操作系统实验_实验
- 格式:doc
- 大小:74.50 KB
- 文档页数:10
操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
操作系统安全实验1实验报告一、实验目的本次操作系统安全实验的主要目的是让我们深入了解操作系统的安全机制,通过实际操作和观察,掌握一些常见的操作系统安全配置和防护方法,提高对操作系统安全的认识和应对能力。
二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),实验设备为个人计算机。
三、实验内容与步骤(一)Windows 10 操作系统安全配置1、账户管理创建新用户账户,并设置不同的权限级别,如管理员、标准用户等。
更改账户密码策略,包括密码长度、复杂性要求、密码有效期等。
启用账户锁定策略,设置锁定阈值和锁定时间,以防止暴力破解密码。
2、防火墙配置打开 Windows 防火墙,并设置入站和出站规则。
允许或阻止特定的应用程序通过防火墙进行网络通信。
3、系统更新与补丁管理检查系统更新,安装最新的 Windows 安全补丁和功能更新。
配置自动更新选项,确保系统能够及时获取并安装更新。
4、恶意软件防护安装并启用 Windows Defender 防病毒软件。
进行全盘扫描,检测和清除可能存在的恶意软件。
(二)Linux(Ubuntu 2004)操作系统安全配置1、用户和组管理创建新用户和组,并设置相应的权限和归属。
修改用户密码策略,如密码强度要求等。
2、文件系统权限管理了解文件和目录的权限设置,如读、写、执行权限。
设置特定文件和目录的权限,限制普通用户的访问。
3、 SSH 服务安全配置安装和配置 SSH 服务。
更改 SSH 服务的默认端口号,增强安全性。
禁止 root 用户通过 SSH 登录。
4、防火墙配置(UFW)启用 UFW 防火墙。
添加允许或拒绝的规则,控制网络访问。
四、实验结果与分析(一)Windows 10 操作系统1、账户管理成功创建了具有不同权限的用户账户,并能够根据需求灵活调整权限设置。
严格的密码策略有效地增加了密码的安全性,减少了被破解的风险。
账户锁定策略在一定程度上能够阻止暴力破解攻击。
操作系统实验操作系统实验是计算机科学与技术领域非常重要的一门实验课程。
通过操作系统实验,学生可以深入了解操作系统的基本原理和实践技巧,掌握操作系统的设计和开发方法。
本文将介绍操作系统实验的一般内容和实验室环境要求,并详细说明一些常见的操作系统实验内容。
一、实验内容1. 实验环境搭建:操作系统实验通常在实验室中进行。
为了完成实验,学生需要搭建一个操作系统实验环境。
实验环境通常由一个或多个计算机节点组成,每个计算机节点需要安装操作系统实验所需要的软件和驱动程序。
2. 操作系统整体结构分析:学生首先需要通过文献研究和课堂学习,了解操作系统的整体结构和基本原理。
在实验中,学生需要分析和理解操作系统的各个模块之间的功能和相互关系。
3. 进程管理实验:进程是操作系统中最基本的运行单位。
在这个实验中,学生可以通过编写程序并使用系统调用来实现进程的创建、销毁和调度。
学生需要熟悉进程状态转换和调度算法,理解进程间通信和同步机制。
4. 内存管理实验:内存管理是操作系统中非常重要的一个模块。
学生需要实现虚拟内存管理、页面置换算法以及内存分配和回收策略。
通过这个实验,学生可以深入了解虚拟内存管理的原理和实际应用。
5. 文件系统实验:文件系统是操作系统中负责管理文件和目录的模块。
在这个实验中,学生需要实现基本的文件系统功能,如文件的创建、读取和修改。
学生还可以实现进程间的文件共享和保护机制。
6. 设备管理实验:设备管理是操作系统中与硬件设备交互的一个重要模块。
在这个实验中,学生需要实现设备的初始化、打开和关闭功能。
学生还可以实现设备驱动程序,完成对硬件设备的控制。
二、实验室环境要求1. 计算机硬件:实验室需要配备一定数量的计算机节点。
每个计算机节点需要具备足够的计算能力和内存容量,以满足操作系统实验的要求。
2. 操作系统软件:实验室中的计算机节点需要安装操作系统软件,通常使用Linux或者Windows操作系统。
此外,还需要安装相关的开发工具和编程语言环境。
计算机操作系统实验报告一、实验目的本次计算机操作系统实验的主要目的是深入了解操作系统的工作原理和功能,通过实际操作和观察,增强对操作系统概念的理解,提高解决实际问题的能力。
二、实验环境1、操作系统:Windows 10 专业版2、开发工具:Visual Studio 20193、编程语言:C++三、实验内容1、进程管理实验创建多个进程,并观察它们的执行顺序和资源占用情况。
使用进程控制块(PCB)来跟踪进程的状态变化,如就绪、运行、阻塞等。
2、内存管理实验模拟内存分配和回收算法,如首次适应算法、最佳适应算法和最坏适应算法。
观察不同算法在内存利用率和分配效率方面的表现。
3、文件系统实验创建、读取、写入和删除文件,了解文件的操作流程。
研究文件的存储结构和目录管理方式。
4、线程同步与互斥实验使用互斥锁和信号量来实现线程之间的同步和互斥操作。
观察在多线程环境下资源竞争和同步的效果。
四、实验步骤1、进程管理实验步骤编写 C++程序,使用系统调用创建多个进程。
在每个进程中输出进程的标识符和当前执行时间。
通过观察控制台输出,分析进程的执行顺序和资源占用情况。
2、内存管理实验步骤实现不同的内存分配算法,并在程序中模拟内存请求和释放的过程。
记录每次内存分配和回收的结果,计算内存利用率和分配时间。
3、文件系统实验步骤使用文件操作函数创建文件,并写入一些数据。
读取文件中的数据,并将其输出到控制台。
删除文件,观察文件系统的变化。
4、线程同步与互斥实验步骤创建多个线程,共享一些公共资源。
在访问公共资源的代码段前使用互斥锁或信号量进行同步控制。
观察线程的执行结果,确保资源的正确访问和修改。
五、实验结果与分析1、进程管理实验结果与分析实验结果显示,进程的执行顺序是不确定的,取决于操作系统的调度策略和进程的优先级。
