材料物理导论名词解释(2)
- 格式:docx
- 大小:16.79 KB
- 文档页数:3
材料导论名词解释1.韧性:材料在塑性形变过程中吸收能量的能力。
2.疲劳极限:工具钢的曲线从某一应力开始出现一段水平线,这意味着在该水平应力一下,3.无论应力变化多少周,材料也不会破坏,这一应力称为疲劳极限。
疲劳强度:是维持某一周数而不破坏的应力。
4.蠕变:材料在恒定应力下随时间缓慢塑性形变的过程。
5.硬度:材料抗穿刺能力的度量。
6.热应力:当一种各向同性材料被缓慢均匀地加热时,当材料的尺寸变化受到限制时就会产生的应力。
7.介电质:凡是不传导电流的物质均可称为介电质。
8.介电强度:材料可以经受的最大电压梯度。
9.压电现象:介电体的尺寸受力变化时就会极化而产生一个电压或电场。
10.电致伸缩:材料在电场中因极化而改变尺寸的现象。
11.磁导率:表征在外磁场作用下物质磁化难易的物理量。
12.光电效应:材料表面原子中的电子吸收光量子的能量跃迁到高能级,使它们能在电场中加速,产生导电现象。
13.玻璃化温度:不同相对分子质量的无定形聚合物在不同温度可表现出不同的力学状态,在一个特定的温度下,聚合物分子表现为坚硬的固体。
但这种固体不是结晶形成的,而是无定形分子被冻结形成的,同小分子玻璃一样,称为玻璃态,因此这个特定的温度称为玻璃化转变温度。
14.热塑性弹性体:热塑性与橡胶弹性的结合体。
15.粘结剂:通过表面接触而使材料连接在一起的物质。
16.临界长径比:临界纤维长度与临界纤维直径的比值。
17.玻璃钢:不饱和聚酯与玻璃纤维混合制成的复合材料。
18.孔隙度:孔隙体积占表观体积的百分数。
19.烧结:将型坯加热到很高的温度,一方面脱除型坯中的所有液体,一方面使粉体粒子粘结在一起,形成一个整体的过程。
20.烧结助剂:某些材料的烧结是通过低熔点相的粘结,低熔点组分先熔融并发生流动,充满粒子间的缝隙,不仅将粒子粘结在一起而且可使制品的密度接近100%,这一技术为液相烧结法,低熔点相则为烧结助剂。
21.相转变:指因温度或应力的变化引起晶体结构的变化。
材料物理复习题一、名词解释晶带轴:同一晶带中所有晶面与其他面的交线互相平行,其中通过坐标原点的那条平行直线称为晶带轴。
致密度:致密度是指晶胞中原子本身所占的体积百分数,即晶胞中所包含的原子体积与晶胞体积的比值。
配位数:配位数(coordination number)是中心离子的重要特征。
直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数。
相:相(phase)是系统中结构相同、成分和性能均一,并以界面相互分开的组成部分固溶体:固溶体指的是矿物一定结晶构造位置上离子的互相置换,而不改变整个晶体的结构及对称性等。
中间相:两组元A和B组成合金时,除了可形成以A为基体或以B为基体的固溶体外(端际固溶体)外,还可能形成晶体结构与A,B两组元均不相同的新相。
柏氏矢量:柏氏矢量(Burgers vector)是描述位错实质的重要物理量。
反映出柏氏回路包含的位错所引起点阵畸变的总积累。
刃位错:刃型位错有一个额外的半原子面。
一般把多出的半原子面在滑移面上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃型位错,记为“┳”。
其实这种正、负之分只具相对意义而无本质的区别。
螺位错:一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
在中央轴线处即为一螺型位错。
肖克莱不全位错:面心立方晶体中,柏氏矢量为1/6<112>的不全位错。
弗拉克不全位错:面心立方晶体中,伯格斯矢量为1/3<111>的纯刃形不全位错。
肖脱基空位:晶体结构中的一种因原子或离子离开原来所在的格点位置而形成的空位式的点缺陷。
弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间隙原子,这样的一对缺陷--空位和间隙原子,就称为弗兰克尔缺陷。
反应扩散:通过扩散使固溶体内的溶质组元超过固溶极限而不断形成新相的扩散过程,称为反应扩散或相变扩散。
色心:晶体中引入的电子或空穴,通过静电作用被晶体中带有正、负有效电荷的点缺陷所俘获,形成多种俘获电子中心和俘获空穴中心,并随能级跃迁而产生新的吸收带。
由于一些中心的吸收带位于可见光范围内,可使晶体呈现出不同的颜色,因而称其为色心。
对称破缺是指具有一定对称性的结构在经历相转变的过程中,某些原有对称元素突变性丧失的现象表面弛豫是表面层点阵参数的略微变化,表现在表面与其下少数儿个原了层问距的变化上,其晶体结构基本上保持一致表面重构是表面层结构相对于体相发生很大的变化,一般出现表面超结构。
堆垛层错:正常堆垛顺序中引入不正常顺序堆垛的原了面而产生的一类缺陷,反相畴界:界面相邻两侧存在一非点阵平移,界面处由正常的配对状态转为非正常的配对状态而保持共格。
晶体学切变面:一些过渡金属氧化物及其复合氧化物中,金属离了与氧的化学计量比变化很大,在形成缺氧的非计量化学比晶体时,晶体的两部分沿某一晶面滑移,形成晶体学切变面。
格波:晶体中原子围绕其平衡位置不断振动,由于原子问存在相互作用,一定频率振动着的原子问产生确定的位相关系,从而在晶格上形成一种平面波,称为格波。
热应力由于相邻质点问相互作用具有一定的非线性,固体在温度升高时,相邻质点的平均距离增大,产生热膨胀。
若用刚性约束阻碍晶体膨胀,则会在晶体内部产生一种附加应力,这种由热膨胀引起的内应力即为热应力。
弹性模量是材料受力作用时应力与应变的比值,反映了材料内部原了问的结合强度,是材料的一个固有物性参数滞弹性:实际固体在外力作用下产生弹性形变,在撤去外力后,并非能像理想弹性体一样立即恢复,而是需要一定的恢复时问,则称这种固体的实际弹性性质为滞弹性蠕变:施加恒定外力作用下,物体应变随时问的延长而增加的现象; 晶格滑移:晶体受力时,晶体中的一部分相对于另一部分产生相对滑移的现象粘性流动:材料在在外力的作用下发生类似粘性液体流动的变形,其变形速度与剪应力成正比,与材料粘度成反比。
