高考物理复习专题:匀变速直线运动的规律 总结
- 格式:docx
- 大小:27.93 KB
- 文档页数:2
第一章运动的描述匀变速直线运动第2讲匀变速直线运动的规律过好双基关————回扣基础知识训练基础题目一、匀变速直线运动的规律1.速度公式:v=v0+at.2.位移公式:x=v0t+12at2.3.位移速度关系式:v2-v20=2ax.二、匀变速直线运动的推论1.三个推论(1)连续相等的相邻时间间隔T内的位移差相等,即x2-x1=x3-x2=…=x n-x n-1=aT2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v=v0+v2=v t 2 .(3)位移中点速度2220 2vv vx +=2.初速度为零的匀加速直线运动的四个重要推论(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.(2)前T内、前2T内、前3T内、…、前nT内的位移之比为x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2.(3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1).三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)基本规律①速度公式:v =gt .②位移公式:x =12gt 2.③速度位移关系式:③v 2=2gx .(3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理→猜想与假设→实验验证→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来.2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动.(2)运动性质:匀变速直线运动.(3)基本规律①速度公式:v =v 0-gt ;②位移公式:x =v 0t -12gt 2.研透命题点————细研考纲和真题分析突破命题点1.三个概念的进一步理解(1)质点不同于几何“点”,它无大小但有质量,能否看成质点是由研究问题的性质决定,而不是依据物体自身大小和形状来判断.(2)参考系一般选取地面或相对地面静止的物体.(3)位移是由初位置指向末位置的有向线段,线段的长度表示位移的大小.2.三点注意(1)对于质点要从建立理想化模型的角度来理解.(2)在研究两个物体间的相对运动时,选择其中一个物体为参考系,可以使分析和计算更简单.(3)位移的矢量性是研究问题时应切记的性质.【例1】在“金星凌日”的精彩天象中,观察到太阳表面上有颗小黑点缓慢走过,持续时间达六个半小时,那便是金星,如图所示.下面说法正确的是()A.地球在金星与太阳之间B.观测“金星凌日”时可将太阳看成质点C.以太阳为参考系,金星绕太阳一周位移不为零D.以太阳为参考系,可以认为金星是运动的答案D解析金星通过太阳和地球之间时,我们才看到金星没有被太阳照亮的一面呈黑色,选项A错误;因为观测“金星凌日”时太阳的大小对所研究问题起着至关重要的作用,所以不能将太阳看成质点,选项B错误;金星绕太阳一周,起点与终点重合,位移为零,选项C错误;金星相对于太阳的空间位置发生了变化,所以以太阳为参考系,金星是运动的,选项D正确.【变式1】(多选)湖中O处有一观察站,一小船从O处出发一直向东直线行驶4km,又向北直线行驶3km,已知sin37°=0.6,则下列说法中正确的是()A.相对于O处的观察员,小船运动的路程为7kmB.相对于小船,O处的观察员始终处于静止状态C.相对于O处的观察员,小船最终位于东偏北37°方向5km处D.研究小船在湖中行驶时间时,小船可以看做质点答案ACD解析在O处的观察员看来,小船最终离自己的距离为32+42km=5km,方向为东偏北θ,满足sinθ=0.6,即θ=37°,运动的路程为7km,选项A,C正确;以小船为参考系,O处的观察员是运动的,B错误;若研究小船在湖中行驶时间时,小船的大小相对于行驶的距离可以忽略不计,故小船可以看做质点,选项D正确.1.区别与联系(1)区别:平均速度是过程量,表示物体在某段位移或某段时间内的平均运动快慢程度;瞬时速度是状态量,表示物体在某一位置或某一时刻的运动快慢程度.(2)联系:瞬时速度是运动时间Δt→0时的平均速度.2.方法和技巧(1)判断是否为瞬时速度,关键是看该速度是否对应“位置”或“时刻”.(2)求平均速度要找准“位移”和发生这段位移所需的“时间”.【例2】在某GPS定位器上,显示了以下数据:航向267°,航速36km/h,航程60km,累计100min,时间10∶29∶57,则此时瞬时速度和开机后平均速度为()A.3.6m/s、10m/s B.10m/s、10m/sC.3.6m/s、6m/s D.10m/s、6m/s答案B解析GPS定位器上显示的航速为瞬时速度36km/h=10m/s,航程60km,累计100min ,平均速度为v =Δx Δt =60×103100×60m/s =10m/s ,故B 正确.【变式2】(多选)如图所示,物体沿曲线轨迹的箭头方向运动,沿AB ,ABC ,ABCD ,ABCDE 四段曲线轨迹运动所用的时间分别是1s,2s,3s,4s .下列说法正确的是()A .物体沿曲线A →E 的平均速率为1m/sB .物体在ABC 段的平均速度大小为52m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度D .物体在B 点时的速度等于AC 段的平均速度答案BC 解析平均速率是路程与时间的比值,图中信息不能求出ABCDE 段轨迹的长度,故不能求出平均速率,选项A 错误;由v =s t 可得v =52m/s ,选项B 正确;所选取的过程离A 点越近,其过程的平均速度越接近A 点的瞬时速度,选项C 正确;物体在B 点的速度不一定等于AC 段的平均速度,选项D 错误.