第三章 离子交换树脂及吸附树脂(1)
- 格式:ppt
- 大小:1.39 MB
- 文档页数:123
树脂吸附原理一、(1)大孔吸附树脂的吸附原理5p"A4X4Z3L大孔吸附树脂是吸附性和分子筛性原理相结合的分子材料。
吸附性是由于范德华引力或产生氢键的结果,分子筛性是由于其本身多孔性结构所决定的。
w w w p a nt exaco m&1M s3h&1{4m(2)影响吸附的因素大孔吸附树脂本身的性质、溶剂的性质和化合物的性质是影响吸附的3个重要因素。
w w w p a nt exaco m%W9_9kh d%(3)大孔吸附树脂的应用植提之家植提空间中国植提论坛植提论坛植提网4C4O?a@C2x]#vN8s L苷与糖类的分离,生物碱的精制,多糖、黄酮、三萜类化合物的分离。
w w w pl a n ex a c o m*P%d*q/~6V(4)洗脱液的选择中国植物提取物论坛5)d}%"p1u&~&@中国植物提取物论坛8C~&v8@4T洗脱液可使用甲醇、乙醇、丙酮、乙酸乙酯等。
二、什么是吸附?(Adsorption)~X V$V.&L8K1GO6/a1、吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程。
~0F3^2a2、吸附过程通常包括:待分离料液与吸附剂混合、吸附质被吸附到吸附剂表面、料液流出、吸附质解吸回收等四个过程。
三、常见的吸附类型及其主要特点w w w pl a nexaco m#P9vT T*u%N{1W Z1、物理吸附:吸附作用力为分子间引力、无选择性、无需高活化能、吸附层可以是单层,也可以是多层、吸附和解吸附速度通常较快。
中国植提论坛植提网%k8n23`+bN2、化学吸附:吸附作用力为化学键合力,需要高活化能、只能以单分子层吸附,选择性强、吸附和解吸附速度较慢。
2H/x4@H4oo1Y%U*^o中国植物提取物论坛^%q u%四、常用吸附剂种类中国植物提取物论坛%|#V H%D吸附剂通常应具备以下特征:对被分离的物质具有较强的吸附能力、有较高的吸附选择性、机械强度高、再生容易、性能稳定、价格低廉。
简述吸附树脂和离子交换树脂的选择原则《吸附树脂和离子交换树脂的选择原则》吸附树脂和离子交换树脂是广泛应用于化学、制药和环境等领域的重要分离和纯化材料。
它们的选择与应用涉及到多个因素,下面将简要介绍吸附树脂和离子交换树脂的选择原则。
1. 吸附树脂的选择原则吸附树脂是利用与目标分子之间的化学吸附作用来进行分离和纯化的材料。
一般来说,吸附树脂的选择与目标分子的性质和分离条件有关。
以下是几个常见的选择原则:(1)目标分子的性质:吸附树脂的选择要考虑目标分子的分子量、极性、酸碱性等性质。
比如,对于一些带电的目标分子,选择具有附加正负电荷的吸附树脂可以获得较好的吸附效果。
(2)分离条件:吸附树脂的选择还要考虑分离过程中的温度、pH值和溶剂等因素。
这些条件会影响吸附树脂的亲和性和交换能力,因此需要根据实际情况来选择最合适的吸附树脂。
(3)吸附树脂的特性:吸附树脂的孔隙结构、粒径和表面化学性质也会影响其吸附性能。
根据需要选择具有合适特性的吸附树脂,可以提高分离效果和产量。
2. 离子交换树脂的选择原则离子交换树脂是利用目标离子与树脂之间的电荷作用进行分离和纯化的材料。
离子交换树脂的选择原则与吸附树脂类似,但也有一些特殊考虑因素:(1)目标离子的价态:离子交换树脂的选择要根据目标离子的价态,确定对应的交换位点。
比如,选择合适的阴离子交换树脂可以有效地吸附和分离阴离子。
(2)交换容量:离子交换树脂的交换容量是指单位体积树脂能够交换或吸附的目标离子量。
选择离子交换树脂时,应根据目标离子的浓度和需求量来选择具有足够交换容量的树脂。
(3)再生性能:考虑离子交换树脂的再生性能也是选择原则之一。
一些可再生的树脂可以通过调整pH值或溶液浓度来实现离子的解吸,从而延长树脂的使用寿命。
总之,吸附树脂和离子交换树脂的选择应综合考虑目标分子或离子的性质、分离条件和树脂的特性。
仔细根据实际需求进行选择,可以提高分离和纯化的效果,达到预期的目标。
离子交换树脂求助编辑百科名片离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。
通常是球形颗粒物。
离子交换树脂形态离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。
孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。
