第14章 缩孔与缩松
- 格式:ppt
- 大小:263.00 KB
- 文档页数:27
缩孔、缩松的形成及防止方法副教授:陈云铸件中的缩孔与缩松液态金属在铸型内凝固过程中,由于液态收缩和凝固收缩导致体积缩小,若其收缩得不到补充,就在铸件最后凝固的部分形成孔洞。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
(a)铝合金缩孔、缩松(b)金相显微镜下缩松(c)扫描电镜下缩松一、缩孔的形成纯金属、共晶成分和凝固温度范围窄的合金,浇注后在型腔内是由表及里的逐层凝固。
在凝固过程中,如得不到合金液的补充,在铸件最后凝固的地方就会产生缩孔。
缩孔形成的条件:铸件呈逐层凝固方式凝固,成分为纯金属或共晶成分的合金。
缩孔产生的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。
缩孔产生的部位在铸件最后凝固区域,如壁较厚大的上部或铸件两壁相交处,这些地方称为热节。
热节位置可用画内接圆的方法确定。
用画内切圆法确定缩孔位置二、缩松的形成铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
缩松形成的条件:铸件主要呈糊状凝固方式凝固,成分为非共晶成分或有较宽结晶温度范围的合金。
形成缩松的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值。
缩松一般出现在铸件壁的轴线区域、冒口根部、热节处,也常分布在集中缩孔的下方。
三、影响缩孔和缩松形成的因素1、合金成分结晶温度范围越小的合金,产生缩孔的倾向越大;结晶温度范围越大的合金,产生缩松的倾向越大。
铁碳合金成分和体积收缩的关系V总—总体积收缩容积;V孔—缩孔容积;V松—缩松容积2、浇注条件提高浇注温度时,合金的总体积收缩和缩孔倾向增大。
浇注速度很慢或向冒口中不断补浇高温合金液,使铸件液态和凝固收缩及时得到补偿,铸件总体积收缩减小,缩孔容积也减小。
V 总—总体积收缩容积;V 孔—缩孔容积;V 松—缩松容积铁碳合金成分和体积收缩的关系3、铸型材料铸型材料对铸件冷却速度影响很大 。
铸铁缩孔、缩松的热分析测量与预防天津汇丰探测装备有限公司马建华概述:铁水质量的热分析方法源于金属学中的相图理论,在发达国家早已广泛用于铁水的在线检测和控制,是高质量铸铁生产中依赖的检测手段,在提高资源利用率、节能减排中发挥着重要的作用。
随着我们对热分析技术的了解,能够改变我们以往仅从成分角度来进行材质控制的初级状态。
可以使我们对活性成分的概念、型核物质的作用、消除缺陷的机理从理念上发生质的飞跃。
为了使大家能够掌握热分析技术的优势,正确使用热分析解决生产中具体的质量问题,普遍提高我国的铸件材质水平和参与国际市场竞争的能力。
在此依个人之浅见就热分析测量和预防缩孔、缩松方面的作用,向大家做一个介绍。
一、热分析测量缩孔、缩松的方法取铁水浇入H-3QG样杯,用HF-08H型炉后铁水质量管理仪对孕育或球化后的铁水进行热分析。
热分析仪首先记录下样杯内铁水的凝固温度曲线:炉后铁水质量管理仪通过对凝固温度曲线的解析,找出铁水凝固过程的各种相变特征参数。
将相变特征参数值带入数学模型,即可计算出铁水凝固组织中的:初生奥氏体生成量、过冷段石墨生成量、再辉后石墨生成量,进而可以计算出凝固组织的缩孔概率和缩松概率。
二、热分析测量缩孔概率的机理:铁水降温到初晶温度点(TL),在铸型的激冷作用下首先凝固出一个封闭的激冷壳。
从初晶温度点(TL)到共晶过冷点(TEL)的凝固过程,是初生奥氏体晶芽生长成树枝状奥氏体枝晶的过程。
由于液态的铁水可以在树枝状枝晶间流动,降温、凝固收缩产生的体积空位,可由上部的液态铁水绕过树枝状枝晶进行填补。
因此在封闭的激冷壳内,凝固产生的体积收缩经流动铁水的补充后,在中心的上部合并成一个集中的体积空位,这就是缩孔的形成过程。
热分析能够测量出凝固铁水的初晶温度点(TL)和共晶过冷点(TEL),可以通过测量凝固铁水在这个区间释放的热量,计算出初生奥氏体生成量和体积收缩率。
因此可以在浇注前预测铁水的缩孔率。
简而言之:从初晶点(TL)到共晶过冷点(TEL)的凝固过程,放热量越大被测铁水的缩孔率越大。