【变式3】一质点沿直线Ox方向做变速运动,它离开O点的距离x随时间t变化的关系为x=(5+2t3)m,它的速度v随时间t变化的关系为v=6t2 (m/s),该质点在t=2s时的速度和t=2s到t=3s时间内的平均速度的大小分别为()A.12m/s39m/s B.24m/s38m/sC.12m/s19.5m/s D.24m/s13m/s答案B解析由v=6t2(m/s)得,当t=2s时,v=24m/s;根据质点离开O点的距离随时间变化的关系为x=(5+2t3)m得:当t=2s时,x2=21m,t=3s时,x3=59m;则质点在t=2s到t=3s时间内的位移Δx=x3-x2=38m,平均速度v=ΔxΔt =381m/s=38m/s,故选B.◆拓展点用平均速度法求解瞬时速度——极限思想的应用1.用极限法求瞬时速度和瞬时加速度(1)公式v=ΔxΔt中,当Δt→0时v是瞬时速度.(2)公式a=ΔvΔt中,当Δt→0时a是瞬时加速度.2.注意(1)用v=ΔxΔt求瞬时速度时,求出的是粗略值,Δt(Δx)越小,求出的结果越接近真实值.(2)对于匀变速直线运动,一段时间内的平均速度可以精确地表示物体在这一段时间中间时刻的瞬时速度.【例3】为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为d =3.0cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30s ,通过第二个光电门的时间为Δt 2=0.10s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0s ,则滑块的加速度约为()A .0.067m/s 2B .0.67m/s 2C .6.7m/s 2D .不能计算出答案A 解析遮光板通过第一个光电门时的速度v 1=d Δt 1=0.030.30m/s =0.10m/s ,遮光板通过第二个光电门时的速度v 2=d Δt 2=0.030.10m/s =0.30m/s ,故滑块的加速度a =v 2-v 1Δt ≈0.067m/s 2,选项A 正确.1.三个概念的比较比较项目速度速度变化量加速度物理意义描述物体运动快慢和方向的物理量描述物体速度改变的物理量,是过程量描述物体速度变化快慢和方向的物理量定义式v=ΔxΔtΔv=v-v0a=ΔvΔt=v-v0t决定因素v的大小由v0、a、Δt决定Δv由v与v0进行矢量运算,由Δv=aΔt知Δv由a与Δt决定a不是由v、t、Δv来决定的,而是由Fm来决定方向平均速度与位移同向由v-v0或a的方向决定与Δv的方向一致,由F的方向决定,而与v0、v的方向无关2.判断直线运动中的“加速”或“减速”方法物体做加速运动还是减速运动,关键是看物体的加速度与速度的方向关系.(1)a和v同向(加速直线运动)→a不变,v随时间均匀增加a增大,v增加得越来越快a减小,v增加得越来越慢(2)a和v反向(减速直线运动)→a不变,v随时间均匀减小或反向增加a增大,v减小或反向增加得越来越快a减小,v减小或反向增加得越来越慢【例4】(多选)一物体做匀变速直线运动,某时刻速度大小为4m/s,1s后速度的大小变为10m/s,在这1s内该物体的可能运动情况为()A.加速度的大小为6m/s2,方向与初速度的方向相同B.加速度的大小为6m/s2,方向与初速度的方向相反C.加速度的大小为14m/s2,方向与初速度的方向相同D.加速度的大小为14m/s2,方向与初速度的方向相反答案AD解析以初速度的方向为正方向,若初、末速度方向相同,加速度a=v-v0 t=10-41m/s2=6m/s2,方向与初速度的方向相同,A正确,B错误;若初、末速度方向相反,加速度a=v-v0t=-10-41m/s2=-14m/s2,负号表示方向与初速度的方向相反,C错误,D正确.【变式4】一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小先保持不变,再逐渐减小直至零,则在此过程中() A.速度先逐渐增大,然后逐渐减小,当加速度减小到零时,速度达到最小值B.速度先均匀增大,然后增大得越来越慢,当加速度减小到零时,速度达到最大值C.位移逐渐增大,当加速度减小到零时,位移将不再增大D.位移先逐渐增大,后逐渐减小,当加速度减小到零时,位移达到最小值答案B解析加速度与速度同向,速度应增大,当加速度不变时,速度均匀增大;当加速度减小时,速度仍增大,但增大得越来越慢;当加速度为零时,速度达到最大值,保持不变,选项A错误,B正确;因质点速度方向不变化,始终向前运动,最终做匀速运动,所以位移一直在增大,选项C、D均错误.【变式5】一物体做加速度为-1m/s2的直线运动,t=0时速度为-5m/s,下列说法正确的是()A.初速度为-5m/s说明物体在做减速运动B.加速度为-1m/s2说明物体在做减速运动C.t=1s时物体的速度为-4m/sD.初速度和加速度方向相同,物体在做加速运动答案D解析当速度方向与加速度方向相同时,物体做加速运动,根据速度公式v =v0+at,当t=1s时物体速度为v1=-5m/s+(-1)×1m/s=-6m/s,故A、B、C错误,D正确.。
2.4匀变速直线运动的规律总结与应用(专题)一、四个常用基本公式速度公式:位移公式:平均速度位移公式:速度位移公式:说明:(1)公式只适用于匀变速直线运动;(2)注意矢量性,公式中v 0、v 、a 、x 都是矢量,常以v 0的方向为正方向;(3)若初速度v 0=0,则v=at , x=at 2/2 , v 2=2ax , x=v t/2二、匀变速直线运动的三个常用推论1、做匀变速直线运动的物体,在中间时刻的速度等于该段时间内的平均速度,也等于该段初速度与末速度的平均值,即推导:【例1】一质点做匀加速直线运动,依次通过a 、b 、c 三点。
已知ab=6m ,bc=10m ,质点通过ab 和bc 所用的时间均为2s ,则质点通过a 、b 、c 三点时的速度v a 、v b 、v c 分别为( )A. 2m/s ,3m/s ,4m/sB. 2m/s ,4m/s ,6m/sC. 3m/s ,4m/s ,5m/sD. 3m/s ,5m/s ,7m/s2、做匀变速直线运动的物体,某段位移的中间位置瞬时速度等于初、末速度的方均根推导:3、做匀变速直线运动的物体,在连续相等的时间T 内位移之差相等ΔX=X 2-X 1=X 3-X 2= …=X n+1-X n = aT 2推导:22202V V V x +=202t v v v v t +==6t/s V(m/s) 0 T 2T 3T 注意:(1)可以推广到X m -X n=(m-n)aT 2 (2)如果在任意连续相等时间T 内位移之差相等且不为零,则物体做匀变速直线运动(判断匀变速直线运动的依据之一) 。