分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。
如:大孔强酸性苯乙烯系阳离子交换树脂。
编辑本段基本分类离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。
树脂中化学活性基团的种类决定了树脂的主要性质和类别。
首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。
阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。
离子交换树脂基本形态编辑本段命名方式离子交换树脂的命名方式:离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。
第一、第二位湿离子交换树脂数字的意义,见表8-1。
表8-1 树脂型号中的一、二位数字的意义代号0 1 2 3 4 5 6分类名称强酸性弱酸性强碱性弱碱性螫合性两性氧化还原性骨架名称苯乙烯系丙烯酸系醋酸系环氧系乙烯吡啶系脲醛系氯乙烯系大孔树脂在型号前加“D”,凝胶型树脂的交联度值可在型号后用“×”号连接阿拉伯数字表示。
如D011×7,表示大孔强酸性丙烯酸系阳离子交换树脂,其交联度为7。
国外一些产品用字母C代表阳离子树脂(C为cation的第一个字母),A代表阴离子树脂(A 为Anion的第一个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。
编辑本段制造厂家离子交换树脂在国内外都有很多制造厂家和很多品种。
国内制造厂有数十家,主要的有上海树脂有限公司、南开化工厂、安徽皖东化工有限人司,浙江争光实业股份有限公司、晨光化工研究院树脂厂、江苏色可赛思树脂有限公司等;国外较著名的如美国Rohm & Hass公司生产的Amberlite系列、Success公司生产Ionresin系列、Dow化学公司的Dowex系列、法国Duolite系列和Asmit系列、日本的Diaion系列,还有Ionac系列、Allassion系列等。
大孔吸附树脂和大孔离子交换树脂都是化工领域常见的工业用树脂材料。
它们在吸附、分离、过滤等方面有着广泛的应用。
虽然它们都是树脂材料,但在原理、结构和用途上存在着一些差异。
本文将从不同角度对大孔吸附树脂与大孔离子交换树脂进行比较,以便更好地了解它们各自的特点和适用范围。
一、原理1. 大孔吸附树脂大孔吸附树脂是一种多孔材料,其内部具有较大的孔径,能够吸附大分子物质。
它的吸附原理是通过孔道结构将待吸附物质拦截在孔道内,形成物理吸附。
树脂表面常常具有一定的化学官能团,具有一定的化学吸附能力。
2. 大孔离子交换树脂大孔离子交换树脂也是一种多孔材料,其孔径较大,在其内部可以充分交换离子。
其吸附原理是通过离子交换作用,使用树脂上的功能性基团与待处理溶液中离子交换,使得树脂中的离子被取代,达到分离、净化的目的。
二、结构1. 大孔吸附树脂大孔吸附树脂具有较大的孔径,通常孔径范围在10-300纳米之间。
其孔径可以用来吸附大分子有机物质,如有机染料、蛋白质等。
2. 大孔离子交换树脂大孔离子交换树脂同样具有较大的孔径,但其内部含有功能性离子交换官能团。
这些官能团通过捕获溶液中的离子,实现对溶液中离子种类和含量的调控。
三、用途1. 大孔吸附树脂大孔吸附树脂主要应用于工业上的分离和净化领域。
比如在食品工业中可用于染料的去除,制药工业中可以用来分离蛋白质等。
2. 大孔离子交换树脂大孔离子交换树脂主要应用于电镀废水处理、糖液脱色等环境和化工领域。
由于其能够有效地去除水溶液中的金属离子、色素离子等,因此在这些领域有着广泛的应用前景。
四、特点1. 大孔吸附树脂大孔吸附树脂主要特点是其对大分子物质有很好的吸附能力,能够高效地分离和净化有机物质。
2. 大孔离子交换树脂大孔离子交换树脂具有良好的离子交换性能,能够高效去除水溶液中的杂质离子,具有很好的净化效果。
通过以上对比可以看出,虽然大孔吸附树脂和大孔离子交换树脂在原理、结构和用途上有所不同,但它们都具有良好的分离、吸附和净化能力,对于工业生产和环境净化起着重要作用。
吸附树脂的种类吸附树脂是一种具有吸附功能的材料,广泛应用于工业和科研领域。
根据其化学性质和应用特点的不同,吸附树脂可以分为多种类型。
下面将介绍几种常见的吸附树脂及其应用。
1. 丙烯酸树脂(Acrylic Resin)丙烯酸树脂是一种具有高吸附性能的树脂,它可以吸附水中的有机物质和重金属离子。