材料物理名词解释答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN这是我在网上找的自己编辑的名词解释答案,正确性还高,理解好课本才是王道,祝我们有个好成绩。
————-宪哥磁致伸缩效应:铁磁体在磁场中磁化,其形状和尺寸都发生变化的现象。
电介质的极化:电介质在电场作用下产生束缚电荷的现象。
超导性:在一定的低温条件下,金属突然失去电阻的现象。
抗热震性:材料承受温度的急剧变化而不致破坏的能力。
自发极化:在无外电场作用下存在的极化现象。
激光:在外来光子的激发下,诱发电子能态的转变,从而发射出与外来光子的频率、相位、传输方向及偏振态都相同的相干光波。
滞弹性:在弹性范围内,应变落后于应力的行为。
介电强度:引起材料击穿的电压梯度(V/cm)(介电击穿强度)磁致电阻效应:磁性材料的电阻率随磁化状态而改变的现象。
铁电性:某些电介质在一定温度范围内具有自发电极化,而且该电极化可以被外电场改变方向的性质。
热容:当一系统由于加给一微小的热量δQ而温度升高dT时,δQ/dT 这个量即是该系统的热容。
通常以符号C表示,单位J/K。
PTC效应:材料的电阻会随温度的升高而增加,并在某一温度区急剧增大的特性。
(正温度系数效应)矫顽力:使磁化至技术饱和的永磁体的磁感应强度B降低至零所需要的反向磁场强度。
受激辐射:原处于高能级的原子,受到外来光子的作用下迁跃到低能级,同时发射出一个同样能量的光子的现象。
光的色散:当光脉冲在光纤中传播时,脉冲可能扩展的现象。
内耗:材料在弹性范围内由于其内部各种微观因素的原因致使机械能逐渐转化成为材料内能的现象。
压电效应:对晶体在一特定方向上加力,则在力的垂直方向的平面上出现正,负束缚电荷的现象。
介质的击穿:加在电介质上的电场强度超过某一临界值时,电介质的绝缘性能完全丧失的现象。
磁性各向异性:在单晶体的不同晶向上,磁性能是不同的。
声频支振动:如果振动着的质点包含频率甚低的格波,质点彼此间的位相差不大,则格波类似于弹性体中的应变波称为声频支振动。
光电效应:是指在光的作用下从物体表面释放电子的现象康普顿效应:x-ray 被物质散射时,测到了波长改变的现象。
量子围栏:蒸发到铜(111)晶面的铁原子用扫描隧道显微镜的探针排列成的园环。
几率密度:代表电子出现在 (x,y,z) 点附近单位体积中被测到的几率的大小量子力学的基本原理:Born 提出的波函数的几率解释本征方程、本征值、本征函数:算符作用于函数u 上等于常数f 与u 的乘积 u = f u 量子隧道效应:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象电阻率(电导率):是物质的本征参数,用来表征材料导电性表征材料导电性的微观物理量:载流子浓度和迁移率自由电子气模型:金属中电子共有化,好比理想气体,彼此之间没什么相互作用,各自独立地在势能等于平均势能的场中运动,因而不受外力作用,只是到金属表面时才受到突然升高的势能的阻挡马蒂森定则:金属的电阻率可表为0()()e T T ρρρ=+。
()e T ρ由于声子对电子的散射所引起的,称为本征电阻率。
0ρ杂质或缺陷对电子的散射产生的,与温度无关,称剩余电阻率。
能带理论:预言固体中电子能量会落在某些限定范围或“带”中布洛赫定理:周期性势场中的波函数()()ikx k x e u x ψ=⋅禁带:在诸能量断开的间隔内不存在允许的电子能级(原因:是在布区边界上存在布拉格反射.)能带: 包括允带和禁带。
允带(allowed band ):允许电子能量存在的能量范围。
禁带(forbidden band ):不允许电子存在的能量范围。
布里渊区:将标志电子状态的波矢k 分割成许多区域,这些区域满带:被电子填满的能带导带:被电子部分填充的能带空带:没有电子填充的能带价带: 被价电子占据的允带(低温下通常被价电子占满)。
或最上面的一个满带Wilson 转变:对于绝缘体,若满带与空带重叠,即成为不满带,则成为了导体。
这种与能带是否交叠相对应的金属--绝缘体的转变称为Wilson 转变。
材料物理导论(熊兆贤着)课后习题答案第三章习题参考解答第三章 材料的电学3112319/)(/1006.4)3001038.1106.122.0exp(211211)(22.005.029.0212.1)(,12.1.1cm e N E f N n eV E E E E E E E E E E E E eV E Si kT E E D D D D F D i F D i c F D D c D g F D ⨯=⨯⨯⨯⨯+=+=⋅==-=-∴--∆--=--=∆=⊗---的查解:⎪⎩⎪⎨⎧⨯==⨯==∴〈〈⊗。
少子;多子解:)(/1013.1)(/105.1.239203150cm N n p cm N n N n D i D D i ΘeV22.0J 1053.3E E cm /102N cm /100.1N N Nln kT E E P cm /1045.8102)103.1(p n n cm /102109101.1N N p T N P ,N N .320V F 315A 319V AVV F 34152102i 3151516D A A D =⨯=-⨯⨯=-⎪⎩⎪⎨⎧⨯=⨯⨯==⨯=⨯-⨯=-=⇒∴∴〈⊗-代入可得取,取型半导体,有对于杂质几乎完全电离在室温,较少且又型半导体补偿后解:ΘΘ时可保持强电离。