(3)求纸带做匀变速直线运动的平均加速度(逐差法)注意:平均加速度与加速度的平均的区别【例2】在“测定匀变速直线运动的加速度”实验中,得到一条如图所示的纸带,按时间顺序取0、1、2… 5共6个计数点,每相邻两点间各有四个打印点未画出,用刻度尺测出1,2…,5各点到O 点的距离分别为:8.69cm, 15.99cm ,21.87cm ,26.35cm ,29.45cm 。
2020年高考物理二轮温习热点题型与提分秘籍专题02 匀变速直线运动的规律及图像题型一 匀变速直线运动的规律及应用【题型解码】 (1)匀变速直线运动的基本公式(v -t 关系、x -t 关系、x -v 关系)原则上可以解决任何匀变速直线运动问题.因为那些导出公式是由它们推导出来的,在不能准确判断用哪些公式时可选用基本公式.(2)未知量较多时,可以对同一起点的不同过程列运动学方程.(3)运动学公式中所含x 、v 、a 等物理量是矢量,应用公式时要先选定正方向,明确已知量的正负,再由结果的正负判断未知量的方向.【典例分析1】(2019·安徽蚌埠高三二模)图中ae 为珠港澳大桥上四段110 m 的等跨钢箱连续梁桥,若汽车从a 点由静止开始做匀加速直线运动,通过ab 段的时间为t ,则通过ce 段的时间为( )A .t B.t 2C .(2-)t D .(2+) t22【参考参考答案】 C【名师解析】 设汽车的加速度为a ,通过bc 段、ce 段的时间分别为t 1、t 2,根据匀变速直线运动的位移时间公式有:x ab =at 2,x ac =a (t +t 1)2,x ae =a (t +t 1+t 2)2,解得:t 2=(2-)t ,故C 正确,A 、B 、D 错误。
1212122【典例分析2】(2019·全国卷Ⅰ,18)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。
上升第一个所用的时间为t 1,第四个所用的时间为t 2。
不计空气阻力,则满足( )H 4H 4t 2t 1A.1<<2 B.2<<3t 2t 1t 2t 1C.3<<4 D.4<<5t 2t 1t 2t 1【参考参考答案】 C【名师解析】 本题应用逆向思维求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动,所以第四个所用的时间为t 2=,第一个所用的时间为t 1=-,因此有==2+H 42×H 4g H 42H g 2×34Hg t 2t 112-3,即3<<4,选项C 正确。
一.基本规律:v =ts 1.基本公式a =t v v t 0- a =tvtv =20t v v + v =t v 21at v v t +=0 at v t =021at t v s +=221at s =t v v s t 20+= t vs t 2=2022v v as t -= 22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202t t v v v += 推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t s v v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v +=推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=, 经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=- 则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法:即2tSa ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。
专题2 匀变速直线运动的基本规律【知识梳理】一、匀变速直线运动的基本规律1.匀变速直线运动:沿着一条直线且不变的运动,其v-t图线是一条。
2.四个基本规律(1)速度与时间的关系式:,若是v0=0的匀加速直线运动,则。
(2)位移与时间的关系式:,若是v0=0的匀加速直线运动,则。
(3)速度位移关系式:,若是v0=0的匀加速直线运动,则。
(4)平均速度公式:,则速度位移关系式为。
3.位移的关系式及选用原则(1)不涉及加速度a时,选择。
(2)不涉及运动的时间t时,选择。
二、匀变速直线运动的基本规律解题技巧1.基本思路画过程示意图→判断运动性质→选取→选用公式列方程→解方程并加以讨论2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以的方向为正方向;当v0=0时,一般以的方向为正方向.速度、加速度、位移的方向与正方向相同时取,相反时取。
3.解决匀变速运动的常用方法(1)逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,可以看成反向的运动。
(2)图像法:借助v-t图像(斜率、面积)分析运动过程。
三、两种匀减速直线运动的比较1.刹车类问题(1)其特点为匀减速到速度为零后运动,加速度a突然消失。
(2)求解时要注意确定实际运动。
(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的运动。
2.双向可逆类问题(1)如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变。