资源占用情况也因进程的不同而有所差异,一些进程可能占用较多的 CPU 时间和内存,而另一些则相对较少。
2、内存管理实验结果与分析首次适应算法在分配速度上较快,但容易产生内存碎片。
一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握进程的创建、调度、同步和通信机制。
3. 学习使用进程管理工具进行进程操作。
4. 提高对操作系统进程管理的理解和应用能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:Visual Studio 20193. 实验工具:C++语言、进程管理工具(如Task Manager)三、实验内容1. 进程的创建与销毁2. 进程的调度策略3. 进程的同步与互斥4. 进程的通信机制四、实验步骤1. 进程的创建与销毁(1)创建进程使用C++语言编写一个简单的程序,创建一个新的进程。
程序如下:```cpp#include <iostream>#include <windows.h>int main() {// 创建进程STARTUPINFO si;PROCESS_INFORMATION pi;ZeroMemory(&si, sizeof(si));si.cb = sizeof(si);ZeroMemory(&pi, sizeof(pi));// 创建进程if (!CreateProcess(NULL, "notepad.exe", NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)) {std::cout << "创建进程失败" << std::endl;return 1;}std::cout << "进程创建成功" << std::endl;// 等待进程结束WaitForSingleObject(pi.hProcess, INFINITE);// 销毁进程CloseHandle(pi.hProcess);CloseHandle(pi.hThread);return 0;}```(2)销毁进程在上面的程序中,通过调用`WaitForSingleObject(pi.hProcess, INFINITE)`函数等待进程结束,然后使用`CloseHandle(pi.hProcess)`和`CloseHandle(pi.hThread)`函数销毁进程。
操作系统实验一、实验背景操作系统实验是计算机科学与技术专业中非常重要的一门实践课程,旨在帮助学生加深对操作系统原理的理解,并且通过实际操作,提高学生的实际动手能力。
本文将介绍我在操作系统实验中所进行的一项实验内容和实验结果。
二、实验目的本次实验的目的是通过模拟操作系统的一些核心功能和概念,加深对操作系统内部工作原理的理解,掌握操作系统的调度算法、程序设计和系统优化等技能。
三、实验步骤1. 实验环境准备为了进行本次实验,首先需要搭建相应的实验环境。
我选择使用Linux操作系统作为实验环境,并确保已经安装了必要的工具和软件,如gcc编译器和相关的调试工具。
2. 实验代码编写在实验开始之前,我阅读了相关的文档和教材,理解了实验的要求和任务。
然后,我按照要求开始编写实验所需的代码。
在代码编写过程中,我需要对操作系统内核进行修改和扩展,并且针对具体的实验要求,实现相关的功能和算法。
3. 实验测试与调试完成代码编写后,我进行了一系列的测试和调试工作。
通过编写测试用例,模拟各种场景和输入情况,验证代码的正确性和稳定性。
如果发现错误或问题,我会使用调试工具进行定位和修复。
4. 实验结果分析在完成测试和调试后,我对实验结果进行了详细的分析。
通过比较和统计实验数据,我得出了一些结论,并对实验结果进行了评估和总结。
四、实验结果与讨论通过实验,我成功完成了操作系统实验的任务,并获得了一些有价值的实验结果。
在实验过程中,我遇到了一些挑战和困难,但通过不断努力和学习,最终克服了这些困难,并获得了令人满意的成果。
五、实验心得体会通过参与操作系统实验,我深刻地认识到了操作系统在计算机系统中的重要性和作用。
实验过程中,我不仅学到了新的知识和技能,还提高了自己的动手能力和问题解决能力。
同时,我也感受到了团队合作的重要性,与同学们一起合作完成实验任务,互相学习和交流,共同进步。
六、实验结论通过本次操作系统实验,我对操作系统的工作原理和相关概念有了更深入的了解。
实验一:操作系统环境Windows 2000 系统管理实验内容与步骤1. 计算机管理2. 事件查看器3. 性能监视4. 服务5. 数据库 (ODBC)为了帮助用户管理和监视系统,Windows 2000提供了多种系统管理工具,其中最主要的有计算机管理、事件查看器和性能监视等。
步骤1:登录进入Windows 2000 Professional。
步骤2:在“开始”菜单中单击“设置”-“控制面板”命令,双击“管理工具”图标。
在本地计算机“管理工具”组中,有哪些系统管理工具,基本功能是什么:1) internet信息服务功能:Internet 信息服务(IIS)可以使您在Internet 或Intranet 上非常容易地发布信息。
IIS 包含许多管理网站和Web 服务器的功能。
而且具有象Active Server Pages (ASP)一样的编程功能,您可以利用它创建并配置可升级的、灵活的Web 应用程序2)本地安全策略功能:是指在本地安全区域内(一个安全区域,通常是指属于某个组织的一系列处理和通信资源),用于所有与安全相关活动的一套规则。
这些规则是由此安全区域中所设立的本地安全权力机构建立的,并由安全控制机构来描述、实施或实现的3)服务功能:启动和停止在本地计算机上所运行的各种服务。
4)计算机管理功能:可用来管理本地或远程计算机。
这些工具被组合到一个控制台中,这样,查看管理属性和访问执行计算机管理任务所需的工具就方便多了。
5)事件查看器功能: 利用Windows内置的事件查看器,加上适当的网络资源,就可以很好地解决大部分的系统问题。
6)数据源功能:数据源(Data Source)是提供某种所需要数据的器件或原始媒体。
7)性能功能:显示系统性能图表及配置数据日志和警报。