在工业废水处理中,丙烯酸树脂被广泛应用于有机废水和重金属废水的处理过程中,能有效去除废水中的有害物质,净化水质。
2. 多孔性树脂(Porous Resin)多孔性树脂是一种具有高比表面积和孔隙结构的树脂材料,具有较强的吸附能力。
它可以吸附和分离气体、液体和固体中的杂质和有害物质。
在化工生产中,多孔性树脂常用于催化剂的载体、分离杂质和纯化产品。
3. 离子交换树脂(Ion Exchange Resin)离子交换树脂是一种能够吸附和释放离子的树脂材料。
它可以吸附水中的离子杂质,如钠离子、镁离子和钙离子,将其与溶液中的其他离子进行交换。
离子交换树脂广泛应用于水处理、药物制剂和电子工业中。
4. 活性炭(Activated Carbon)活性炭是一种炭质材料,具有极强的吸附能力。
它可以吸附气体和液体中的有机物质、异味和有害物质。
活性炭广泛应用于空气净化、水处理、食品加工和药物制剂等领域。
5. 分子筛(Molecular Sieve)分子筛是一种具有特殊孔道结构的吸附材料,可以选择性地吸附分子。
它具有高效吸附和分离的特点,在石油化工、气体分离和催化反应中得到广泛应用。
6. 聚酰胺树脂(Polyamide Resin)聚酰胺树脂是一种高分子化合物,具有良好的吸附性能。
它可以吸附水中的溶解性有机物和重金属离子,广泛应用于水处理和环境保护领域。
7. 聚苯乙烯树脂(Polystyrene Resin)聚苯乙烯树脂是一种常见的吸附树脂,具有较高的吸附能力和机械强度。
它广泛应用于废水处理、食品加工和医药制造等领域。
吸附树脂作为一种重要的功能材料,不仅具有吸附能力强、选择性好的特点,还具有使用方便、成本低廉等优势。
1、离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。
如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。
树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。
这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。
它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。
它只能在中性或酸性条件(如pH 1~9)下工作。
它可用Na2CO3、NH4OH进行再生。
2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。
离子交换及吸附树脂学习材料一、离子交换和吸附树脂发展简介1、发展史2、常用树脂分类3、树脂的功能二、离子交换树脂结构与性能1、树脂的结构2、树脂的结构与物理性能3、树脂的结构与化学性能4、大孔吸附树脂的结构与性能三、树脂的合成及性能测定1、树脂合成2、树脂功能基团的引入3、树脂的性能测定四、树脂应用技术一)、树脂应用的技术理论和特点二)、树脂应用筛选基本原理生化食品生产三)、树脂在抗生素上的应用四)、树脂的使用方法介绍五)、树脂的污染及处理一、离子交换和吸附树脂发展简介一)、发展史离子交换现象本身广泛地存在于自然界中,离子交换树脂最早诞生在20世纪三、四十年代,当时美国和英国的一些公司广泛的进行离子交换树脂的研究,陆续成功合成出聚苯乙烯、丙稀酸系的离子交换树脂,并逐渐成为一类新兴高分子材料产业,它可以简单地达到物质的分离、纯化、浓缩的目的,而不仅靠结晶、蒸发工艺。
五六十年代离子交换树脂有了较大地发展,大孔结构的树脂问世,先由美国罗姆-哈斯和西德拜耳公司投入生产,其具有交换和吸附的双重功能,为离子交换树脂的广泛应用开辟了新的前景。
随着世界各国对离子交换树脂研究的不断深入,相继又研制出大孔吸附树脂、热再生树脂、两性树脂、獒合树脂、惰性树脂、氧化还原树脂、均孔树脂等,目前离子交换和吸附树脂已成为世界范围内的一大产业,成为功能高分子领域的一重要分支。
我国最早从五十年代初由南开大学和上海医工院开始研制离子交换树脂,虽起步稍晚,但发展很快,到20世纪70年代,全国已建成投产树脂厂60多家,目前全国不同规模的离子交换树脂厂近百家,生产能力达10万吨以上,年产量在5万吨左右。
产品技术方面,通用树脂基本达到国际先进水平,专用树脂稍有差距,主要体现在树脂的专一实用性不强,特别是新兴行业专用树脂品种不全,研究的深度不够。
另外国家的产业政策不明确,无专业归口管理部门,阻滞了该产业的发展。
离子交换树脂和它的应用技术一直是相互促进、相互依存、共同发展的。