C语言课程设计_黑白棋游戏
- 格式:pdf
- 大小:341.08 KB
- 文档页数:26
基于C语言的黑白棋游戏设计黑白棋,也被称为翻转棋,在全球范围内广受欢迎。
它的玩法简单而富有挑战性,因此在计算机科学领域中,基于C语言的黑白棋游戏设计成为了一个常见的项目。
本文将详细介绍如何使用C语言设计一个功能完善的黑白棋游戏。
一、游戏规则黑白棋的规则很简单,游戏双方通过轮流下棋,在棋盘上放置自己颜色的棋子。
当一个棋子被夹在两个对方的棋子之间时,这个棋子就会被翻转成对方的颜色。
游戏继续进行,直到棋盘被填满或者双方都无法再下棋为止。
最后,棋盘上棋子数量较多的一方获胜。
二、程序设计1. 游戏界面设计在设计游戏界面时,我们可以使用C语言提供的字符画功能。
通过绘制合适大小的方格和棋子标识符,可以在控制台上模拟出一个棋盘。
同时,使用特殊字符来绘制提示信息和菜单栏,可以增强游戏的可玩性和视觉效果。
2. 数据结构设计为了表示棋盘和棋子的状态,我们需要设计相应的数据结构。
一个简单而有效的方法是使用二维数组来表示棋盘。
每个数组元素的值可以用来表示该位置的状态,比如1表示黑棋、2表示白棋、0表示空位。
这样,可以通过对数组的操作来实现棋子的落子和翻转。
3. 游戏逻辑设计黑白棋的游戏逻辑涉及到棋子落子、翻转以及胜负的判断。
在程序设计中,我们需要编写相应的函数来处理这些逻辑。
比如,可以编写一个函数来检查某一位置是否可以落子,以及另一个函数来实现棋子翻转的操作。
4. 用户交互设计为了使游戏更加友好和可操作性强,我们可以设计一些用户交互功能。
比如,在每次轮到玩家下棋时,程序可以提示玩家输入坐标来落子。
同时,我们可以设计一些额外的功能,比如悔棋、重新开始等,以提升游戏的易用性。
三、程序实现下面是一个简单的基于C语言的黑白棋游戏设计的示例代码:```c#include<stdio.h>#define SIZE 8void initializeBoard(int board[SIZE][SIZE]) {// 初始化棋盘}void printBoard(int board[SIZE][SIZE]) {// 绘制棋盘}int isLegalMove(int board[SIZE][SIZE], int row, int col) {// 检查是否可以落子}void makeMove(int board[SIZE][SIZE], int row, int col, int player) { // 落子}void flipPieces(int board[SIZE][SIZE], int row, int col, int player) { // 翻转棋子}int hasValidMove(int board[SIZE][SIZE], int player) {// 检查是否有可行的落子点}int countPieces(int board[SIZE][SIZE], int player) {// 统计棋盘上的棋子数量}int main() {int board[SIZE][SIZE];int currentPlayer = 1; // 1代表黑子,2代表白子initializeBoard(board);while (hasValidMove(board, currentPlayer)) {printBoard(board);int row, col;printf("Player %d's turn, please enter row and column: ", currentPlayer);scanf("%d %d", &row, &col);if (isLegalMove(board, row, col)) {makeMove(board, row, col, currentPlayer);flipPieces(board, row, col, currentPlayer);currentPlayer = (currentPlayer == 1) ? 2 : 1;} else {printf("Invalid move!\n");}}int blackCount = countPieces(board, 1);int whiteCount = countPieces(board, 2);printf("Game over! ");if (blackCount > whiteCount) {printf("Player 1 wins!\n");} else if (blackCount < whiteCount) {printf("Player 2 wins!\n");} else {printf("It's a draw!\n");}return 0;}```四、总结通过使用C语言,我们可以轻松地设计和实现一个黑白棋游戏程序。