8)组件服务功能:配置和管理com+应用程序。
9) Telnet服务器管理查看以及修改Telnet服务器设置和连接。
10)Internet服务管理器管理IIS、Internet和Intranet Web站点的Web服务器。
《操作系统》课程实验报告一、实验目的本次《操作系统》课程实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理、进程管理、内存管理、文件系统等核心概念,并掌握相关的操作技能和分析方法。
二、实验环境1、操作系统:Windows 10 专业版2、开发工具:Visual Studio Code3、编程语言:C/C++三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新进程,并观察进程的创建过程和资源分配情况。
同时,实现进程的正常终止和异常终止,并分析其对系统的影响。
2、进程同步与互斥使用信号量、互斥锁等机制实现进程之间的同步与互斥。
通过模拟多个进程对共享资源的访问,观察并解决可能出现的竞争条件和死锁问题。
(二)内存管理实验1、内存分配与回收实现不同的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。
观察在不同的内存请求序列下,内存的分配和回收情况,并分析算法的性能和优缺点。
2、虚拟内存管理研究虚拟内存的工作原理,通过设置页面大小、页表结构等参数,观察页面的换入换出过程,以及对系统性能的影响。
(三)文件系统实验1、文件操作实现文件的创建、打开、读取、写入、关闭等基本操作。
观察文件在磁盘上的存储方式和文件系统的目录结构。
2、文件系统性能优化研究文件系统的缓存机制、磁盘调度算法等,通过对大量文件的读写操作,评估不同优化策略对文件系统性能的提升效果。
四、实验步骤(一)进程管理实验步骤1、进程创建与终止(1)使用 C/C++语言编写程序,调用系统函数创建新进程。
(2)在子进程中执行特定的任务,父进程等待子进程结束,并获取子进程的返回值。
(3)通过设置异常情况,模拟子进程的异常终止,观察父进程的处理方式。
2、进程同步与互斥(1)定义共享资源和相关的信号量或互斥锁。
(2)创建多个进程,模拟对共享资源的并发访问。
(3)在访问共享资源的关键代码段使用同步机制,确保进程之间的正确协作。
(4)观察并分析在不同的并发情况下,系统的运行结果和资源竞争情况。
《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。
通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。
二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。
b.设计一个简单的进程调度算法,如轮转法或优先级调度法。
c.实现进程间的通信机制,如共享内存或消息队列。
2、线程调度a.实现线程的创建、撤销和调度。
b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。
3、内存管理a.设计一个简单的分页内存管理系统。
b.实现内存的分配和回收。
c.实现一个简单的内存保护机制。
4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。
b.实现文件的存储和检索。
c.实现文件的备份和恢复。
三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。
b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。
可以使用模拟的方法,不需要真实的硬件环境。
c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。
2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。
b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。
同样可以使用模拟的方法。
3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。
b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。
可以使用模拟的方法。
4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。
b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。
广州大学学生实验报告开课学院及实验室:计算机科学与工程实验室2015年12月1日一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
二、实验内容实验1:设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
1、最佳淘汰算法(OPT)2、先进先出的算法(FIFO)3、最近最久未使用算法(LRU)4、最不经常使用算法(LFU)5、最近未使用算法(NUR)命中率=1-页面失效次数/页地址流长度实验2:在Linux环境下利用下列系统调用malloc(),free()编写一段程序实现内存分配与回收的管理。
要求:1、返回已分配给变量的内存地址;2、返回释放后的内存地址;3、释放已分配的内存空间后,返回释放内存后未使用内存的大小。
三、实验原理UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。
当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。
这种页面调入方式叫请求调页。
为实现请求调页,核心配置了四种数据结构:页表、页框号、访问位、修改位、有效位、保护位等。