(2)求解时可分过程列式也可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义. 【专题练习】 一、单项选择题1.一架战机起飞前从静止做加速度为a 的匀加速直线运动,达到起飞速度v 所需的时间为t ,则战机起飞前运动的距离表达式错误的是( ) A .vtB .2vtC .212atD .22v a2.物体从静止开始做匀加速直线运动,已知第5s 内的位移为x ,则物体运动的加速度为( ) A .49x B .9x C .3x D .29x 3.一物体做匀减速直线运动,在第二秒内的位移为3m ,第三秒内的位移为0.125m ,则物体的加速度大小为( ) A .23m/sB .23.5m/sC .24m/sD .24.25m/s4.一列火车沿直线轨道从静止出发由A 地驶向B 地,火车先做匀加速运动,加速度大小为a ,接着做匀减速运动,加速度大小为2a ,到达B 地时恰好静止。
匀变速直线运动的规律知识点总结匀变速直线运动的规律知识点总结匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。
以下是匀变速直线运动的规律,请考生认真学习。
一、匀变速直线运动规律1、匀变速直线运动、加速度本节开始学习匀变速直线运动及其规律,能够正确理解加速度是学好匀变速直线运动的基础和关键,因此学习中要特别注意对加速度概念的深入理解。
(1)沿直线运动的物体,如果在任何相等的时间内物体运动速度的变化都相等,物质的运动叫匀变速直线运动。
匀变速直线运动是变速运动中最基本、最简单的一种,应该指示:常见的.许多变速运动实际上并不是匀变速运动,可是不少变速运动很接近于匀变速运动,可以当作匀速运动处理,所以匀变速直线运动也是一种理想化模型。
(2)加速度是指描述物质速度变化快慢而引入的一个重要物理量,对于作匀变速直线运动的物体,速度的变化量△v与所用时间的比值,叫做匀变速直线运动的加速度,即:。
加速度是矢量,加速度的方向与速度变化的方向是相同的,对于作直线运动的物体,在确定运动正方向的条件下,可以用正负号表示加速度的方向,如vt v0,a为正,如vt v0,a为负。
前者为加速,后者为减速。
依据匀变速直线运动的定义可知,作匀变速直线运动物体的加速度是恒定不变的。
即a = 恒量。
(3)在学习加速度的概念时,要正确区分速度、速度变化量及速度变化率。
其中速度v是反映物体运动快慢的物理量。
而速度变化量△v = v2-v1,是反映物体速度变化大小和方向的物理量。
速度变化量△v也是矢量,在加速直线运动中,速度变化量的方向与物体速度方向相同,在减速直线运动中,速度变化量的方向与物体速度方向相反。
加速度就是速度变化率,它反映了物体运动速度随时间变化的快慢。
匀变速直线运动中,物体的加速度在数值上等于单位时间内物体运动速度的变化量。
所以物体运动的速度、速度变化量及加速度都是矢量,但它们确实从不同方面反映了物体运动情况。
例如:关于速度和加速度的关系,以下说法正确的是:A.物体的速度为零时,其加速度必为零B.物体的加速度为零时,其运动速度不一定为零C.运动中物体速度变化越大,则其加速度也越大D.物体的加速度越小,则物体速度变化也越慢要知道物体运动的加速度与速度之间并没有直接的关系。
2024年高考物理一轮大单元综合复习导学练专题02匀变速直线运动基本运动规律公式导练目标导练内容目标1匀变速直线运动的基本公式目标2匀变速直线运动三个推论目标3初速度为零的匀加速直线运动的比例关系目标4刹车类和双向可逆类问题【知识导学与典例导练】一、匀变速直线运动的基本公式1.四个基本公式及选取技巧题目涉及的物理量没有涉及的物理量适宜选用公式v 0,v ,a ,t x v =v 0+at v 0,a ,t ,x v x =v 0t +12at 2v 0,v ,a ,x t v 2-v 02=2ax v 0,v ,t ,xax =v +v 02t 2.运动学公式中正、负号的规定匀变速直线运动的基本公式和推论公式都是矢量式,使用时要规定正方向。
而直线运动中可以用正、负号表示矢量的方向,一般情况下规定初速度v 0的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值。
当v 0=0时,一般以加速度a 的方向为正方向。
【例1】(2023秋·河北沧州·高三统考期末)某新能源汽车的生产厂家为了适应社会的需求,在一平直的公路上对汽车进行测试,计时开始时新能源汽车a 、b 的速度分别满足10a v t =、105b v t =+,经时间1s t =两新能源汽车刚好并排行驶。
则下列说法正确的是()A .计时开始时,b 车在a 车后方5mB .从计时开始经2s 的时间两新能源汽车速度相同C .两新能源汽车速度相等时的距离为2mD .从第一次并排行驶到第二次并排行驶需要3s 的时间【答案】B【详解】A .根据题意可知,新能源汽车a 的初速度为零,加速度为210m/s ,新能源汽车b 的初速度为10m/s ,加速度为25m/s 。
0~1s ,根据212x at =可知21101m 5m 2a x =⨯⨯=;2110151m 12.5m 2b x =⨯+⨯⨯=已知在1s t =时两车并排行驶,故计时瞬间b 车在a 车后方7.5m b a x x -=故A 错误;B .由题中的关系式可知2s =t 时,两新能源汽车的速度均为20m/s ,即两新能源汽车的速度相等,故B 正确;C .1s ~2s 内,根据平均速度122v v x t +=⋅,可知10201m 15m 2a x +=⨯=;15201m 17.5m 2b x +=⨯=故两车相距2.5m ,故C 错误;D .设从第一次两车并排后再经时间t ,两车再次并排,根据平均速度可知()101012a t x t +⨯+=⋅;()5115102b x t t ⨯+++=⋅又由a b x x =解得t =2s 所以两新能源汽车两次并排行驶的时间间隔为2s ,故D 错误。
