2012高考(文科)数学一轮复习课件:第3章第1节 导数的概念及运算知识研习(新课标版)
- 格式:ppt
- 大小:1.07 MB
- 文档页数:28
新高考数学新题型一轮复习课件第三章§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如 f(ax+b))的导数.落实主干知识探究核心题型内容索引课时精练L U O S H I Z H U G A N Z H I S H I 落实主干知识知识梳理1.导数的概念(1)函数y =f (x )在x=x0处的导数记作 或 .0'|x x y f ′(x 0)(2)函数y =f (x )的导函数2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的,相应的切线方程为 .y -f (x 0)=f ′(x 0)(x -x 0)斜率3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=___f (x )=x α(α∈Q ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=______f (x )=cos xf ′(x )=_______f (x )=a x (a >0,且a ≠1)f ′(x )=_______0αx α-1cos x -sin x a x ln ae xf(x)=e x f′(x)=____ f(x)=log a x(a>0,且a≠1)f′(x)=______ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x)[cf (x )]′= .cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x y′u·u′x=,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( )××××教材改编题∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.1.函数f (x )=e x + 在x =1处的切线方程为______________.y =(e -1)x +22.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=______. f′(x)=1+ln x+2ax,3.若f(x)=ln(1-x)+e1-x,则f′(x)=____________.T A N J I U H E X I N T I X I N G 探究核心题型题型一导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是√√(x2e x)′=(x2+2x)e x,故B错误;教师备选1.函数y=sin 2x-cos 2x的导数y′等于√y′=2cos 2x+2sin 2x2.(2022·济南模拟)已知函数f′(x)=e x sin x+e x cos x,则f(2 021)-f(0)等于√A.e2 021cos 2 021B.e2 021sin 2 021C. D.e因为f′(x)=e x sin x+e x cos x,所以f(x)=e x sin x+k(k为常数),所以f(2 021)-f(0)=e2 021sin 2 021.(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f(x),g(x)满足f(x)+xg(x)=x2-1,且f(1)=1,则f′(1)+g′(1)等于√A.1B.2C.3D.4当x=1时,f(1)+g(1)=0,∵f(1)=1,得g(1)=-1,原式两边求导,得f′(x)+g(x)+xg′(x)=2x,当x=1时,f′(1)+g(1)+g′(1)=2,得f′(1)+g′(1)=2-g(1)=2-(-1)=3.e2 (2)已知函数f(x)=ln(2x-3)+ax e-x,若f′(2)=1,则a=___.∴f′(2)=2+a e-2-2a e-2=2-a e-2=1,则a=e2.命题点1 求切线方程题型二导数的几何意义例2 (1)(2021·全国甲卷)曲线y = 在点(-1,-3)处的切线方程为_____________.5x -y +2=0所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,x-y-1=0则直线l的方程为_____________.∵点(0,-1)不在曲线f(x)=x ln x上,∴设切点为(x0,y0).又f′(x)=1+ln x,∴直线l的方程为y+1=(1+ln x0)x.∴直线l的方程为y=x-1,即x-y-1=0.命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),则2a+b等于√A.4B.3C.2D.1∵直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),将P(1,2)代入y=kx+1,可得k+1=2,解得k=1,解得a=1,可得f(x)=ln x+b,∵P(1,2)在曲线f(x)=ln x+b上,∴f(1)=ln 1+b=2,解得b=2,故2a+b=2+2=4.(2)(2022·广州模拟)过定点P(1,e)作曲线y=a e x(a>0)的切线,恰有2条,(1,+∞)则实数a的取值范围是__________.由y ′=a e x ,若切点为(x0, ),则切线方程的斜率k = = >0,∴切线方程为y = (x -x 0+1),又P (1,e)在切线上,∴ (2-x 0)=e ,0'|x x y 0e x a 0e x 0e x a 0e x a 0e x a 令φ(x )=e x (2-x ),∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0;当x∈(1,+∞)时,φ′(x)<0,∴φ(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,∴φ(x)max=φ(1)=e,又x→-∞时,φ(x)→0;x→+∞时,φ(x)→-∞,解得a>1,即实数a的取值范围是(1,+∞).1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)√教师备选设切点P(x0,y0),f′(x)=3x2-1,又切点P(x0,y0)在y=f(x)上,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于的锐角,则实数a的取值范围是A.[2,+∞) B.[4,+∞)√C.(-∞,2]D.(-∞,4]故a≤2,所以a的取值范围是(-∞,2].(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P处的切线”.跟踪训练2 (1)(2022·南平模拟)若直线y=x+m与曲线y=e x-2n相切,则√设直线y =x +m 与曲线y =e x -2n 切于点(x0, ),因为y ′=e x -2n ,所以 =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,02e x n -02e x n -(2)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,[2,+∞)则实数a的取值范围是__________.直线2x-y=0的斜率k=2,又曲线f(x)上存在与直线2x-y=0平行的切线,∴a≥4-2=2.∴a的取值范围是[2,+∞).例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于A.0B.-1C.3D.-1或3√题型三两曲线的公切线由f(x)=x ln x求导得f′(x)=1+ln x,则f′(1)=1+ln 1=1,于是得函数f(x)在点A(1,0)处的切线l的方程为y =x-1,因为直线l与g(x)的图象也相切,即关于x的一元二次方程x2+(a-1)x+1=0有两个相等的实数根,因此Δ=(a-1)2-4=0,解得a=-1或a=3,所以a=-1或a=3.(2)(2022·韶关模拟)若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为__________.由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,与曲线C 2切于点(x 2, ),2e x 222121e e ,x x ax x x -=-则2ax 1=可得2x 2=x 1+2,1121e 2x x +∴a = ,12e 2x x+记f (x )= ,122e (2)4x x x +-则f ′(x )= ,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a的取值范围为___________.由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a = 有两个不同的解.1121e 2x x +12e 2x x +∵函数f (x )= 在(0,2)上单调递减,又x →0时,f (x )→+∞,x →+∞时,f (x )→+∞,1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于A.1B.2C.3D.3或-1教师备选√解得x=1,故切点为(1,0),可求出切线方程为y=x-1,此切线和g(x)=x2+ax也相切,故x2+ax=x-1,化简得到x2+(a-1)x+1=0,只需要满足Δ=(a-1)2-4=0,解得a=-1或a=3.。