c 课程设计黑白棋摘要一、教学目标本节课的教学目标是让学生掌握黑白棋的基本规则和技巧,能够进行简单的对战游戏。
知识目标包括了解黑白棋的历史背景、规则和策略,技能目标包括能够熟练操作棋子进行游戏,情感态度价值观目标包括培养学生的团队合作意识、耐心和思考能力。
二、教学内容本节课的教学内容主要包括黑白棋的基本规则、棋子的操作方法和游戏策略。
教学大纲如下:1.黑白棋的历史背景和规则介绍2.棋子的操作方法:如何走棋、吃子、保护棋子等3.游戏策略:如何布局、进攻、防守等三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:教师通过讲解黑白棋的基本规则和策略,让学生了解游戏的基本知识。
2.讨论法:学生分组讨论棋子的操作方法和游戏策略,促进学生之间的交流和合作。
3.案例分析法:教师展示一些经典的黑白棋对战案例,让学生分析双方的策略和胜负原因。
4.实验法:学生进行实际的棋局对战,通过实践提高自己的游戏技巧。
四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源:1.教材:提供黑白棋的规则和策略介绍,供学生参考。
2.参考书:提供一些关于黑白棋的进阶知识,供学生拓展学习。
3.多媒体资料:通过视频或图片展示黑白棋的历史背景和经典对战案例。
4.实验设备:提供足够的棋子和棋盘,让学生进行实际的棋局对战。
五、教学评估本节课的教学评估将采用多种方式,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业和考试等。
1.平时表现:通过观察学生在课堂上的参与度、提问回答和小组讨论的表现来评估学生的学习态度和理解程度。
2.作业:布置相关的黑白棋练习题,要求学生在课后完成,通过作业的完成质量来评估学生的掌握程度。
3.考试:安排一次黑白棋的对战考试,通过学生的游戏表现和策略运用来评估其综合运用能力。
六、教学安排本节课的教学安排将根据学生的实际情况和教学任务进行合理规划。
黑白棋c 课程设计一、教学目标本课程旨在通过黑白棋(C)的教学,让学生掌握黑白棋的基本规则和策略,提高学生的逻辑思维能力和决策能力。
具体的教学目标如下:知识目标:学生能够理解黑白棋的起源、基本规则和常用策略。
技能目标:学生能够独立完成黑白棋的设置和游戏,掌握基本的对弈技巧和策略。
情感态度价值观目标:学生能够培养团队合作精神,学会尊重对手,增强自信心和抗挫能力。
二、教学内容本课程的教学内容主要包括黑白棋的基本规则、棋子的走法、游戏的设置和策略等。
具体的教学内容如下:1.黑白棋的起源和发展:介绍黑白棋的历史背景和发展过程。
2.黑白棋的基本规则:讲解棋盘的布局、棋子的颜色和初始位置,以及如何进行合法的走法。
3.棋子的走法:教授不同棋子的走法,包括王、后、象、马、车等。
4.游戏的设置:讲解如何设置棋盘和初始布局,以及如何进行合法的走法。
5.常用策略:介绍基本的黑白棋策略,如包围、阻断、防守等。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过讲解黑白棋的基本规则、棋子的走法和常用策略,使学生掌握相关知识。
2.讨论法:学生进行小组讨论,分享彼此的黑白棋经验和策略,提高学生的思考和沟通能力。
3.案例分析法:分析经典的黑白棋对局,让学生学会分析局势和制定策略。
4.实验法:让学生亲自动手进行黑白棋游戏,培养学生的实际操作能力和决策能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用权威、实用的黑白棋教材,为学生提供系统的学习材料。
2.参考书:提供相关的黑白棋参考书籍,供学生课后拓展阅读。
3.多媒体资料:制作精美的PPT和教学视频,帮助学生更好地理解和掌握黑白棋知识。
4.实验设备:提供足够的黑白棋棋盘和棋子,让学生进行实际操作和练习。
五、教学评估本课程的评估方式将包括平时表现、作业和考试等,以全面、客观地评价学生的学习成果。
计算机技术基础课程设计C语言设计报告题目:黑白棋学院:化学工程学院专业:制药工程班级:050607姓名:裴敦锐指导教师:顾煜新设计日期:2007 年1月10日题目:黑白棋一、选题背景:我们日常生活中的小游戏机、手机上,经常会有黑白棋、拼图游戏、俄罗斯方块、推箱子、乒乓弹球等小游戏,这些小游戏可以让我们在日常紧张繁忙的生活中调节情绪,以达到放松身心的作用。
因此,我做了一个黑白棋的小游戏,希望在学习的空闲时间能够过得开心快乐!二、设计思想:该游戏是一款轻巧易玩的游戏。
利用C语言提供的丰富的图形函数构筑友好的图形界面。
利用了FOR,WHILE循环以及if判断实现游戏的各种分支顺利进行。
游戏初始在棋盘中央每方有二子,双方交替下子。
后下一方的两个棋子夹着的对方棋子变为己方棋子。
如无处可下子则继续由另一方下子。
棋盘为8×8的格。
未下满时一方无子则自动判负。