匀变速直线运动公式、规律总结一.基本规律:=ts 1. =t v v t 0-(1)加速度 =20t v v + at v v t +=0 2021at t v s +=2 t v v t 20+= t v t 22022v v as t -= 注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度: 即2tv =t s 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则S=S 2-S 1=S 3-S 2= …… =S N -S N -1=aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为,末速度为,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v ==20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:=2tv2tv总结:自由落体运动就是初速度=0,加速度=的匀加速直线运动.(1)瞬时速度gtvt-2021gttvs-=(3)重要推论22vvt-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。
2020年高三物理寒假攻关---备战一模第一部分考向精练 专题02 匀变速直线运动的规律一、匀变速直线运动的基本规律 1.匀变速直线运动的条件物体所受合力为恒力,且与速度方向共线. 2.匀变速直线运动的基本规律 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 02=2ax . 中间时刻的瞬时速度:2t v =x t =v 0+v2.任意两个连续相等的时间间隔内的位移之差是一个恒量,即Δx =x n +1-x n =a ·(Δt )2. 二、匀变速直线运动的基本规律应用的技巧方法(1)匀变速直线运动的基本公式(v -t 关系、x -t 关系、x -v 关系)原则上可以解决任何匀变速直线运动问题.因为那些导出公式是由它们推导出来的,在不能准确判断用哪些公式时可选用基本公式. (2)未知量较多时,可以对同一起点的不同过程列运动学方程.(3)运动学公式中所含x 、v 、a 等物理量是矢量,应用公式时要先选定正方向,明确已知量的正负,再由结果的正负判断未知量的方向.(3)v=ΔxΔt=v0+v2=vt2.(2)已知某段时间内的位移、初末速度可求平均速度,应用平均速度公式往往会使解题过程变的非常简捷.(4)多过程问题一般是两段或多段匀变速直线运动的组合.各阶段运动之间的“转折点”的速度是关键物理量,它是前一段的末速度,又是后一段的初速度,是两段运动共有的一个物理量,用它来列方程能减少解题的复杂程度.【例1】(2019·广东揭阳市第二次模拟)瑞士阿尔卑斯山的劳特布伦嫩跳伞区是全球最美的跳伞地之一,每年都吸引了无数跳伞爱好者汇聚此地.某日一跳伞爱好者以5 m/s的速度竖直匀速降落,在离地面h=10 m时掉了一颗扣子,则跳伞爱好者比扣子晚着陆的时间为(扣子受到的空气阻力可忽略,g取10 m/s2)() A.2 s B. 2 s C.1 s D.(2-2) s【答案】 C【解析】由题意知,扣子做初速度为5 m/s、加速度为重力加速度的匀加速直线运动,落地时位移为10 m,根据位移时间关系x=v0t+12gt2,代入数据有:10 m=5 m/s·t1+12×10 m/s2×t12,求得扣子落地时间:t1=1 s;跳伞爱好者匀速运动,根据位移时间关系知,跳伞爱好者落地时间t2=hv=105s=2 s,所以跳伞爱好者比扣子晚着陆的时间为Δt=t2-t1=1 s,故选C.【例2】(2019·广东惠州二模)近几年,国家取消了7座及以下小车在法定长假期间的高速公路收费,给自驾出行带来了很大的实惠,但车辆的增多也给道路的畅通增加了压力,因此交管部门规定,上述车辆通过收费站口时,在专用车道上可以不停车拿(交)卡而直接减速通过。
2021年高考物理一轮复习必热考点整合回扣练专题(02)匀变速直线运动的规律(解析版)考点一匀变速直线运动规律的应用1.基本思路画过程示意图―→判断运动性质―→选取正方向―→选用公式列方程―→解方程并加以讨论2.方法与技巧题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量)没有涉及的物理量适宜选用公式v0、v、a、t x v=v0+atv0、a、t、x v x=v0t+12at2v0、v、a、x t v2-v20=2axv0、v、t、x a x=v+v02t除时间t外,x、v0、v、a均为矢量,所以需要确定正方向,一般以v0的方向为正方向.题型1基本公式的选择【典例1】为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s0和s1(s1<s0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1.重力加速度大小为g.求:(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.【答案】(1)v20-v212gs0(2)v0+v12s12s20【解析】(1)对冰球分析,根据速度位移公式得v 21-v 20=2as 0根据牛顿第二定律得a =-μg联立得μ=v 20-v 212gs 0.(2)抓住两者运动时间相等列式. s 0v 0+v 12=s 1v 22 ① a min =v 222s 1 ①联立①①得a min =v 0+v 12s 12s 20.【变式1】 在平直公路上,汽车自O 点由静止做匀加速直线运动,途中6 s 时间内依次经过P 、Q 两根电线杆.已知P 、Q 相距60 m ,车经过Q 时的速率为15 m/s ,则: (1)汽车经过P 时的速率是多少? (2)汽车的加速度为多少? (3)O 、P 两点间距离为多少?【答案】(1)5 m/s (2)1.67 m/s 2 (3)7.5 m【解析】解法一:(1)设汽车经过P 点时的速度为v P ,经过Q 点时的速度为v Q ,由x =v 0+v2·t 得x PQ =v P +v Q2·t ,所以v P =2x PQ t -v Q =2×606-15m/s =5 m/s.(2)由v Q =v P +at 得a =53m/s 2≈1.67 m/s 2.(3)由v 2-v 20=2ax 得v 2P =2ax OP .x OP =v 2P 2a =522×53 m =152m =7.5 m.解法二:设汽车经过P 时的速度为v P , 由x =v 0t +12at 2,v =v 0+at 得x PQ =v P t +12at 2①v Q =v P +at ①由①①两式代入数值可得v P =5 m/s ,a =1.67 m/s 2. x OP 的求法同解法一.