F铸造oundry热加工热处理/锻压/铸造2011年第15期69铸钢件缩孔和缩松的形成与预防宁夏天地奔牛实业集团有限公司(石嘴山753001)王福京缩孔和缩松从本质上来说,是因为型内的金属产生收缩而引起的,但是不同种类的金属,其形成缩孔和缩松的机理有所不同。
1.产生机理从铸钢件角度来分析,钢液注满型腔后,由于型壁的传热作用,型内钢液形成自型壁表面至铸件壁厚中心温度逐渐升高的温度梯度。
随着型壁传热作用不断地进行,型内钢液温度不断降低。
当与型壁表面接触的钢液温度降至凝固温度时,铸件的表面就开始凝固,并形成一层固体状态的硬壳。
如果这时浇注系统已经凝固,那么硬壳内处于液体状态的钢液就与外界隔绝。
当型内钢液温度进一步降低时,硬壳内的钢液一方面因温度降低而产生液态收缩,另一方面由于硬壳的传热作用,使与硬壳接触的钢液不断结晶凝固,从而出现凝固收缩。
这两种收缩的出现,将使硬壳内钢液液面下降。
与此同时,处于固体状态的硬壳,也因温度的降低而产生固态收缩,对于铸钢件来说,由于液态收缩和凝固收缩的总和是大于固态收缩的,因此在重力作用下,硬壳内钢液液面将下降,并且与上部硬壳脱离接触。
随着型内钢液温度不断地降低和硬壳内钢液不断地凝固,硬壳越来越厚,而钢液越来越少。
当铸件内最后的钢液凝固后,铸件上部的硬壳下面就会出现一个孔洞,这个孔洞即为缩孔。
虽然凝固后的铸件自高温状态冷却至室温时,还将产生固态收缩,从而使整个铸件和其内部缩孔的体积稍有减小,但并不会改变缩孔体积与铸件体积的比值。
由于凝固层厚度的增加和钢液的减少是不断进行的,因而从理论上来说,缩孔的形状是漏斗状的。
并且因残存的钢液凝固时不能得到补缩,所以在产生缩孔的同时,往往也伴随着缩松的出现。
用肉眼能直接观察到的缩孔为宏观缩孔,而借助于放大镜或将断面腐蚀以后才能发现的缩孔为微观缩孔。
一般情况下,宏观缩孔可以用补焊的手段来解决,而微观缩孔就无法处理了,一般都是成片出现的微小孔洞。
缩孔、缩松的形成及防止方法副教授:陈云铸件中的缩孔与缩松液态金属在铸型内凝固过程中,由于液态收缩和凝固收缩导致体积缩小,若其收缩得不到补充,就在铸件最后凝固的部分形成孔洞。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
(a)铝合金缩孔、缩松(b)金相显微镜下缩松(c)扫描电镜下缩松一、缩孔的形成纯金属、共晶成分和凝固温度范围窄的合金,浇注后在型腔内是由表及里的逐层凝固。
在凝固过程中,如得不到合金液的补充,在铸件最后凝固的地方就会产生缩孔。
缩孔形成的条件:铸件呈逐层凝固方式凝固,成分为纯金属或共晶成分的合金。
缩孔产生的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。
缩孔产生的部位在铸件最后凝固区域,如壁较厚大的上部或铸件两壁相交处,这些地方称为热节。
热节位置可用画内接圆的方法确定。
用画内切圆法确定缩孔位置二、缩松的形成铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
缩松形成的条件:铸件主要呈糊状凝固方式凝固,成分为非共晶成分或有较宽结晶温度范围的合金。
形成缩松的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值。
缩松一般出现在铸件壁的轴线区域、冒口根部、热节处,也常分布在集中缩孔的下方。
三、影响缩孔和缩松形成的因素1、合金成分结晶温度范围越小的合金,产生缩孔的倾向越大;结晶温度范围越大的合金,产生缩松的倾向越大。
铁碳合金成分和体积收缩的关系V总—总体积收缩容积;V孔—缩孔容积;V松—缩松容积2、浇注条件提高浇注温度时,合金的总体积收缩和缩孔倾向增大。
浇注速度很慢或向冒口中不断补浇高温合金液,使铸件液态和凝固收缩及时得到补偿,铸件总体积收缩减小,缩孔容积也减小。
V 总—总体积收缩容积;V 孔—缩孔容积;V 松—缩松容积铁碳合金成分和体积收缩的关系3、铸型材料铸型材料对铸件冷却速度影响很大 。
浅谈铸件缩孔缩松产生的原因铸件缩孔和缩松是出现在铸件制造过程中的常见缺陷,对铸件的质量和性能产生重要影响。
缩孔和缩松的产生主要有以下几个原因:1.缩孔:缩孔是指铸件中出现内部凹陷或空洞的缺陷。
其主要原因如下:-铸型设计不合理:铸型的收缩系统设计不合理、浇注系统设计不合理、毛坯料和铸型之间的空隙设计不合理等,都会导致金属液在凝固过程中无法顺利填充,从而形成缩孔。
-浇注工艺参数不合理:包括浇注温度过低、浇注速度过快、浇注压力不足等。