当棋盘下满后棋子多的一方为胜。
当双方子数量相同时判为和棋。
三、程序流程图四、程序清单#include "graphics.h" /*图形系统头文件*/#define LEFT 0x4b00 /*光标左键值*/#define RIGHT 0x4d00 /*光标右键值*/#define DOWN 0x5000 /*光标下键值*/#define UP 0x4800 /*光标上键值*/#define ESC 0x011b /* ESC键值*/#define ENTER 0x1c0d /* 回车键值*/int a[8][8]={0},key,score1,score2;/*分数以及按键与存放棋子的变量*/ char playone[3],playtwo[3];/*两个人的得分转换成字符串输出*/void playtoplay(void);/*人人对战函数*/void DrawQp(void);/*画棋盘函数*/void SetPlayColor(int x);/*设置棋子第一次的颜色*/void MoveColor(int x,int y);/*恢复原来棋盘状态*/int QpChange(int x,int y,int z);/*判断棋盘的变化*/void DoScore(void);/*处理分数*/void PrintScore(int n);/*输出成绩*/void playWin(void);/*输出胜利者信息*/void main(void){int gd=DETECT,gr;initgraph(&gd,&gr,"c:\\tc"); /*初始化图形系统*/DrawQp();/*画棋盘*/playtoplay();/*人人对战*/getch();closegraph();/*关闭图形系统*/}void DrawQp()/*画棋盘*/{int i,j;score1=score2=0;/*棋手一开始得分都为0*/setbkcolor(GREEN);/*设置背景颜色*/for(i=100;i<=420;i+=40){line(100,i,420,i);/*画水平线*/line(i,100,i,420); /*画垂直线*/}setcolor(0);/*取消圆周围的一圈东西*/setfillstyle(SOLID_FILL,15);/*白色实体填充模式*/fillellipse(500,200,15,15); /*在显示得分的位置画棋*/setfillstyle(SOLID_FILL,8); /*黑色实体填充模式*/fillellipse(500,300,15,15);a[3][3]=a[4][4]=1;/*初始两个黑棋*/a[3][4]=a[4][3]=2;/*初始两个白棋*/setfillstyle(SOLID_FILL,WHITE);fillellipse(120+3*40,120+3*40,15,15);fillellipse(120+4*40,120+4*40,15,15);setfillstyle(SOLID_FILL,8);fillellipse(120+3*40,120+4*40,15,15);fillellipse(120+4*40,120+3*40,15,15);score1=score2=2; /*有棋后改变分数*/DoScore();/*输出开始分数*/}void playtoplay()/*人人对战*/{int x,y,t=1,i,j,cc=0;while(1)/*换棋手走棋*/{x=120,y=80;/*每次棋子一开始出来的坐标,x为行坐标,y为列坐标*/ while(1) /*具体一个棋手走棋的过程*/{PrintScore(1);/*输出棋手1的成绩*/PrintScore(2);/*输出棋手2的成绩*/SetPlayColor(t);/*t变量是用来判断棋手所执棋子的颜色*/fillellipse(x,y,15,15);key=bioskey(0);/*接收按键*/if(key==ESC)/*跳出游戏*/break;elseif(key==ENTER)/*如果按键确定就可以跳出循环*/{if(y!=80&&a[(x-120)/40][(y-120)/40]!=1&&a[(x-120)/40][(y-120)/40]!