【提 分 笔 记】 选择公式应注意的问题选择公式时一定要注意分析已知量和待求量,根据所涉及的物理量选择合适的公式求解,会使问题简化. (1)知道v 0、v 、x ,求a ,没有时间t ,很自然的想到选v 2-v 20=2ax ;(2)根据运动时间相等确定末速度在知道末速度及位移的情况下,求加速度运用v 2=2ax 即可. 题型2 多过程运动问题【典例2】ETC 是目前世界上最先进的路桥收费方式,它通过安装在车辆挡风玻璃上的车载电子标签,与设在收费站ETC 通道上的微波天线进行短程通讯,利用网络与银行进行后台结算处理,从而实现车辆不停车就能支付路桥费的目的.2015年我国ETC 已实现全国联网,大大缩短了车辆通过收费站的时间.假设一辆汽车以10 m/s 的速度驶向收费站,若进入人工收费通道,它从距收费窗口20 m 处开始减速,至窗口处恰好停止,再用10 s 时间完成交费;若进入ETC 通道,它从某位置开始减速,当速度减至5 m/s 后,再以此速度匀速行驶5 m 即可完成交费.若两种情况下,汽车减速时加速度相同,求:(1)汽车进入ETC 通道减速行驶的位移;(2)汽车从开始减速到交费完成,从ETC 通道比从人工收费通道通行节省的时间. 【答案】(1)15 m (2)11 s【解析】(1)根据速度与位移公式得,匀减速直线运动的加速度大小为a =v 22x =1022×20 m/s 2=2.5 m/s 2汽车在ETC 收费通道,匀减速运动的时间为t 1=v ′-v a =5-10-2.5 s =2 s匀减速运动的位移为x 1=v ′2-v 22a =52-102-5 m =15 m.(2)汽车在ETC 收费通道,匀减速运动的时间为t 1=2 s 匀速行驶的时间为t 2=x ′v ′=55s =1 s从开始减速到交费完成所需的时间为t =t 1+t 2=3 s 过人工收费通道,匀减速运动的时间为 t 3=v a =102.5s =4 s汽车进入人工收费通道,从开始减速到交费完成所需的时间为t ′=(4+10)s =14 s. 因此节省的时间为Δt =t ′-t =(14-3)s =11 s.【变式2】(多选)在一次救灾活动中,一辆救灾汽车由静止开始做匀变速直线运动,刚运动了8 s ,由于前方突然有巨石滚下,堵在路中央,所以又紧急刹车,匀减速运动经4 s停在巨石前.则关于汽车的运动情况,下列说法正确的是( ) A .加速、减速中的加速度大小之比a 1①a 2=2①1 B .加速、减速中的平均速度大小之比 v 1①v 2=1①1 C .加速、减速中的位移之比x 1①x 2=2①1 D .加速、减速中的加速度大小之比a 1①a 2≠1①2 【答案】BC【解析】汽车先做匀加速直线运动达到最大速度v m 后又做匀减速直线运动,故两次的平均速度之比v 1①v2=v m 2①v m 2=1①1,所以选项B 正确;根据a =v mt可知,两次加速度大小之比为1①2,所以选项A 、D 错误;根据x =v t 可知,两次位移之比为2①1,所以选项C 正确. 【提 分 笔 记】处理多过程运动问题注意事项如果一个物体的运动包含几个阶段,要注意分析各段的运动性质和各段交接处的速度. 题型3 双向可逆类匀变速直线运动【典例3】(多选)在足够长的光滑斜面上,有一物体以10 m/s 的初速度沿斜面向上运动,物体的加速度始终为5 m/s 2,方向沿斜面向下,当物体的位移大小为7.5 m 时,下列说法正确的是( ) A .物体运动时间可能为1 s B .物体运动时间可能为3 s C .物体运动时间可能为(2+7) s D .此时的速度大小一定为5 m/s 【答案】ABC【解析】物体在出发点上方时,由x =v 0t +12at 2得7.5=10t +12×(-5)t 2,解得t =1 s 或t =3 s ,由v =v 0+at得,v =5 m/s 或-5 m/s.物体在出发点下方时,由x =v 0t +12at 2得-7.5=10t +12×(-5)t 2,解得t =(2+7) s 或t =(2-7) s(舍去),由v =v 0+at 得v =-57 m/s.故A 、B 、C 正确,D 错误. 【提 分 笔 记】处理双向可逆类问题注意事项对于双向可逆类问题,如沿光滑斜面上滑的物快,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变,故求解时可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义. 考点二 匀变速直线运动的推论及应用 方法与技巧题型1 平均速度公式的应用【典例4】 一物体做匀加速直线运动,通过一段位移Δx 所用时间为2t ,紧接着通过下一段位移Δx 所用时间为t .则物体运动的加速度大小为( ) A.Δx t 2 B.Δx2t 2 C.Δx 3t 2 D.2Δx 3t2 【答案】C【解析】物体做匀加速直线运动,在第一段位移Δx 内的平均速度是v 1=Δx2t ;在第二段位移Δx 内的平均速度是v 2=Δx t ;因为某段时间内的平均速度等于中间时刻的瞬时速度,则两个中间时刻的时间差为Δt =t +t2=32t ,则物体加速度的大小a =Δv Δt =v 2-v 132t ,解得a =Δx3t2,故选C. 【变式3】从车站开出的汽车,做匀加速直线运动,走了12 s 时,发现还有乘客没上来,于是立即做匀减速运动至停车.汽车从开出到停止总共历时20 s ,行进了50 m .求汽车的最大速度. 【答案】5 m/s【解析】解法一(基本公式法):设最大速度为v max ,由题意可得 x =x 1+x 2=12a 1t 21+v max t 2+12a 2t 22① t =t 1+t 2① v max =a 1t 1① 0=v max +a 2t 2①联立①①①①式得v max =2x t =2×5020m/s =5 m/s.解法二(平均速度法):匀加速阶段和匀减速阶段的平均速度相等,都等于v max2故有x =v max 2t 1+v max2t 2因此有v max =2x t 1+t 2=2×5020 m/s =5 m/s.