则有令,仅考虑杂质电离有低温区,忽略本征激发解:318D 318DD D 2/1kT /E CD DD0cm /1032.1N cm /1032.1N N 9.0n )e N N 8(1N 2n n .4D ⨯〈⨯〈⇒≥⋅+==⊗+∆+mE s q m m q n n n d s n n n n n n 181********311048.11048.110101.01048.1106.110101.926.01.0.9-------**⨯=⨯⨯⨯⨯=⋅⋅=⋅=⨯=⨯⨯⨯⨯⨯==∴=τμτυλμττμΘ解:Ω=⨯=⋅ρ=⋅Ω=⨯⨯⨯=μ=σ=ρ⊗-3.16.01781.0S l R cm 781.08000106.1101nq 11.101915nΘ解:225112251123312319193103.421023.412.4400)2(5.361065.3365.3)1010/(101.926.03001038.13106.110/33,,)1(101.926.026.0.11------------⋅=⋅⨯==⋅Ω=⋅=⋅⨯===⋅Ω=⋅⨯⨯⨯⨯⨯⨯⨯=⋅⋅=∴===⨯⨯==⊗cm A m A i m K cm A m A m kTqN E i mE m kTq N m kT V E V nq kg m m Si dnA dnA dn dn σσσμμσ时,同理,(电子有效质量),对解:Θcm 045.0)1350106.1103.10()pq (s V cm 1350cm /103.10100.1101103.1n )3(cm34.4)480106.1103.0()pq (cm /103.0100.1103.1N N p)2(cm34.4)480106.1103()pq (s V cm 480cm /103N p ,n n )1(.12119161112n 3161617161191613161616D A 119151112p315A A i ⋅Ω=⨯⨯⨯⨯=μ=ρ∴⋅⋅=μ⨯=⨯-⨯+⨯=⋅Ω=⨯⨯⨯⨯=μ=ρ∴⨯=⨯-⨯=-=⋅Ω=⨯⨯⨯⨯=μ=ρ∴⋅⋅=μ⨯=≈∴〈〈⊗-------------ΘΘ又又查得解:为最大。
材料物理学中的基本概念及应用1. 引言材料物理学是一门研究材料性质、结构、制备和应用的交叉学科。
它涉及固体物理学、量子力学、热力学、化学、机械工程等多个领域的知识。
本文将介绍材料物理学中的基本概念及其在各个领域的应用。
2. 基本概念2.1 晶体与非晶体晶体是由具有规则排列的原子、分子或离子组成的固体。
晶体具有高度有序的结构,表现出各向异性。
非晶体则是由无规则排列的原子、分子或离子组成的固体,具有各向同性。
2.2 晶格与电子排布晶格是晶体中原子、分子或离子的周期性排列。
晶格常数是描述晶体结构的重要参数。
电子排布则是电子在原子、分子或离子中的分布情况。
它能级结构决定了材料的化学性质和物理性质。
2.3 能带理论能带理论是描述固体材料电子状态的一种理论。
它将电子能级分为导带、价带和禁带。
导带中的电子可以自由移动,是电流的载体。
价带中的电子被束缚在原子周围,不参与导电。
禁带是导带和价带之间的能量区域,电子不能在其中存在。
2.4 半导体与导体半导体是介于导体和绝缘体之间的材料。
它的导电性能受掺杂和温度等因素的影响。
半导体具有较宽的禁带,可通过掺杂引入杂质原子,改变其电子状态,从而调控其导电性能。
导体是具有高导电性的材料,如金属。
导体中的自由电子可以在外加电场的作用下自由移动,形成电流。
2.5 超导现象超导现象是某些材料在低温下电阻突然降为零的现象。
超导体具有完全抗磁性,可以无损耗地传输电能。
超导现象的机理与电子配对有关。
3. 应用3.1 电子器件材料物理学的原理应用于电子器件的制备,如晶体管、集成电路等。
半导体材料如硅、锗等被广泛应用于电子器件中,实现了信息技术的快速发展。
3.2 光学器件光学器件的制备也离不开材料物理学原理。
例如,激光器、光电池、光纤通信等光学器件的关键材料均基于材料物理学的原理。
3.3 能源材料材料物理学在能源领域具有重要意义。
如太阳能电池、锂离子电池等新能源材料的研发,都离不开材料物理学的原理。
电导率:电导率是电阻率的倒数,电导率ζ,ζ=1/ρ。
电导率的物理意义是表示物质导电的性能。
电导率越大则导电性能越强,反之越小。
电导是电阻的倒数,电导率是电阻率的倒数。
电导率与温度具有很大相关性。
金属的电导率随着温度的增高而降低。
半导体的电导率随着温度的增高而增高。
载流子:能够携带电荷的粒子。
离子电导:离子所谓载流子的电导机制。
离子晶体中,由于热缺陷或杂质的引入而形成的缺陷,脱离格点的填隙离子或空格点的正、负离子在电场作用下定向移动,参与导电过程。
载流子是材料本身的本征缺陷载流子、杂质缺陷载流子、质子。
主要存在于含有正负离子、空位的离子化合物中、电介质陶瓷、绝缘陶瓷中。
电子电导:电子或空穴作为载流子的电导机制。
主要是由杂质本身及由杂质形成的各种缺陷,特别是俘获了电子或空穴的各种缺陷在电场的作用下发生电离而定向移动,参与导电过程。
载流子是本征载流子、非本征载流子、注入载流子。
主要存在于金属、半导体、半导体陶瓷、导电陶瓷、超导陶瓷中。
霍尔效应:电流I通过电子电导的陶瓷试样时,若在垂直于电流方向上加一磁场H,则在垂直于I-H平面的方向上产生了电场E H,该电场即霍尔电场,该现象即霍尔效应。
霍尔效应的产生是由于电子在磁场作用下,产生横向移动的结果,电子电导的特征是具有霍尔效应,可以利用霍尔效应检验材料是否存在电子电导。
由于离子的质量比电子的大的多,磁场的作用力不足以使离子产生横向位移,因此纯离子电导不呈现霍尔效应。
常用霍尔效应来区分陶瓷材料的载流子主要是电子还是离子,也可以判断导体和半导体中参加导电的是电子还是空穴。
本征电导:晶体中,可动正负离子随热运动而离开晶格形成热缺陷,或晶体受热激发而产生可动电子和空穴,热缺陷或激发的电子和空穴在电场作用下能定向移动及电离,从而参与导电的过程。