这些因素都会影响金属液的流动性和凝固过程,从而产生缩孔。
-快速凝固导致温度梯度大:金属液凝固过程中温度梯度大,会加快金属的凝固速度,导致空洞无法充分填充,形成缩孔。
-毛坯料中夹杂物:毛坯料中的夹杂物如气孔、沙眼等也会导致铸件内部形成缩孔。
2.缩松:缩松是指铸件内部存在小裂纹或局部结构不致密的缺陷。
其主要原因如下:-热应力引起的冷裂纹:在铸造过程中,由于金属液凝固和收缩产生热应力,当应力超过金属的强度时,就会发生冷裂纹,形成缩松。
-毛坯中的气体和夹杂物:毛坯中存在气孔、气泡等夹杂物,会导致铸件内部产生局部脱实和裂纹,形成缩松。
-铸造温度过低:铸造温度过低会导致金属液在凝固过程中形成局部冷凝物,使得金属液无法顺利填充,产生缩松。
-浇注系统设计不合理:浇注系统设计不合理会导致金属液流动不畅,使得铸件内部无法顺利充实,形成缩松。
为防止铸造缺陷的产生,可以采取以下措施:-合理设计铸型:铸型的收缩系统设计要合理,保证金属液顺利充实,并通过改变浇注位置、浇注顺序等因素来减小缩松和缩孔的产生。
-优化浇注工艺参数:要根据具体的铸造材料和结构特点,合理控制浇注温度、浇注速度和浇注压力等参数,以减少缩松和缩孔的产生。
-毛坯清洁处理:在铸造前要对毛坯进行彻底清洁,以排除夹杂物和气泡等缺陷,减少铸件内部缺陷的产生。
-采用适当的热处理工艺:通过热处理来改善铸件内部组织结构,减少缩松和缩孔的产生,提高铸件的力学性能和耐热性能。
液态金属加工是许多工业生产中常用的技术,但往往容易产生一些问题,如缩孔和缩松。
这些问题是由于金属凝固过程中热应力或收缩应力导致的。
以下是控制液态金属加工中的缩孔与缩松的一些策略,供您参考:一、选择合适的合金成分合金成分对液态金属的凝固过程和最终形态有很大的影响。
选择合适的合金成分可以减少缩孔和缩松的风险。
例如,增加合金中的合金元素含量可以改善流动性,减少凝固过程中的热应力,从而降低缩孔和缩松的风险。
二、优化模具设计模具设计对液态金属凝固过程中的冷却速度和形态有很大的影响。
优化模具设计可以减少缩孔和缩松的风险。
例如,采用多孔模具或采用适当的冷却系统可以加快冷却速度,减少金属凝固过程中的热应力,从而减少缩孔和缩松的风险。
三、控制冷却速度冷却速度对液态金属的凝固过程和最终形态有很大的影响。
控制冷却速度可以减少缩孔和缩松的风险。
在生产过程中,可以通过调整模具温度、浇注速度和浇口大小等参数来控制冷却速度,以获得更好的凝固效果。
四、提高铸件致密度铸件致密度是影响缩孔和缩松的重要因素之一。
在生产过程中,可以通过适当的高频震动或气体压力来提高铸件致密度,以减少缩孔和缩松的风险。
同时,检查铸造设备的密封性也是至关重要的,以避免金属气体对铸件的影响。
五、控制浇注温度和浇口位置浇注温度和浇口位置对液态金属的凝固过程和最终形态有很大的影响。
在生产过程中,应该根据产品的特点和工艺要求选择合适的浇口位置和浇注温度。
同时,浇口的位置应该尽可能地靠近缩孔的位置,以减少金属流动过程中的热应力和收缩应力,从而减少缩孔和缩松的风险。
综上所述,控制液态金属加工中的缩孔与缩松需要从多个方面入手,包括选择合适的合金成分、优化模具设计、控制冷却速度、提高铸件致密度以及控制浇注温度和浇口位置等。
这些策略的实施需要结合实际情况进行综合考虑,以确保生产过程中的安全性和质量。
此外,这系列操作都需专业人员执行,以保证工艺的准确性,避免任何可能的风险。
§2铸件的缩孔和缩松铸件凝结时因液态缩短和凝结缩短使铸件最后凝结部位出现孔洞,容积大而集中的称集中缩孔(缩孔),小而分别的称分别缩孔(缩松)。
一形成机理1缩孔合金性质不一样,缩孔形成的机理各异。
1)凝结过程中无体积膨胀合金如铸钢、白口铸铁、铝合金等。
浇铸后,型壁传热、逐层凝结、液态缩短和凝结缩短大于固态缩短。
如无赔偿,则在最后凝结部位出现缩孔。
2)有体积膨胀的合金(灰铁、球铁)自补缩能力:灰铁共晶凝结过程中,片状石墨尖端在共晶液中优先长大,其产生的体积膨胀绝大多半直接作用在初生奥氏体枝晶或共晶团的液体上,并推进液体经过枝晶间的通道去补缩因为液态和固态缩短所形成的小孔洞。
文档来自于网络搜寻缩前膨胀:石墨长大所产生的膨胀压力经过奥氏体或共晶团最后作用在铸型表面,使型腔扩大的现象。
灰铁的共晶凝结偏向于中间凝结方式,凝结中期已有完整凝结的外壳,能蒙受必定的石墨化膨胀压力,因此其缩前膨胀可忽视不计。