=2)/*如果落子位置没有棋子*/ {if(t%2==1)/*如果是棋手1移动*/a[(x-120)/40][(y-120)/40]=1;else/*否则棋手2移动*/a[(x-120)/40][(y-120)/40]=2;if(!QpChange(x,y,t))/*落子后判断棋盘的变化*/{a[(x-120)/40][(y-120)/40]=0;/*恢复空格状态*/cc++;/*开始统计尝试次数*/if(cc>=64-score1-score2) /*如果尝试超过空格数则停步*/ {MoveColor(x,y);fillellipse(x,y,15,15);break;}elsecontinue;/*如果按键无效*/}DoScore();/*分数的改变*/break;/*棋盘变化了,则轮对方走棋*/}else/*已经有棋子就继续按键*/continue;}else /*四个方向按键的判断*/if(key==LEFT&&x>120)/*左方向键*/{MoveColor(x,y);fillellipse(x,y,15,15);SetPlayColor(t);x-=40;fillellipse(x,y,15,15);}elseif(key==RIGHT&&x<400&&y>80)/*右方向键*/{MoveColor(x,y);fillellipse(x,y,15,15);SetPlayColor(t);x+=40;fillellipse(x,y,15,15);}elseif(key==UP&&y>120)/*上方向键*/{MoveColor(x,y);fillellipse(x,y,15,15);SetPlayColor(t);y-=40;fillellipse(x,y,15,15);}elseif(key==DOWN&&y<400)/*下方向键*/{MoveColor(x,y);fillellipse(x,y,15,15);SetPlayColor(t);y+=40;fillellipse(x,y,15,15);}}if(key==ESC)/*结束游戏*/break;if((score1+score2)==64||score1==0||score2==0)/*格子已经占满或一方棋子为0判断胜负*/{playWin();/*输出最后结果*/break;}t=t%2+1; /*一方走后,改变棋子颜色即轮对方走*/cc=0; /*计数值恢复为0*/} /*endwhile*/}void SetPlayColor(int t)/*设置棋子颜色*/{if(t%2==1)setfillstyle(SOLID_FILL,15);/*白色*/elsesetfillstyle(SOLID_FILL,8);/*灰色*/}void MoveColor(int x,int y)/*走了一步后恢复原来格子的状态*/{if(y<100)/*如果是从起点出发就恢复绿色*/setfillstyle(SOLID_FILL,GREEN);else/*其他情况,1就恢复白色棋子,2恢复黑色棋子,或恢复绿色棋盘*/ switch(a[(x-120)/40][(y-120)/40]){case 1:setfillstyle(SOLID_FILL,15);break; /*白色*/case 2:setfillstyle(SOLID_FILL,8);break; /*黑色*/default:setfillstyle(SOLID_FILL,GREEN); /*绿色*/}}int QpChange(int x,int y,int t)/*判断棋盘的变化*/{int i,j,k,kk,ii,jj,yes;yes=0;i=(x-120)/40; /*计算数组元素的行下标*/j=(y-120)/40; /*计算数组元素的列下标*/SetPlayColor(t);/*设置棋子变化的颜色*//*开始往8个方向判断变化*/if(j<6)/*往右边*/{for(k=j+1;k<8;k++)if(a[i][k]==a[i][j]||a[i][k]==0)/*遇到自己的棋子或空格结束*/ break;if(a[i][k]!=0&&k<8){for(kk=j+1;kk<k&&k<8;kk++)/*判断右边*/{a[i][kk]=a[i][j]; /*改变棋子颜色*/fillellipse(120+i*40,120+kk*40,15,15);}if(kk!=j+1) /*条件成立则有棋子改变过颜色*/yes=1;}}if(j>1)/*判断左边*/{for(k=j-1;k>=0;k--)if(a[i][k]==a[i][j]||!a[i][k])break;if(a[i][k]!=0&&k>=0){for(kk=j-1;kk>k&&k>=0;kk--){a[i][kk]=a[i][j];fillellipse(120+i*40,120+kk*40,15,15);}if(kk!=j-1)yes=1;}}if(i<6)/*判断下边*/{for(k=i+1;k<8;k++)if(a[k][j]==a[i][j]||!a[k][j])break;if(a[k][j]!=0&&k<8){for(kk=i+1;kk<k&&k<8;kk++){a[kk][j]=a[i][j];fillellipse(120+kk*40,120+j*40,15,15);}if(kk!=i+1)yes=1;}}if(i>1)/*判断上边*/{for(k=i-1;k>=0;k--)if(a[k][j]==a[i][j]||!a[k][j])break;if(a[k][j]!