两种载流子的浓度相等,电导率与温度有关。
本征导电:极低温度下,半导体的价带是满带(见能带理论),受热激发后,价带中的部分电子越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。
第二章材料科学与工程的四个基本要素作业一第一部分填空题(10个空共10分,每空一分)1.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、结构与成份和合成与加工。
2.材料性质的表述包括力学性质、物理性质和化学性质。
3.强度可以用弹性极限、屈服强度和比例界限等来表征。
4.三类主要的材料力学失效形式分别是:断裂、磨损和腐蚀。
5.材料的结构包括键合结构、晶体结构和组织结构。
6.晶体结构有三种形式,它们分别是:晶体、非晶体和准晶体。
7.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。
8.材料的强韧化手段主要有固溶强化、加工强化、弥散强化、第二相强化和相变增韧。
第二部分判断题(10题共20分,每题2分)1.材料性质是功能特性和效用的描述符,是材料对电.磁.光.热.机械载荷的反应。
(√)2.疲劳强度材料抵抗交变应力作用下断裂破坏的能力。
(√)3.硬度是指材料在表面上的大体积内抵抗变形或破裂的能力。
(错)4.性能是包括材料在内的整个系统特征的体现;性质则是材料本身特征的体现。
(√)5.晶体是指原子排列短程有序,有周期。
(错)6.材料的热处理是指通过一定的加热、保温、冷却工艺过程,来改变材料的相组成情况,达到改变材料性能的方法。
(√)7.材料表面工程包括表面改性和表面保护两个方面。
(错)8.材料复合的过程就是材料制备、改性、加工的统一过程。
(√)9.材料合成与加工过程是在一个不限定的空间,在给定的条件下进行的。
(错)10.材料中裂纹的形成和扩展的研究是微观断裂力学的核心问题。
(√)第三部分简答题(4题共40分,每题10分)1.材料性能的定义是什么?答:在某种环境或条件作用下,为描述材料的行为或结果,按照特定的规范所获得的表征参量。
2.金属材料的尺寸减小到一定值时,材料的工程强度值不再恒定,而是迅速增大,原因有哪两点?答:1)按统计学原理计算单位面积上的位错缺陷数目,由于截面减小而不能满足大样本空间时,这个数值不再恒定;2)晶体结构越来越接近无缺陷理想晶体,强度值也就越接近于理论强度值。
材料物理导论材料物理导论是一门涵盖了材料科学和物理学的学科,主要研究物质的性质和结构。
下面将分步骤阐述材料物理导论的主要内容。
第一步:物质的基本性质物质的基本性质是材料物理导论中的重要部分。
物质的基本性质包括物质的质量、电荷、电磁力、位移、动量等特性。
对于材料科学来说,物质的基本性质对材料的选择、设计和制造的过程具有重要意义。
第二步:晶体结构晶体结构是材料物理导论中的热点研究议题之一。
晶体结构研究包括元素周期表、晶体的分类、晶体的点阵、晶体的晶格常数、晶体的晶格缺陷以及晶体的相互作用等内容。
晶体结构对于材料特性、材料性能和材料应用具有重要意义。
第三步:物理分析方法物理分析方法是材料物理导论中的重要研究内容。
物理分析方法包括光学显微镜、电子显微镜、X射线衍射、热力学实验、质谱分析等方法。
物理分析方法可以帮助人们更好地认识材料、了解材料的内部结构与外部性能。
第四步:电子结构电子结构是材料物理导论中的重要概念之一。
电子结构研究包括材料的能带结构、能量带隙以及电子状态密度等几个方面。
此外,电子结构也与材料的载流子行为以及各种材料性质的特性密切相关。
第五步:材料特性材料特性是材料物理导论中所关注的重要问题。
材料特性包括材料的热学性质、光学性质、磁学性质、电学性质、机械性质等特征。
对于材料科学来说,了解材料的特性对材料的改性、设计及应用极为重要。
以上便是关于材料物理导论内容的主要介绍。
材料物理导论作为一门交叉学科,结合了材料科学和物理学的研究方法和思想,让人们更好地认识材料的性质和结构。
通过对材料物理导论的深入研究和实践,可以有效地加深我们对材料科学和物理学领域的理解,为材料科学的发展贡献自己的力量。
色心:晶体中引入的电子或空穴,通过静电作用被晶体中带有正、负有效电荷的点缺陷所俘获,形成多种俘获电子中心和俘获空穴中心,并随能级跃迁而产生新的吸收带。
由于一些中心的吸收带位于可见光范围内,可使晶体呈现出不同的颜色,因而称其为色心。
对称破缺是指具有一定对称性的结构在经历相转变的过程中,某些原有对称元素突变性丧失的现象表面弛豫是表面层点阵参数的略微变化,表现在表面与其下少数儿个原了层问距的变化上,其晶体结构基本上保持一致表面重构是表面层结构相对于体相发生很大的变化,一般出现表面超结构。
堆垛层错:正常堆垛顺序中引入不正常顺序堆垛的原了面而产生的一类缺陷,反相畴界:界面相邻两侧存在一非点阵平移,界面处由正常的配对状态转为非正常的配对状态而保持共格。
晶体学切变面:一些过渡金属氧化物及其复合氧化物中,金属离了与氧的化学计量比变化很大,在形成缺氧的非计量化学比晶体时,晶体的两部分沿某一晶面滑移,形成晶体学切变面。
格波:晶体中原子围绕其平衡位置不断振动,由于原子问存在相互作用,一定频率振动着的原子问产生确定的位相关系,从而在晶格上形成一种平面波,称为格波。
热应力由于相邻质点问相互作用具有一定的非线性,固体在温度升高时,相邻质点的平均距离增大,产生热膨胀。
若用刚性约束阻碍晶体膨胀,则会在晶体内部产生一种附加应力,这种由热膨胀引起的内应力即为热应力。
弹性模量是材料受力作用时应力与应变的比值,反映了材料内部原了问的结合强度,是材料的一个固有物性参数滞弹性:实际固体在外力作用下产生弹性形变,在撤去外力后,并非能像理想弹性体一样立即恢复,而是需要一定的恢复时问,则称这种固体的实际弹性性质为滞弹性蠕变:施加恒定外力作用下,物体应变随时问的延长而增加的现象; 晶格滑移:晶体受力时,晶体中的一部分相对于另一部分产生相对滑移的现象粘性流动:材料在在外力的作用下发生类似粘性液体流动的变形,其变形速度与剪应力成正比,与材料粘度成反比。
