称性证明中经常被使用到。
3. 角的平分线与垂直平分线的应用角的平分线和垂直平分线在几何学中广泛应用于证明和解决各种角相关的问题。
它们可以帮助我们证明两个角相等、寻找角的平分线、构造垂直平分线等。
举个例子,假设我们需要证明两个角相等。
可以通过构造两个角的平分线来达到目的。
首先,我们利用直尺和铅笔构造出两个角,并在它们的顶点处作出平分线。
接着,我们可以利用这些平分线的性质来证明这两个角是相等的。
此外,平分线还可以帮助我们寻找未知角的大小。
七年级数学角平分线与垂直平分线角平分线与垂直平分线在数学中是重要的概念,它们在解决几何问题中起着重要的作用。
本文将详细介绍角平分线与垂直平分线的定义和性质,并通过具体示例来说明它们在实际问题中的应用。
1. 角平分线的定义和性质角平分线是指将一个角分为两个相等角的线段,它从角的顶点出发,将角的两边分成两个相等的部分。
对于一个角ABC,其角平分线为AD,其中D点位于角ABC内部,并且∠BAD=∠DAC=1/2∠BAC。
角平分线具有以下性质:(1)角平分线将一个角分为两个相等角;(2)角平分线上的点到角的两边距离相等;(3)角平分线上的点与角的顶点、角的两边构成的线段相等;(4)角平分线上的点与角的两边构成的线段相互垂直。
2. 垂直平分线的定义和性质垂直平分线是指将一个线段垂直平分的线,它将线段分成两个相等的部分,并且垂直于线段的中点。
对于线段AB,其垂直平分线为CD,其中C为AB的中点,D点位于线段AB上,并且CD⊥AB,且CD=1/2AB。
垂直平分线具有以下性质:(1)垂直平分线将线段分成两个相等的部分;(2)垂直平分线上的点到线段两端点的距离相等;(3)垂直平分线上的点与线段两端点构成的线段相等;(4)垂直平分线垂直于线段。
3. 角平分线与垂直平分线的应用举例角平分线和垂直平分线在几何问题中有着广泛的应用。
下面通过几个具体的例子来说明它们的应用。
例子1:证明一个四边形是矩形。
解答:首先,我们可以通过角平分线的性质来证明。
若一个四边形ABCD的对角线AC的角平分线BD与BC垂直,则四边形ABCD是矩形。
因为角BAD与角BAC相等(角平分线的定义),又角CBD是直角(垂直平分线的定义),所以角BAD与角CBD相等。
同理可以证明角ABC与角ADC相等,因此四边形ABCD的四个角都是直角,即为矩形。
例子2:求一个线段的中点。
解答:我们可以通过垂直平分线的性质来求线段的中点。
给定线段AB,我们可以构造其垂直平分线CD,CD与AB的交点即为线段AB 的中点。
1、线段垂直平分线的性质
(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点
的距离相等.
定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.
3、关于三角形三边垂直平分线的定理
(1)关于三角形三边垂直平分线的定理:
三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.
例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm
4、角平分线的性质定理:
角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. . 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.
6、关于三角形三条角平分线的定理:
(1)关于三角形三条角平分线交点的定理:
三角形三条角平分线相交于一点,并且这一点到三边的距离相等.
定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.
(2)三角形三条角平分线的交点位置与三角形形状的关系:
三角形三个内角角平分线的交点一定在三角形的内部.
m
图1
D
A
B
C
图4
C
D
O
B F
E F
D
I
P R
Q A
一、选择题:
1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒
,则∠ACD 等于 ( ) A .50︒
B .65︒
C .80︒
D .95︒
2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图3,在△ABC 中,∠C=90︒
,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;
②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有 ( )
A .2个
B .3个
C .4个
D .1个 4.如图4,AD ∥BC ,∠D=90︒
,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是 ( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( ) A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( )
A 、①②③④
B 、①③
C 、②④
D 、②③④
7题图 8题图 9题图
8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定
D
E
C B A D
E C B A P
D C
B
A
E
D
C
B A D
C
B A
E D C
B
A
图3 图4
图1
图2
c b a
9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。
A 、1
B 、2
C 、3
D 、4 二、填空题:
1、已知:线段AB 及一点P ,PA=PB ,则点P 在 上。
2、已知:如图,∠BAC=1200
,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= 。
3、△ABC 中,∠A=500
,AB=AC,AB 的垂直平分线交AC 于D 则∠DBC 的度数 。
4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260
,则∠EAG= 。
5、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 。
第2题 第4题 第5题
6、在△ABC 中,AB 、AC 的垂直平分线相交于点P ,则PA 、PB 、PC 的大小关系是 。
7、在△ABC 中,AB=AC, ∠B=580
,AB 的垂直平分线交AC 于N,则∠NBC=
8.如图,已知AB ∥CD ,O 是∠ACD 和∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE =2,则两平行线AB 、CD 间的距离为______。
9.如图所示,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB ,∠MON =50°,∠OPC =30°,则∠PCA =_____。
10.如图所示,在ABC 中,∠C =90°,折叠后,使A 、B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于____度。
8题图 9题图 10题图
E O
D
C B A N
O
P M
C B
A E
D
C
B
A
三、解答题
1、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E 求证:(1)∠EAD=∠EDA ;
(2)DF ∥AC (3)∠EAC=∠B
3、如图12,PA=PB ,∠1+∠2=180︒。
求证:OP 平分∠AOB 。
2
1)O
P
B
A
16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.
4、如图13,△ABC 中,P 、Q 分别是BC 、AC 上的点,PR ⊥AB 于R ,PS ⊥AC 于S , 若AQ=PQ ,RP=PS 。
则PQ 与AB 是否平行?请说明理由。
S Q R
P
C
B A
10.如图,AD ⊥DC ,BC ⊥DC :,E 是DC 上一点,AE 平分∠DAB . (1)如果BE 平分∠ABC ,求证:点E 是DC 的中点; (2)如果E 是DC 的中点,求证:BE 平分∠ABC .
F
E
D C
B
A
1. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,
求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC
2.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?
(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。
3.正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
A
B。