=0&&k>=0){for(kk=i-1;kk>k&&k>=0;kk--){a[kk][j]=a[i][j];fillellipse(120+kk*40,120+j*40,15,15);}if(kk!=i-1)yes=1;}}if(i>1&&j<6)/*右上*/{for(k=i-1,kk=j+1;k>=0&&kk<8;k--,kk++) if(a[k][kk]==a[i][j]||!a[k][kk])break;if(a[k][kk]&&k>=0&&kk<8){for(ii=i-1,jj=j+1;ii>k&&k>=0;ii--,jj++){a[ii][jj]=a[i][j];fillellipse(120+ii*40,120+jj*40,15,15);}if(ii!=i-1)yes=1;}}if(i<6&&j>1)/*左下*/{for(k=i+1,kk=j-1;k<8&&kk>=0;k++,kk--) if(a[k][kk]==a[i][j]||!a[k][kk])break;if(a[k][kk]!=0&&k<8&&kk>=0){for(ii=i+1,jj=j-1;ii<k&&k<8;ii++,jj--){a[ii][jj]=a[i][j];fillellipse(120+ii*40,120+jj*40,15,15);}if(ii!=i+1)yes=1;}}if(i>1&&j>1)/*左上*/{for(k=i-1,kk=j-1;k>=0&&kk>=0;k--,kk--) if(a[k][kk]==a[i][j]||!a[k][kk])break;if(a[k][kk]!=0&&k>=0&&kk>=0){for(ii=i-1,jj=j-1;ii>k&&k>=0;ii--,jj--){a[ii][jj]=a[i][j];fillellipse(120+ii*40,120+jj*40,15,15);}if(ii!=i-1)yes=1;}}if(i<6&&j<6)/* 右下*/{for(k=i+1,kk=j+1;kk<8&&kk<8;k++,kk++)if(a[k][kk]==a[i][j]||!a[k][kk])break;if(a[k][kk]!=0&&kk<8&&k<8){for(ii=i+1,jj=j+1;ii<k&&k<8;ii++,jj++){a[ii][jj]=a[i][j];fillellipse(120+ii*40,120+jj*40,15,15);}if(ii!=i+1)yes=1;}}return yes;/*返回是否改变过棋子颜色的标记*/}void DoScore()/*处理分数*/{int i,j;score1=score2=0;/*重新开始计分数*/for(i=0;i<8;i++)for(j=0;j<8;j++)if(a[i][j]==1)/*分别统计两个人的分数*/score1++;elseif(a[i][j]==2)score2++;}void PrintScore(int playnum)/*输出成绩*/{if(playnum==1)/*清除以前的成绩*/{setfillstyle(SOLID_FILL,GREEN);/*设置分数区颜色*/ bar(550,100,640,400);}setcolor(YELLOW);/*设置分数颜色*/settextstyle(0,0,4);/*设置文本输出样式*/if(playnum==1)/*判断输出哪个棋手的分,在不同的位置输出*/{sprintf(playone,"%d",score1);outtextxy(550,200,playone);}else{sprintf(playtwo,"%d",score2);outtextxy(550,300,playtwo);}setcolor(0);}void playWin()/*输出最后的胜利者结果*/{settextstyle(0,0,4);setcolor(12);if(score2>score1)/*开始判断最后的结果*/outtextxy(100,50,"black win! (^o^)");elseif(score2<score1)outtextxy(100,50,"white win! (^o^)");elseouttextxy(60,50,"you all win!");}五、主要解决问题的方法及技术关键1,调用了graphics.h函数,使界面更生动。
c语言课程设计黑白棋一、教学目标本课程的目标是让学生掌握C语言编程的基本技能,通过实现一个黑白棋游戏项目,培养学生的编程思维和实际操作能力。
具体目标如下:1.知识目标:学生能熟练使用C语言进行编程,理解基本的编程概念,如变量、数据类型、运算符、控制结构等。
2.技能目标:学生能运用C语言实现简单的逻辑控制和函数调用,具备一定的算法分析能力,能独立完成黑白棋游戏的设计与实现。