材料物理导论名词解释(3)材料物理导论名词解释p-type semiconductor p型半导体:掺入受主杂质,主要依靠导带中空穴导电的半导体空穴型半导体Quality factor 品质因子:能量的储存与损耗之比Refractive index 折射率:光在真空与材料中的传播之比Scattering of ionized impurities 电离杂质散射:半导体中施主杂质、受主杂质电离后分别变成带正电、负电的离子,在电离施主或受主周围形成一个电场使得载流子散射的现象 Semiconductor 半导体:电阻率介于金属与绝缘材料之间的材料Soft magnetic materials 软磁材料:在较弱磁场下易于磁化,也易退磁的一种磁性材料 Specific heat capacity 比热容:单位质量的热容量Spontaneous plarization 自发极化:外加电场去除后仍存在极化的现象Spuerconductor 超导体:一定温度下具有零电阻超导电现象的材料Statistical mechanics 统计力学:研究大量粒子几何的宏观运动规律的科学Statistical regularity 统计规律性:由大量微观粒子组成的整体,表现出与机械运动规律不同的另一种规律性。
Susceplitilsty 磁化率:表示材料磁化程度的物理量Thermal conduction 热传导:材料中的热量自动从高温区传向低温区的现象Thermal eqilibrium state 热力学:平衡态:一个系统处于不变的外界条件下,经过一定的时间后系统达到的一个宏观性质不随时间变化的状态。
Thermal expansion coeffient热膨胀系数:温度升高1K时,物体长度、体积相对增长值 Thermal expansion 热膨胀:材料的长度或体积在不加压力时随温度的升高而变大的现象Thermal motion 热力学:物质中原子和分子不停的无规则运动状态Thermal shock resistance 热稳定性:材料承受温度的急剧变化而不致碎裂破坏的能力Thermal stability热稳定性:材料承受温度的急剧变化而不致碎裂破坏的能力Thermal stress rupture 热应力:材料在为改变外力作用状态时,仅因热冲击而在材料内部产生的内应力Thermodynamics 热力学:研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生时系统与外界相互作用的学科Transmittance 透光率:光能通过材料后剩余光能所占百分比Valence band 价带:填满的电子的能量最高的允带Valence bands 允带:电子能够占据的能量区域Velocity distribution function 速度分布函数:描述分子运动速率分布状态的函数 Vescattering of carriers 载流子迁移:载流子在电场作用下产生运动的现象材料物理性能名词解释2017-04-09 17:22 | #2楼铁电性:电偶极子由于它们的相互作用而产生的自发平行排列的现象。
极化是指介质内质点地正负电荷重心发生分离,从而产生电偶极子地过程. 机电祸合系数是综合反映压电材料性能地参数,其表征了压电材料地机械能与电能地耦合效应地大小. 玻尔磁子是物质磁矩地基本单位,在制中; 抗磁性是指物质在外磁场作用下可产生磁化强度与磁场方向相反地性质铁电性是指晶体在一定温度范围内,具有自发极化,并且自发极化方向可随着外电场作可逆转动地性质巡游电子:在过渡金属中,参与导电地电了称为巡游电子,它们分布于交叠地及能带,其能带在分了场作用下可发生次带分裂. 进动:作轨道运动地电了在外磁场作用下产生一种以磁场方向为轴地附加进动,并产生与外磁场相反地附加磁矩一即抗磁性.巨磁电阻:材料地电阻变化率随外磁场发生巨大变化地现象,这些材料常具有多层膜地微结构特点,通过电了地白旋相关散射或白旋隧穿等机制实现巨磁电阻效应. 磁性铁氧体,具有磁有序结构地过渡金属氧化物,如具有尖晶石结构地等. 磁距定义为磁偶极子等效地平面回路地电流和回路面积地乘积,即朗德因子地物理意义:当时,,, 均来源于自旋运动;当时, ,,均来源于轨道运动;当<<,原子磁矩由轨道磁矩与自旋磁矩共同贡献.反映了在原子中轨道磁矩与自旋磁矩对总磁矩贡献地大小磁致伸缩磁性材料由于磁化状态地改变,其长度和体积都要发生微小地变化,这种现象称为磁致伸缩°电畴:两个畴区地极化方向相互垂直,其畴壁较厚,在外电场作用下转向不充分,其转向引起地内应力大,因而不稳定.转变有些绝缘体会随温度升高而从绝缘体转化为金属°电畴:两个畴区极化方向反向平行,其畴壁较薄,在外电场作用下,转向充分,引起地内应力小,因而较为稳定. 电畴铁电晶体内自发极化一致地区域压电性某些介质在机械力作用下发生电极化或电极化地变化,这样地性质称为压电性逆压电效应在压电体地适当方向上施加外电场会导致压电体发生应变地现象热释电性()指地是某些电介质地电极化随温度改变地性质.泊松比在拉伸试验中,材料横向单位面积地减少与纵向单位长度地增加之比值应力松弛在温度和形变保持不变地情况下,高聚物内部地应力会逐渐衰减缠结态高分子链彼此间发生某种程度地相互贯穿地现象产生断裂时地应力强度因子地临界值被称为断裂韧度细晶强化是指通过晶粒粒度地细化来提高金属地强度固溶强化是利用点缺陷对金属基体进行地强化沉淀强化.即材料强度在时效温度卜随时间而变化地现象晶体电场效应局域在离子中地电子运动受邻近离子产生地静电场地作用而发生变化,磁化强度单位体积地磁矩.