故其产生缩孔的偏向小。
只有当液态缩短和凝结缩短之和大于石墨化膨胀和固态缩短之和才会产生缩孔。
文档来自于网络搜寻球铁共晶凝结呈糊状凝结方式,凝结时期无牢固外壳。
如铸型刚度不够,则使型腔扩大,故球铁缩前膨胀比灰铁大好多。
当球铁液态缩短、凝结缩短和型腔扩大之和大于石墨化膨胀和固态缩短之和时,铸件将产生缩孔。
文档来自于网络搜寻总结:灰铸铁:石墨化膨胀产生的膨胀压力绝大多半直接作用在液体上(共晶团或A枝晶之间的),小部分作用在铸型型壁上。
球铁:石墨化膨胀产生的膨胀压力一小部分直接作用在液体上(共晶团1/3或A枝晶之间的),绝大多半作用在铸型型壁上。
缩松铸件凝结后期,最后凝结的节余金属液,因为温度梯度小,会按同时凝结原则凝结,即金属液中形成很多渺小的晶粒。
当晶粒长大相互连结后,将节余金属液切割成互不相通的小熔池。
这些小熔池在随后的凝结过程中得不到金属液的增补,就形成缩松。
文档来自于网络搜寻缩松按其散布状态分三种:弥散缩松、轴线缩松、局部缩松。
球铁铸件缩孔、缩松的成因与防止球铁铸件缩孔、缩松的成因与防止摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。
球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。
La 有助于消除缩松倾向。
分析缩孔缩松形成原因并提出相应的防止办法,有助于减少由此产生的废品损失。
关键词:球墨铸铁、收缩、缩孔、缩松1 前言1.1 缺陷形成原因球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全可以用成熟的经验予以消除。
据介绍:工业发达国家的铸造废品率可以控制在1%以下[1],国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。
1。
显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。
逐层凝固可以使铸件凝固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。
糊状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在有如粥糊。
大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。
铸型冷却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。
然而,批量生产中湿砂型铸造很难被金属型或干砂型取代。
球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式:①球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。
②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。
③球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。
铸造工艺---铸件的缩孔、缩松在金属的铸造过程中,易产生缩孔和缩松,缩孔和缩松如何识别?缩孔和缩松如何区别?哪些铸造合金容易产生缩松?铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1凝固方式:铸件凝固过程中,其断面上一般分为三个区:1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1)逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2)糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.故---3)中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2影响铸件凝固方式的因素1)合金的结晶温度范围范围小:凝固区窄,愈倾向于逐层凝固如:砂型铸造,低碳钢逐层凝固,高碳钢糊状凝固2)铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1收缩的几个阶段1)液态收缩:从金属液浇入铸型到开始凝固之前.