3.情感态度价值观目标:培养学生对编程的兴趣和热情,提高学生的问题解决能力,培养学生的团队合作意识和创新精神。
二、教学内容教学内容以C语言的基本概念和编程技巧为主线,结合黑白棋游戏的设计与实现,具体安排如下:1.C语言基本概念:介绍C语言的语法规则、数据类型、运算符、控制结构等基本知识。
2.函数和数组:讲解函数的定义和调用、数组的使用和操作,以及函数指针的概念。
3.黑白棋游戏设计:引导学生分析游戏需求,设计游戏界面和逻辑,实现游戏的基本功能。
4.算法分析和优化:引导学生运用算法分析游戏中的问题,如棋子的移动规则、胜负判断等,并进行优化。
5.团队合作与创新:培养学生进行团队合作,共同完成游戏项目,鼓励学生发挥创新精神,为游戏添加更多功能和玩法。
三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法,具体安排如下:1.讲授法:讲解C语言的基本概念和编程技巧,为学生提供系统的知识体系。
2.讨论法:学生进行团队讨论,分析游戏需求,设计游戏方案,培养学生的团队合作能力。
3.案例分析法:通过分析典型的黑白棋游戏案例,引导学生掌握游戏设计的要点和技巧。
4.实验法:学生动手编写代码,实现游戏功能,培养学生的实际操作能力和编程思维。
四、教学资源教学资源包括教材、参考书、多媒体资料和实验设备等,具体安排如下:1.教材:选用《C程序设计原理与应用》作为主讲教材,为学生提供系统的知识学习。
2.参考书:推荐《C语言程序设计》等辅助教材,供学生拓展阅读和自学。
目录一、设计目的 (2)二、设计要求 (2)三、所需仪器设备 (2)四、课题分析 (2)五、具体设计过程 (3)5.1、设计思路 (3)5.2、程序设计流程图 (3)5.3、函数实现说明 (6)5.4、图形库函数介绍 (7)5.5、程序源代码及注释 (9)5.6、调试结果 (19)六、设计心得体会 (20)七、参考文献 (21)《黑白棋游戏》C语言课程设计一、设计目的本课程设计是计算机软件技术基础重要的实践性环节之一,是在学生学习完《程序设计语言(C)》课程后进行的一次全面的综合练习。
本课程设计的目的和任务:(1)巩固和加深学生对C语言课程的基本知识的理解和掌握;(2)掌握C语言编程和程序调试的基本技能;(3)利用C语言进行基本的软件设计,掌握软件设计一般方法,了解软件设计的思路;(4)掌握书写程序设计报告的能力;(5)提高运用C语言解决实际问题的能力;这个程序也是对编程基本功的一个训练,对于初学C语言的人,讲分支、循环、数组函数综合应用,而不仅限于编制独立的小程序,能够大大提高变成水平。
二、设计要求(1)收集资料,全面分析课题,分解问题,形成中体编程思路;(2)深入分析各个小问题,编写个部分程序模块;(3)对于设计中用到的关键函数,要联系实际问题进行具体介绍;(4)上机调试,确保程序能正确运行;(5)设计完成后提交课程设计报告;三、所需仪器设备(1)硬件要求能运行Windows 2000/XP操作系统的微机系统。
(2)C语言程序设计及相应的开发环境。
(本设计用的是Turbo C for Windows 集成实验与学习环境 V6.0)四、课题分析编写一个《黑白棋游戏》的C程序,包括以下功能:初始状态:在一个8*8的棋盘中央交叉排放黑白棋子各两枚,白棋先走。
(1)每个棋手下棋时,摆子的位置必须是以自己的棋子能包围住对方一个或多个棋子,被包围住的对方棋子将成为自己的棋子。
包围的方向可以是上下左右以及斜线8个方向,只要能连成一线即可。
C语⾔-⿊⽩棋(⼈机对战)1 #include <stdio.h>2 #include <stdlib.h>3/*4具体思路如下:51.定义⼀个⼆维数组chessboard[8][8],⽤于保存⿊⽩双⽅棋⼦的位置。
如果数组元素为0,表⽰该单元格未落⼦;如果是-1,表⽰该单元格是⿊⼦;如果是1,则表⽰该单元格是⽩⼦。
62.当⼀⽅下棋时,先检查是否有位置可下,如果有则⼰⽅下棋,如果没有就让对⼿下棋。
73.若玩家下,需要等待玩家输⼊棋⼦坐标,然后执⾏翻转对⼿棋⼦操作。
84.若计算机下,程序需对棋盘所有可以落⼦的位置进⾏判断,找出最佳的落⼦位置,然后执⾏翻转对⼿棋⼦操作。
95.重复步骤2~4,直到棋盘已满或双⽅都不能下⼦时结束。