磁化率磁化强度与磁场强度地比值磁弹性能应力及应变对磁化地影响,导致附加地磁各向异性,又称应力磁各向异性退磁场当强磁体被磁化后,它本身地磁化亦产生磁场.这个磁场在强磁体中常与磁化地方向相反软磁是指高磁导率及低矫顽力地材强磁体地磁电阻称为各向异性磁电阻磁晶各向异性在晶体地不同取向与外磁场平行时,磁化地难易不同磁化功使磁性材料磁化时消耗地能量型和型半导体连接在一起,由于费米能级地差别≠ ,产生电势差,并使能带弯曲出现势垒:− , , .当两端施加一个正向外电压,使电流由型流向型时,势垒从降为( ) ,扩散电流大于漂流电流,净电流由到端,并随外电压增大迅速增加,结处于低电阻导通状态;当外加电场反向,电流由型流向型时,势垒升高至( ) ,空间电荷区宽度增加,电场强度增加,漂流电流大于扩散电流,则型中空穴流向型. 型电子流向型.由于均为少数载流子,浓度低,固电流很小,结处于高阻不导通状态.因此,方向随时间交替变化地交流电通过结后可以转化为单一方向地直流电.文档来自于网络搜索抗磁性:χ<,磁性很弱,来源:①局域电子抗磁性,②传导电子抗磁性. 顺磁性:χ>,主要来源:①局域电子顺磁性,②传导电子顺磁性,③顺磁性. 铁磁性:χ>,且很大,存在一临界温度:< 时,材料内部具有自发磁化,产生磁有序结构,存在磁滞回线;>,表现为顺磁性,服从χ ( –) 反铁磁性:χ>,但较小,存在一磁有序相变点,且在处χ 有最大值,> 呈顺磁性,<磁矩有序排列. 亚铁磁性:χ>,且较大,存在一临界温度:当< 时为亚铁磁,当> 时为顺磁性,在磁结构上类似于反铁磁性:近邻离子磁矩相反,所不同地是临近离子地磁矩大小不同文档来自于网络搜索离子晶体中地电导率可能来源于电子电导和离子电导,前者主要与材料中地非局域化传导电子运动相关,而后者与晶体中点缺陷种类、浓度及其运动方式相关.晶体结构类型、化学键以及各种点缺陷是影响离子电导率地重要因数.公式中为离子激活能,在高温下包括离子迁移能和本征缺陷形成能,而在低温下则主要为离子迁移能.因此,在σ 曲线上,表现为直线地斜率,在高低温条件下地变化常表现为文档来自于网络搜索σ 曲线由二条直线段所构成.型半导体陶瓷地晶界上具有表面能级,此表面能级可以捕获载流子从而在两边晶格内产生一层电子耗损层,形成肖特基势垒,其高度与介电常数有关.在铁电相范围内介电常数大,势垒低,当温度超过居里点,根据居里外斯定律,材料介电常数急剧减少,势垒增加,从而引起电阻率剧增文档来自于网络搜索压电效应是由于晶体在机械力作用下发生形变,从而引起带电离子地相互位移,使晶体地总电矩发生改变而造成地,具有压电性地晶体内存在极轴,文档来自于网络搜索不具有中心对称性,点群中具有极轴地点群具有种.热释电性是由于温度均匀变化而引起地表面电荷现象,其本质是晶体存在自发极化,对于晶体结构而言,只有存在唯一极轴地晶体才能具有热释电性,存在唯一极轴也就是要求晶体存在唯一地旋转对称轴而又没有垂至于此轴地对称面.可能具有热释电性地晶体点群形式有种:、、、、、、、、、.铁电性是指晶体在某一温度范围内存在自发极化地现象,且具有两个或两个以上地自发极化方向,在电场地作用下自发极化方向会发生改变.因而铁电体是热释电体地一部分,一般而言铁电晶体中奇数阶张量表示地物理量与外场之间存在回线关系,也即电滞回线.文档来自于网络搜索。
第一章 材料的力学1. 一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。
2. 一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,解:3. 一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。
解:根据可知:拉伸前后圆杆相关参数表 )(0114.0105.310101401000940000cm E A l F l El l =⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)21(3)1(2μμ-=+=B G E )(130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈⨯=+⨯=+=μ剪切模量)(390)(109.3)7.01(3105.3)21(388MPa Pa E B ≈⨯=-⨯=-=μ体积模量4. 试证明应力-应变曲线下的面积正比于拉伸试样所做的功。
证:5. 一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
材料物理化学第⼀⼆三章名词解释集锦--复习材料解析第⼆章晶体结构1. 晶格能指将⼀克式量(与⼀摩尔相当的量)的离⼦晶体中各离⼦拆散成⽓态所需的能量(也称为点阵能)2. 电⼦亲合能⽓态原⼦获得⼀个电⼦所放出的能量,常⽤千卡/克原⼦(4200J/mol)表⽰。
元素的电⼦亲合能越⼤,则越易获得电⼦形成负离⼦。
3. 电离能指⽓态原⼦在最低能态失去电⼦所需的能量,常⽤千卡/克原⼦(4200J/mol)表⽰,从中性原⼦失去第⼀个电⼦所需的能量称第⼀级电离能;失去第⼆个电⼦所需的能量称第⼆级电离能,余类推。
元素的电离能越⼩,则越易失去电⼦形成正离⼦。
4. 电负性各元素的原⼦在形成价键时吸引电⼦的能⼒。
⽤以⽐较各种原⼦形成负离⼦或者正离⼦的倾向。
两元素的电负性差越⼤,所形成的键的极性就越强。
5. 原⼦配位数指⼀个原⼦邻近周围的同种原⼦的个数。
6. 离⼦配位数指⼀个离⼦邻近周围的异号离⼦的个数。
7. ⾯⼼⽴⽅密堆积等径球的⼀种最紧密堆积⽅式,球体按ABCABC、、、、、、层序堆积,将这些球体的球⼼联接起来,便形成⾯⼼⽴⽅格⼦,即在这种堆积⽅式中可以找出⾯⼼⽴⽅晶胞。
8. 六⽅密堆积等径球的⼀种最紧密堆积⽅式,球体按ABABAB、、、、、层序堆积,将这些圆球的球⼼联接起来,形成六⽅底⼼格⼦,即在这种堆积⽅式中可以找出⾯⼼⽴⽅晶胞。