当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。
该程序通过查找页表,得到该页所在外存的物理块号。
如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。
如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。
利用修改后的页表,去形成所要访问数据的物理地址,再去访问内存数据。
整个页面的调入过程对用户是透明的。
四、实验设备安装了Linux系统的电脑五、实验程序实验1:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define INVALID -1//#define NULL 0#define total_instruction 320#define total_vp 32#define clear_period 50typedef struct{int pn,pfn,counter,time;}pl_type;pl_type pl[total_vp];struct pfc_struct{int pn,pfn;struct pfc_struct *next;};typedef struct pfc_struct pfc_type;pfc_type pfc[total_vp],*freepf_head,*busypf_head,*busypf_tail; int diseffect, a[total_instruction];int page[total_instruction], offset[total_instruction];int initialize(int);int FIFO(int);int LRU(int);int LFU(int);int NUR(int);int OPT(int);int main( ){int s,i,j;srand(10*getpid());s=(float)319*rand( )/32767/32767/2+1;for(i=0;i<total_instruction;i+=4){if(s<0||s>319){printf("When i==%d,Error,s==%d\n",i,s);exit(0);}a[i]=s;a[i+1]=a[i]+1;a[i+2]=(float)a[i]*rand( )/32767/32767/2;a[i+3]=a[i+2]+1;s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2;if((a[i+2]>318)||(s>319))printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s); }for (i=0;i<total_instruction;i++){page[i]=a[i]/10;offset[i]=a[i]%10;}for(i=4;i<=32;i++){printf("---%2d page frames---\n",i);FIFO(i);LRU(i);LFU(i);NUR(i);OPT(i);}return 0;}int initialize(total_pf)int total_pf;{int i;diseffect=0;for(i=0;i<total_vp;i++){pl[i].pn=i;pl[i].pfn=INVALID;pl[i].counter=0;pl[i].time=-1;}for(i=0;i<total_pf-1;i++){pfc[i].next=&pfc[i+1];pfc[i].pfn=i;}pfc[total_pf-1].next=NULL;pfc[total_pf-1].pfn=total_pf-1;freepf_head=&pfc[0];return 0;}int FIFO(total_pf)int total_pf;{int i,j;pfc_type *p;initialize(total_pf);busypf_head=busypf_tail=NULL;for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INVALID){diseffect+=1;if(freepf_head==NULL){p=busypf_head->next;pl[busypf_head->pn].pfn=INVALID;freepf_head=busypf_head;freepf_head->next=NULL;busypf_head=p;}p=freepf_head->next;freepf_head->next=NULL;freepf_head->pn=page[i];pl[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL)busypf_head=busypf_tail=freepf_head;else{busypf_tail->next=freepf_head;busypf_tail=freepf_head;}freepf_head=p;}}printf("FIFO:%6.4f\n",1-(float)diseffect/320); return 0;}int LRU (total_pf)int total_pf;{int min,minj,i,j,present_time;initialize(total_pf);present_time=0;for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INVALID){diseffect++;if(freepf_head==NULL){min=32767;for(j=0;j<total_vp;j++)if(min>pl[j].time&&pl[j].pfn!