解法三(图象法):作出汽车运动全过程的v t 图象,如图所示,v t 图线与t 轴围成的三角形的面积等于位移的大小,故x =v max t 2,所以v max =2x t =2×5020 m/s =5 m/s.【提 分 笔 记】 平均速度的求法1.求平均速度必须明确是哪一个物体在哪一段位移(或哪一段时间内)的平均速度. 2.平均速度的大小与平均速率是不同的.3.v =ΔxΔt 是平均速度的定义式,适用于所有的运动.4.v =v t 2=v +v 02只适用于匀变速直线运动.题型2 逆向思维法和初速度为零的匀变速直线运动推论的应用【典例5】 (多选)如图所示,一冰壶以速度v 垂直进入三个完全相同的矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是 ( )A .v 1①v 2①v 3=3①2①1B .v 1①v 2①v 3=3①2①1C .t 1①t 2①t 3=1①2①3D .t 1①t 2①t 3=(3-2)①(2-1)①1 【答案】BD【解析】因为冰壶做匀减速直线运动,且末速度为零,故可以看成反向匀加速直线运动来研究.初速度为零的匀加速直线运动中通过连续三段相等位移的时间之比为1①(2-1)①(3-2),故所求时间之比为(3-2)①(2-1)①1,故选项C 错误,D 正确;由v 2-v 20=2ax 可得,初速度为零的匀加速直线运动中通过连续相等位移的速度之比为1①2①3,则所求的速度之比为3①2①1,故选项A 错误,B 正确. 【变式4】做匀减速直线运动的物体经4 s 停止,若在第1 s 内的位移是14 m ,则最后1 s 内的位移是( ) A .3.5 m B .2 m C .1 m D .0【答案】B【解析】利用“逆向思维法”,把物体的运动看成逆向的初速度为零的匀加速直线运动,则做匀减速直线运动的物体在每1 s 内的位移之比为7①5①3①1,所以有71=14 m x 1,x 1=2 m ,选项B 正确.【变式5】一小球沿斜面匀加速滑下,依次经过A 、B 、C 三点,已知AB =6 m ,BC =10 m ,小球经过AB 和BC 两段所用的时间均为2 s ,则小球经过A 、B 、C 三点时的速度大小分别是( ) A .2 m/s,3 m/s,4 m/s B .2 m/s,4 m/s,6 m/s C .3 m/s,4 m/s,5 m/s D .3 m/s,5 m/s,7 m/s 【答案】B【解析】根据物体做匀加速直线运动的特点,两点之间的平均速度等于时间中点的瞬时速度,故B 点的速度就是全程的平均速度,v B =AB +BC2t=4 m/s ,又因为连续相等时间内的位移之差等于恒量,即Δx =aT 2,则由Δx =BC -AB =aT 2解得a =1 m/s 2,再由速度公式v =v 0+at ,解得v A =2 m/s ,v C =6 m/s ,故选项B 正确.考点三 自由落体和竖直上抛运动 1.两种运动的特性(1)自由落体运动为初速度为零、加速度为g 的匀加速直线运动. (2)竖直上抛运动的重要特性(如图)①对称性a .时间对称:物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .b .速度对称:物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等.①多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性. 2.竖直上抛运动的研究方法上升阶段:a =g 的匀减速直线运动下降阶段:自由落体运动题型【典例6】屋檐每隔一定时间滴下一滴水,当第5滴正欲滴下时,第1滴刚好落到地面,而第3滴与第2滴分别位于高1 m 的窗子的上、下沿,如图所示为其简易图(取g =10 m/s 2).问: (1)此屋檐离地面多高? (2)滴水的时间间隔是多少?【答案】(1)3.2 m (2)0.2 s【解析】解法一:如图所示,如果将这5滴水的运动等效为一滴水的自由落体运动,并且将这一滴水运动的全过程分成时间相等的4段,设每段时间间隔为T ,则这一滴水在0时刻、T 末、2T 末、3T 末、4T 末所处的位置,分别对应图示第5滴水、第4滴水、第3滴水、第2滴水、第1滴水所处的位置.由此可知:(1)设屋檐离地面高为x ,滴水间隔为T ,则x =16x 0,5x 0=1 m ,所以x =3.2 m. (2)x =12g (4T )2,解得T =0.2 s.解法二:假设每两滴水之间相隔的时间间隔为t .因为第3滴与第2滴正分别位于高1 m 的窗子的上、下沿,则可得出关系式:x 2=12g (3t )2、x 3=12g (2t )2、Δx=1x2-x3=1 m,解得t=0.2 s,所以由题意可知x=2g·(4t)2=3.2 m.【变式6】利用水滴下落可以粗略测量重力加速度g 的大小.调节家中水龙头,让水一滴一滴地流出,在水龙头的正下方放一个盘子,调整盘子的高度,使一滴水刚碰到盘子时,恰好有另一滴水刚开始下落,而空中还有一滴水正在下落.测出此时出水口到盘子的高度为h ,从第1滴水开始下落到第n 滴水刚落至盘中所用时间为t .下列说法正确的是( )A .每滴水下落时间为 h 2gB .相邻两滴水开始下落的时间间隔为2h gC .第1滴水刚落至盘中时,第2滴水距盘子的距离为h 2D .此地重力加速度的大小为h n +122t 2 【答案】D【解析】水滴的运动可看做自由落体运动,则由h =12gt 2得每滴水下落时间为t 0=2h g,选项A 错误;相邻的两滴水间隔的时间相同,设为Δt ,则每一滴水下落需要的时间t 0=2Δt ,故Δt =12t 0=h 2g ,选项B 错误;由初速度为零的匀加速直线运动的推论知,第1滴水刚落至盘中时,第2滴水距盘子的距离为3h 4,选项C 错误;第1滴水到第n 滴水落到盘中间隔Δt 的个数为(n -1),则t =t 0+(n -1)Δt =(n +1)Δt ,故重力加速度的大小g =h n +122t 2,选项D 正确.【提 分 笔 记】1.自由落体运动的基本公式匀变速直线运动规律――→特例自由落体运动规律 ⎭⎪⎬⎪⎫v =v 0+atx =v 0t +12at 2v 2-v 0 2=2ax ――→v 0=0a =g ⎩⎪⎨⎪⎧ v =gt h =12gt 2v 2=2gh2.自由落体运动的比例式因为自由落体运动是初速度为0的匀加速直线运动,可以利用比例式快速解题.题型2 竖直上抛运动的两种处理方法【典例7】气球下挂一重物,以v 0=10 m/s 的速度匀速上升,当到达离地高度h =175 m 处时,悬挂重物的绳子突然断裂,那么重物经多长时间落到地面?落地时的速度多大?空气阻力不计,取g =10 m/s 2.【答案】7 s 60 m/s【解析】解法一:分成上升阶段和下落阶段两个过程处理.。