9. 离⼦极化离⼦在外电场作⽤下,其⼤⼩和形状发⽣改变的现象。
10. 离⼦极化⼒⼀种离⼦使另⼀种离⼦发⽣变形(或极化)的能⼒。
即:反映离⼦极化其它离⼦的能⼒。
11. 离⼦极化率表征离⼦在外电场作⽤下,⾃⾝其⼤⼩和开头发⽣改变的难易程度,即变开性的⼤⼩,即反映离⼦本⾝被极化的难易。
12. 结晶化学定律晶体的结构取决于其组成质点的数量关系,⼤⼩关系与极化性能。
13. 静电键强度z 定义为阳离⼦电价Z除配位数n所得的商。
即:静电键强度:S=n14. 同质多晶现象化学组成相同的物质在不同的热⼒学条件下结晶形成结构不同的晶体的现象。
Absorption coefficient 吸收常数:垂直于光束方向的水层元内单位厚度的吸收量Acceptor impurity 受主杂质:lll族杂质在Si、Ge中能够接受电子而产生导电空穴并形成负电中心acceptor ionization 受主电离:空穴挣脱受主杂质束缚的过程Antiferromagnetism 反铁磁性:材料中相邻原子或离子的磁矩作反向平行排列使得总磁矩为零的性质。
Birefringence 双折射:光入射到各向异性的晶体分解为两束光而沿不同方向折射的现象Conduction bands 导带:一部分被电子填充,另一部分能级空着的允带Crystallization 结晶:液态金属转变为固态金属形成晶体的过程Current density 电流密度:描述电路中某点电流强弱和流动方向的物理量currie temperature 居里温度:自发极化急剧消失的温度Diamagnetism 抗磁性:外加磁场使材料中电子轨道运动发生变化,感应出很小的磁矩且该磁矩与外磁场方向相反的性质Dielectric breakdown 介电体击穿:介电体在高电场下电流急剧增大,并在某一电场强度下完全丧失绝缘性能的现象dielectric loss 介电损耗:将电介质在电场作用下,单位时间内消耗的电能Dielectric medium 电介质:能够被电极化的介质Dipolar turning polarization 偶极子转向极化:极性介电体的分子偶极矩在外电场作用下,沿外施电场方向转向而产生宏观偶极矩的极化Disperse phase 分散相:被分散的物质Dispersion of refractive index 折射率的色散:材料的折射率m随入射光频率减小而减小的现象Donor impurity level 施主能级:将被施主杂质束缚的电子能量状态称施主能级Donor impurity 施主杂质:V族杂志在硅、锗中电力时,能够释放电子而产生导电导子并形成整点中心,称其位施主杂质或n型杂志donor ionization 施主电离:施主杂质释放电子的过程Electirical polarization 电子极化:电场作用下,构成原子外围的电子云相对原子核发生位移形成的极化Electrical field 电场:由电荷及变化磁场周围空间里存在的一种特殊物质Electrical resistivity 电阻率:某种材料制成的长1米、横截面积是1平方米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率。
材料物理学导论材料物理学是一门研究材料的性质、结构和行为的学科,它旨在了解材料的基本原理,并为材料的开发和应用提供理论和实验依据。
本文将介绍材料物理学的基本概念、研究方法和应用领域,以及与其他学科的交叉研究。
一、材料物理学的基本概念材料物理学是研究材料的物理性质和行为的学科。
它关注材料结构和性质之间的关系,以及材料制备和性能优化的方法。
材料的物理性质包括力学性质、光学性质、磁性和电性等。
材料物理学着眼于揭示物质的微观结构和宏观性质之间的联系,以及各种条件下材料的行为。
二、材料物理学的研究方法1. 实验研究:材料物理学借助实验手段,对材料的结构和性质进行定量分析。
通过调整材料成分、制备工艺和外部条件等因素,研究材料性能的变化规律,为材料的设计和应用提供依据。
2. 理论模拟:材料物理学采用理论模型和计算方法,揭示物质的微观结构和性质之间的关系。
通过求解方程、模拟材料的运动和相互作用等,预测材料的性质和行为。
理论模拟为材料设计和性能优化提供了重要的理论指导。
三、材料物理学的应用领域1. 新材料开发:材料物理学为新材料的研发提供了基础和理论指导。
通过对材料的定量分析和设计,可以开发出具有特殊性能和应用价值的新材料,如高强度材料、超导材料和半导体材料等。
2. 能源领域:材料物理学在能源领域的应用十分广泛。
例如,通过研究材料的电学性质和光学性质,可以开发出高效的太阳能电池和光催化材料,用于能源转换和储存。
3. 电子器件:材料物理学为电子器件的设计和制造提供了理论指导。
通过研究材料的导电性和磁性等性质,可以开发出更小型、更高性能的电子器件,如集成电路和磁存储芯片等。
4. 生物医学:材料物理学在生物医学领域有着重要的应用。
例如,通过研究生物材料的相容性和生物学特性,可以制备出用于组织工程和药物传递的新型材料。
四、材料物理学的交叉学科研究材料物理学与其他学科之间存在紧密的交叉研究。
例如,材料物理学与化学、工程学和生物学等学科的交叉研究,推动了新材料的开发和创新。
第一章:材料的力学形变:材料在外力作用下发生形状和尺寸的变化,称为形变力学性能(机械性能):材料承受外力作用,抵抗形变的能力及其破坏规律,称为材料的力学性能或机械性能应力:材料单位面积上所受的附加内力称应力。
法向应力应该大小相等,正负号相同,同一平面上的两个剪切应力互相垂直。
法向应力导致材料的伸长或缩短,剪切应力引起材料的切向畸变。
应变:用来表征材料受力时内部各质点之间的相对位移。
对于各向同性材料,有三种基本的应变类型。