=INVALID) {min=pl[j].time;minj=j;}freepf_head=&pfc[pl[minj].pfn];pl[minj].pfn=INVALID;pl[minj].time=-1;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;pl[page[i]].time=present_time;freepf_head=freepf_head->next;}elsepl[page[i]].time=present_time;present_time++;}printf("LRU:%6.4f\n",1-(float)diseffect/320); return 0;}int NUR(total_pf)int total_pf;{int i,j,dp,cont_flag,old_dp;pfc_type *t;initialize(total_pf);dp=0;for(i=0;i<total_instruction;i++){if (pl[page[i]].pfn==INVALID){diseffect++;if(freepf_head==NULL){cont_flag=TRUE;old_dp=dp;while(cont_flag)if(pl[dp].counter==0&&pl[dp].pfn!=INVALID) cont_flag=FALSE;else{dp++;if(dp==total_vp)dp=0;if(dp==old_dp)for(j=0;j<total_vp;j++)pl[j].counter=0;}freepf_head=&pfc[pl[dp].pfn];pl[dp].pfn=INVALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}elsepl[page[i]].counter=1;if(i%clear_period==0)for(j=0;j<total_vp;j++)pl[j].counter=0;}printf("NUR:%6.4f\n",1-(float)diseffect/320); return 0;}int OPT(total_pf)int total_pf;{int i,j, max,maxpage,d,dist[total_vp];pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INVALID){diseffect++;if(freepf_head==NULL){for(j=0;j<total_vp;j++)if(pl[j].pfn!=INVALID) dist[j]=32767;else dist[j]=0;d=1;for(j=i+1;j<total_instruction;j++){if(pl[page[j]].pfn!=INVALID)dist[page[j]]=d;d++;}max=-1;for(j=0;j<total_vp;j++)if(max<dist[j]){max=dist[j];maxpage=j;}freepf_head=&pfc[pl[maxpage].pfn];freepf_head->next=NULL;pl[maxpage].pfn=INVALID;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}}printf("OPT:%6.4f\n",1-(float)diseffect/320); return 0;}int LFU(total_pf)int total_pf;{int i,j,min,minpage;pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INVALID){diseffect++;if(freepf_head==NULL){min=32767;for(j=0;j<total_vp;j++){if(min>pl[j].counter&&pl[j].pfn!=INVALID){min=pl[j].counter;minpage=j;}pl[j].counter=0;}freepf_head=&pfc[pl[minpage].pfn];pl[minpage].pfn=INVALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;pl[page[i]].counter++;freepf_head=freepf_head->next;}elsepl[page[i]].counter++;}printf("LFU:%6.4f\n",1-(float)diseffect/320); return 0;}实验2#include<iostream>using namespace std;#include<stdlib.h>#include<stdio.h>#include<malloc.h>//#include<iostream>int main(){int *string;string=(int*) malloc(10);if(string==NULL)printf("Insufficient memory available\n");else{printf("Memory space allocated for path name\n"); cout<<"string="<<string<<endl;free(string);printf("Memory freed\n");}int *stringy;stringy=(int*)malloc(12);if(stringy==NULL)printf("Insufficient memory available\n");else{printf("Memory space allocated for path name\n");cout<<"stringy="<<stringy<<endl;free(stringy);printf("Memory freed\n");}}六、实验结果试验1:从几种算法的命中率看,OPT最高,其次为NUR相对较高,而FIFO与LRU相差无几,最低的是LFU。