高考物理匀变速直线运动三大规律总结一、内容简述大家都知道,高考物理中的匀变速直线运动是一大重点。
关于这个知识点,它其实有一些核心规律我们得掌握。
接下来我就给大家简单梳理一下这三大规律,希望能帮大家更好地理解和掌握这部分内容。
毕竟高中物理是个难关,我们得一起加油才行。
第一个规律呢,是关于匀变速直线运动的速度和时间的关系。
简单来说就是物体在固定的速度下加速或者减速,它的速度是怎么随着时间变化的。
这个规律很重要,因为它能帮助我们理解物体运动的速度变化过程。
第二个规律是位移和时间的关系,在匀变速直线运动中,物体在不同的时间段里会走不同的距离。
这个规律就是告诉我们这个距离和时间是怎么关联的,掌握了这一点,我们就能更好地预测物体在一段时间内会移动多远。
这三大规律都是帮助我们理解和预测匀变速直线运动的物体的运动过程。
掌握了这些,我们在解决物理问题时就能事半功倍了。
所以大家得好好琢磨琢磨这些规律,加油哦!1. 简述匀变速直线运动在高考物理中的重要性高考物理中,匀变速直线运动可是个重头戏。
无论是初学者还是资深考生,都得好好掌握。
这个运动规律不仅基础,还非常实用。
毕竟很多物理现象都能用匀变速直线运动来解释,简单地说它就是物体速度一直增加或减少,方向还保持不变的那种运动。
高考物理里,它的重要性可不是闹着玩的。
掌握了匀变速直线运动,就等于迈过了物理学习的一大门槛。
接下来我们就来详细说说匀变速直线运动的三大规律。
2. 引出本文将重点介绍的三大规律接下来就让我带你一起深入了解一下高考物理中的匀变速直线运动的三大规律。
你可能会觉得,高中物理是不是都是高深莫测的公式和理论?其实不然只要你掌握了基础,理解这些规律其实并不难。
接下来我们就一起来揭开这三大规律的神秘面纱,让你在高考物理中轻松应对匀变速直线运动的问题。
二、匀变速直线运动的基本概念高中物理中,匀变速直线运动是考察重点之一,这类运动有规律可循,对于我们高考备考非常关键。
大家都知道什么是匀变速直线运动吗?简单来说就是速度一直按照一定规律变化的直线运动,这种运动有个特点,那就是加速度恒定不变。
匀变速直线运动公式、规律总结1、匀变速直线运动的基本公式速度公式:v t =v 0+at ①位移公式:2021at t v s += ② 速度位移公式:220-=2t v v as ③ 平均速度公式:t v =v ==t s 20t v v + ④ 其中v =s t (任何运动都适用) 在连续相等的时间间隔(T)内的位移之差等于一个恒量,即Δs=aT 2(或者2-=(m-n)aT m n s s ) ⑤注意:①匀变速直线运动中涉及到v 0、v t 、a 、s 、t 五个物理量,其中只有t 是标量,其余都是矢量。
通常选定v 0的方向为正方向,其余矢量的方向依据其与v 0方向相同或是相反分别用正、负号表示。
如果某个矢量是待求的,就假设其为正,最后根据结果的正负确定其实际方向。
2、自由落体运动和竖直上抛运动:1.自由落体运动速度公式 gt v t =位移公式 s =212gt 速度位移公式 gs v t 22= 平均速度公式:t v =v ==t s 2t v 在连续相等的时间间隔(T)内的位移之差等于一个恒量,即Δs=gT 2总结:自由落体运动就是初速度0v =0,加速度a =g 的匀加速直线运动.gt v vt -=02021gt t v s -= 2022v v gs t -=-总结:竖直上抛运动就是加速度g a -=的匀变速直线运动.3、应用运动学规律处理问题时的思路和步骤(1)确立好研究对象。
(2)画出示意图,搞清物理情景。
分析物体的运动问题,要养成画物体运动草图的习惯,并在图中标注有关物理量。
这样将加深对物体运动过程的理解,有助于发现已知量和未知量之间的相互关系,能使运动过程直观,物理情景清晰,迅速找到解题的突破口。
(3)如果一个物体的运动包含几个阶段,就要分段分析。
弄清物体在每段上的运动情况及遵循的规律,应该特别注意的是各段交接点处的速度往往是解题的关键,应首先考虑。
对于相对运动问题,如相遇、追击或不相撞等问题,除分析每个物体的运动外,还要抓住相关物体间位移、速度或时间的联系,建立辅助方程。
高考物理复习专题:匀变速直线运动的规律总结
匀变速直线运动的规律总结:
1、匀变速直线运动是指在恒定时间内,物体以恒定的加速度
向某一方向(正方向或负方向)运动的运动方式。
2、运动的时间t和速度v的关系可以用公式表示为:v=at,其中a是加速度。
3、运动的时间t和位移s的关系可以用公式表示为:s=1/2at²,其中a是加速度。
4、当匀变速直线运动中,物体以恒定的加速度a向正方向运动,它的速度v和位移s都随时间t呈线性增长。
5、当匀变速直线运动中,物体以恒定的加速度a向负方向运动,它的速度v和位移s都随时间t呈线性减少。
6、物体以匀变速直线运动时,根据它所处时刻t的位置,可
以求出它在该时刻t时的速度v,也可以求出它在该时刻t时
的加速度a。
7、匀变速直线运动时,物体运动的距离s和运动的速度v之
间有一定的关系,可以用s=vt来表示。
8、在匀变速直线运动过程中,物体运动的速度v和时间t之
间有一定的关系,可以用v=at来表示。
9、在匀变速直线运动过程中,物体的加速度a和时间t之间有一定的关系,可以用a=v/t来表示。
10、在匀变速直线运动过程中,物体的加速度a、速度v和位移s之间有一定的关系,可以用s=1/2at²来表示。
总的来说,匀变速直线运动是一种物体以恒定的加速度向某一方向(正方向或负方向)运动的运动方式,在匀变速直线运动过程中,存在物体运动距离s与速度v、时间t、加速度a之间的物理关系,可以用物理公式来描述。