液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2)凝固收缩:从凝固开始到凝固完毕.同一类合金,凝固温度范围大者,凝固体积收缩率大.如:35钢,体积收缩率3.0%,45钢4.3%3)固态收缩:凝固以后到常温.固态收缩影响铸件尺寸,故用线收缩表示.2影响收缩的因素1)化学成分:铸铁中促进石墨形成的元素增加,收缩减少.如:灰口铁C,Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2)浇注温度:温度↑液态收缩↑3)铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔.纯金属,共晶成分易产生缩孔*产生缩孔的基本原因:铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4影响缩孔容积的因素(补充)1)液态收缩,凝固收缩↑缩孔容积↑2)凝固期间,固态收缩↑,缩孔容积↓3)浇注速度↓缩孔容积↓4)浇注速度↑液态收缩↑易产生缩孔5缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1)宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2)微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞.凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6缩孔,缩松的防止办法基本原则:制定合理工艺—补缩,缩松转化成缩孔.顺序凝固:冒口—补缩同时凝固:冷铁—厚处.减小热应力,但心部缩松,故用于收缩小的合金.l)安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.2)非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.3)对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.。
焊接缩孔与缩松的影响因素与预防措施探析摘要:金属焊接过程中因其本身的物理特性,必然会产生焊接缩孔与缩松现象,对铸件的力学性能、气密性和物理化学性能有着较大的影响,严重影响了焊接质量。
基于此,笔者结合多年现场实际工作经验,详细分析了影响缩孔与缩松的因素,提出了防止途径,并从工艺角度提出了控制措施,以供参考。
关键词:焊接缩孔缩松影响因素预防措施引言金属在焊接过程中,因其本身的物理特性,必然会产生收缩现象。
而铸件在焊接凝固过程中,由于合金的液态收缩和凝固收缩,往往在其最后凝固的部位出现孔洞。
容积大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
前者常出现于纯金属、共晶成分合金和结晶温度范围较窄的铸造合金中,且多集中在铸件的上部和最后凝固的部位,以及铸件厚壁处、两壁相交处及内浇口附近等凝固较晚或凝固缓慢的部位(称为热节);后者多出现于结晶温度范围较宽的合金中,常分布在铸件壁的轴线区域、缩孔附近或铸件厚壁的中心部位。
铸件中存在的任何形态的缩孔和缩松,都会减小铸件的受力面积,在缩孔和缩松的尖角处产生应力集中,使铸件的力学性能显著降低。
此外,缩孔和缩松还会降低铸件的气密性和物理化学性能。
因此,必须采取有效措施予以防止。
2、影响缩孔与缩松的因素2.1影响缩孔与缩松大小的因素(1)金属的性质金属的液态收缩系数αV液和凝固收缩率εV凝越大,缩孔及缩松容积越大。
金属的固态收缩系数αV固越大,缩孔及缩松容积越小。
(2)铸型条件铸型的激冷能力越大,缩孔及缩松容积就越小。
因为铸型激冷能力越大,越易造成边浇注边凝固的条件,使金属的收缩在较大程度上被后注入的金属液所补充,使实际发生收缩的液态金属量减少。
(3)浇注条件浇注温度越高,金属的液态收缩越大,则缩孔容积越大;浇注速度越缓慢,浇注时间越长,缩孔容积就越小。
(4)铸件尺寸铸件壁厚越大,表面层凝固后,内部的金属液温度就越高,液态收缩就越大,则缩孔及缩松的容积越大。
(5)补缩压力凝固过程中增加补缩压力,可减少缩松而增加缩孔的容积。