拉伸应变,剪切应变,压缩应变。
拉伸应变:材料受到垂直于截面积的大小相等,方向相反并作用在同一直线上的两个拉伸应力时材料发生的形变。
剪切应变:材料受到平行于截面积的大小相等,方向相反的两剪切应力时发生的形变。
压缩应变:材料周围受到均匀应力P时,体积从起始时的V0变化为V1的形变。
弹性模量:是材料发生单位应变时的应力,表征材料抵抗形变能力的大小,E 越大,越不易变形,表征材料的刚度越大。
是原子间结合强度的标志之一。
黏性形变:是指黏性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间的增大而增大。
剪切应力小时,黏度与应力无关,随温度的上升而下降。
牛顿流体:服从牛顿黏性定律的物体称为牛顿流体。
在足够大的剪切应力下或温度足够高时,无机材料中的陶瓷晶界,玻璃和高分子材料的非晶部分均会产声黏性形变,因此高温下的氧化物流体,低分子溶液或高分子稀溶液大多属于牛顿流体,而高分子浓溶液或高分子熔体不符合牛顿黏性定律,为非牛顿流体。
塑性:材料在外应力去除后仍能保持部分应变的特性称为塑性。
晶体塑性形变两种类型:滑移和孪晶。
延展性:材料发生塑性形变而不断裂的能力称为延展性。
μ(泊松比),定义为在拉伸试验中,材料横向单位面积的减少与纵向单位长度的增加率之比。
滑移是指在剪切应力作用下晶体的一部分相对于另一部分发生平移滑动,在显微镜下可观察到晶体表面出现宏观条纹,并构成滑移带。
滑移一般发生在原子密度大和晶向指数小的晶面和晶向上。
材料物理导论名词解释(2)
材料物理导论名词解释
Harmonic vibration 简谐振动:物体在跟偏离平衡位置的位移大小成正比,方向总指向平衡位置的回复力的作用下的振动
Heat conduction by electron 电子热传导:依靠电子的碰撞,进行能量的传递
Heat conduction by phono 声子热传导:声子从高浓度区域到低浓度区域的扩散过程
Heat stress damage of materials 材料的热应力损伤:材料在受到热冲击作用时产生的断裂损伤
Homogeneous materials 均质材料:无法机械分割为更单纯材料的单元
Hysteretic losses 磁滞损耗:铁碳体处于交变磁场中时将沿磁滞回线反复被磁化、去碳,在此过程中要消耗额外的能量并以热的形式从铁磁体中释放
Instrinsic electrical conduction 本征电导:导带中的电子导电和价带中的空穴导电同时发生 Instrinsic excitation 本征激发:把价电子激发成导带电子的过程
Instrinsic semiconductor 本征半导体:只有本征激发的半导体Insulator 绝缘体:不易导电的物体
Ionic defect conentration 离子浓度:以单位体积中所含的运动离子的量
Ionic electrical conduction 离子型电导:载流子主要是离子的材料所具有的电导
Ionic polarization 离子极化:在外电场作用下,构成分子的离子发生相对位移而形成的极化 Josephson 约瑟夫森效应:当在两块超导体之间存在一块极薄的绝缘层时,超导电子能通过极薄的绝缘层。
Laser 激光:受激发射的光
Lattice vibration 晶格热振动:晶体中原子以平衡位置为中心不
停的振动的现象
Lattice wave 格波:晶格中的所有原子以相同频率振动而形成的波,或一原子在平衡位置附近的振动是以波的形式在晶格中传播而形成的波
Linear expansion coefficient 线胀系数:固态物质的温度改变1℃时,其长度的变化与它在0℃时的长度之比
Luminescence 荧光:材料接受能量后立即引起发光、中断能量后几乎立刻停止发光Magnetic domain wall 磁畴壁:两相邻磁畴间的过渡区域或交界面
Magnetic domain 磁畴:自发磁化是按区域分布的,各个自发磁化区域称为磁畴 Magnetic field 磁场:由运动电荷或电场的变化而产生的一种特殊物质
Magnetization 磁化:铁磁性材料在外加磁场作用下,各磁矩规则取向而宏观显示出的磁性现象
Magneto resistance effects 磁阻效应:由于磁场存在导致半导体电阻增大的现象
meissner 麦斯纳效应:当超导体低于某临界温度Tc时,外加的磁场会被排斥在超导体之外Melting point 熔点:固态急速向液态转变的温度
Mgnetism indensity 磁化强度:材料内部的磁感应强度可以看成两部分:1.来自自身空间磁场的作用2.来自材料的磁化产生的附加磁场的作用
Mgnetocry stalline anisotropy 磁晶各向异性能:沿不同方向使材料磁化,达到磁饱和时材料所消耗的能量,在铁磁单晶体的不同晶向上磁性能不同的性质
Mobility 迁移率:载流子在单位电场中的迁移速度
n-type semiconductor n型半导体:掺入施主杂质,主要依靠导带中电子导电的半导体电子型半导体
Optical fiber 光纤:传输光能的波导介质
Paramagnetism 顺磁性:有些材料的自旋磁矩与轨道磁矩未完全
抵消,每个原子都有一个永久磁矩,在外磁场作用下,各原子磁矩会沿外磁场方向择优取向,使材料表现出宏观的磁性的性质。
Phonon 声子:晶格振动的能量是量子化的,以hv为单元来增加能量,这种能量单元称为声子
Phosphorescence 磷光:材料不仅能接受能量能发光而且中断能量供给后一段时间仍能发光polarization loss极化损耗:是在高频率交流电压下,外电场使介质极化而产生的损耗Polarization 极化:电极上有电流通过时,电极电势偏离其平衡值的现象
《材料物理导论名词解释》。