10*/1112void Output(char chessboard[][8]); //显⽰棋盘中的下⼦情况13int Check(char chessboard[][8],int moves[][8],char player);//检查⼀⽅是否有位置下⼦14void PlayStep(char chessboard[][8],int row,int col,char player);//在指定位置下棋15void AutoPlayStep(char chessboard[][8],int moves[][8],char player);//计算机思考下⼦16int GetMaxScore(char chessboard[][8],char player);//获取分数17int BestPlay(char chessboard[][8],int moves[][8],char player);//最优下⼦位置181920int main(){21char chessboard[8][8];//保存棋盘中各单元格下⼦的状态22int isDown[8][8] = {0};//保存棋盘中的各个位置是否可以下⼦,可以下的位置为1,其余为023int row,col,x,y;24int iCount = 0;//以下⼦的数量25int player = 0;//下棋⽅26int SkipPlay = 0;//重置下⼦的次数为0,若为2,则表⽰双⽅都不能下⼦27int Score[2];//保存计算机和玩家的得分2829char select,ch;3031 printf("⿊⽩棋\n\n");32 printf("玩家执⿊⼦先⾏,计算机执⽩,按Enter开始\n");333435 scanf("%c",&select);3637do{3839if(player==0){40 player = 1;41 }else{42 player = 0;43 }4445for(row=0;row<8;row++){46for(col=0;col<8;col++){47 chessboard[row][col]=0;48 }49 }5051 iCount = 4;//游戏开始的四颗棋⼦52 chessboard[3][3] = chessboard[4][4] = 1;53 chessboard[3][4] = chessboard[4][3] = -1;5455 printf("\n棋盘初始状态:\n");56 Output(chessboard);5758//双⽅下棋59do{60if(player==1){//玩家下棋(⿊)61 player = 0;62if(Check(chessboard,isDown,2)){63while(1){64 fflush(stdin);65 printf("输⼊下⼦的位置(⾏,列):");66 scanf("%d%c",&x,&ch);67 x--;//因为数组是从0开始存的68if(ch>='a'){69 y = ch - 'a' + 1;70 } else{71 y = ch - 'A' + 1;72 }73 y--;74//判断是否越界、是否已有棋⼦75if(x>=0&&x<8&&y>=0&&y<8&&isDown[x][y]){76 PlayStep(chessboard,x,y,2);77 iCount++;78break;79 }else{80 printf("坐标输⼊有误,请重新输⼊。
c语言黑白棋程序设计文档本文将为您介绍一份经过精心设计的基于C语言的黑白棋程序设计文档。
这个文档旨在为开发者提供一个清晰易懂、易于扩展的代码框架,以便更好地完成黑白棋游戏。
以下是本文档的结构和内容:一、简介黑白棋是一款二人对弈的棋类游戏,在8x8的方格棋盘上进行。
本程序的目标是实现一个基本的黑白棋人机对战游戏。
玩家可以使用键盘来操作棋子落下的位置,程序会根据规则自动判断是否可以落子,并自动翻转另一方的棋子。
程序还可以提供简单的AI进行游戏,让玩家可以对战电脑。
本程序使用了C语言进行编写,并且采用简单易懂的函数式编程方法,使得程序更加易于维护和扩展。
二、程序设计在程序设计中,我们遵循了模块化、封装和数据隐藏的原则,使得代码结构更加清晰明了,易于理解和维护。
主要分为5个模块:负责程序的初始化工作,包括初始化棋盘、初始化玩家、初始化AI等等。
在main函数中,我们通过调用下面四个模块的函数来构建整个游戏的逻辑流程。
2. chessboard模块负责棋盘的初始化、显示、落子、判断是否合法等逻辑处理。
该模块中定义了结构体变量用于存储棋盘信息。
在该模块中定义了落子的函数check(),该函数根据当前棋子的位置、颜色和棋盘状态进行判断,如果可以落子,则将当前棋子位置上色,并调用翻转棋子的函数reverse(),否则提示玩家重新输入坐标。
3. player模块负责玩家的初始化、操作、胜负判断等逻辑处理。
在该模块中定义了结构体变量用于存储玩家信息。
该模块中定义了getinput()函数,该函数根据玩家从键盘输入的信息获取当前落子的位置。
4. AI模块负责人工智能的实现,其中包括随机落子AI、进攻型AI、防守型AI 等。
在该模块中定义了结构体变量用于存储AI信息。
AI的实现方式采用了启发式搜索,寻找最优解。
同时,AI还要判断当前落子位置是否合法,如果不合法则重新进行随机落子。
负责一些通用函数的实现,如计算得分、判断胜负等等。