spss统计学软件实验报告
- 格式:doc
- 大小:1.34 MB
- 文档页数:28
spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。
掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。
掌握相关分析的操作,对显著性水平的基本简单判断。
二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。
3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。
4、应用SPSS做一些探索性分析(如方差分析,相关分析)。
三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。
具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。
2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。
3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。
结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。
统计学实验SPSS实习报告实验报告二实验项目:描述性统计分析实验的目的:1。
掌握数据集中趋势和离中趋势分析方法2.熟悉掌握各个分析过程的基本步骤以及彼此之间的联系和区别.实验内容:(1)Frequencies过程(2)Descriptives过程(3)Expiore 过程(4)Croostabs过程一、数据和输入与保存频率[数据集1] E:\案例数据资料\数据集\第五章\5.1陕西省城市居民消费状况研究\数据集\陕西省城市居民消费状况研究.sav实验数据的统计量数目为21 实际检验统计量数目为21 全部检验。
统计量时间分组N 有效21缺失0该组检验是我根据软件数据,依据年限的不同分为了一共4组数据的时间分组数据,从而大大的减少了数据的分析复杂性。
最后得出的时间分组的表格如下。
时间分组频率百分比有效百分比累积百分比有效1980以下 3 14.3 14.3 14.31980到1990 10 47.6 47.6 61.91990到1995 5 23.8 23.8 85.71995以上 3 14.3 14.3 100.0合计21 100.0 100.0描述统计分析[数据集1] E:\案例数据资料\数据集\第五章\5.1陕西省城市居民消费状况研究\数据集\陕西省城市居民消费状况研究.sav[数据集1] E:\案例数据资料\数据集\第五章\5.1陕西省城市居民消费状况研究\数据集\陕西省城市居民消费状况研究.sav有表格可以看出数据数目一共21个有小数据21个,其中极小值为1.00极大值为4.00.均值为2.3810.我们是以时间分组的一组描述数据量,既可以得出下列的数据分析表格。
如下为数据的执行命令。
EXAMINE VARIABLES=时间分组/PLOT BOXPLOT STEMLEAF/COMPARE GROUPS/STATISTICS DESCRIPTIVES/CINTERVAL 95/MISSING LISTWISE/NOTOTAL.数据的游览分析[数据集1] E:\案例数据资料\数据集\第五章\5.1陕西省城市居民消费状况研究\数据集\陕西省城市居民消费状况研究.sav描述统计量标准误时间分组均值 2.3810 .20090均值的 95% 置信区间下限 1.9619上限 2.80005% 修整均值 2.3677中值 2.0000方差.848标准差.92066极小值 1.00极大值 4.00范围 3.00四分位距 1.00偏度.387 .501峰度-.456 .972 时间分组时间分组 Stem-and-Leaf PlotFrequency Stem & Leaf3.00 1 . 000.00 1 .10.00 2 . 0000000000.00 2 .5.00 3 . 00000.00 3 .3.00 4 . 000Stem width: 1.00Each leaf: 1 case(s)CROSSTABS/TABLES=时间分组 BY 消费性支出(元)/FORMAT=AVALUE TABLES/CELLS=COUNT/COUNT ROUND CELL.交叉表[数据集1] E:\案例数据资料\数据集\第五章\5.1陕西省城市居民消费状况研究\数据集\陕西省城市居民消费状况研究.sav计数最后实验总结:在该组的实验中,我们利用的是spss软件来实现的一系列的数据分析与统计,我们选择的是数据中以自己独立的时间分组来实现数据的整理以及一系列的数据处理,最后得出了上面的一系列内容,这次实验内容我学到了很多,也从中学习到了spss软件的实际操作。
SPSS统计软件实训报告第一篇:SPSS统计软件实训报告一、实训目的SPSS统计软件实训课是在我们在学习《统计学》理论课程之后所开设的一门实践课。
其目的在于,通过此次实训,使学生在掌握了理论知识的基础上,能具体的运用所学的统计方法进行统计分析并解决实际问题,做到理论联系实际并掌握统计软件SPSS的使用方法。
,二、实训时间与地点:时间:2012年1月9日至2012年1月13日地点:唐山学院北校区A座502机房三、实训要求:这次实训内容为上机实训,主要学习SPSS软件的操作技能,以及关于此软件的一些理论和它在统计工作中的重要作用。
对我们的主要要求为,运用SPSS软件功能及相关资料来完成SPSS操作,选择有现实意义的课题进行计算和分析,最后递交统计分析报告,加深学生对课程内容的理解的。
我们小组的研究课题是社会消费品零售总额的分析。
四、实训的主要内容与过程:此次实训,我大概明白了SPSS软件的基本操作流程,也掌握了如何排序、分组、计算、合并、增加、删除以及录入数据;学会了如何计算定基发展速度、环比发展速度等动态数列的计算;明白了如何进行频数分析、描述分析、探索分析以及作图分析;最大的收获是学会了如何运用SPSS软件对变量进行相关分析、回归分析和计算平均值、T检验和假设性检验。
通过这次试训,我基本上掌握了SPSS软件的主要操作过程,也学会了运用SPSS软件进行各种数据分析。
这些内容,也就是我们SPSS统计软件实训的主要内容。
四、实训结果与体会五天的SPSS软件实训终于结束了,虽然实训过程充满了酸甜苦辣,但实训结果却是甜的。
看着小组的课题报告,心里有种说不出来的感触。
高老师在对统计理论及SPSS 软件功能模块的讲解的同时更侧重于统计分析在各项工作中的实际应用,使我们不仅掌握SPSS 软件及技术原理而且学会运用统计方法解决工作和学习中的实际问题这个实训。
我真真正正学到了不少知识,另外,也提高了自己分析问题解决问题的能力。
spss描述统计实验报告SPSS描述统计实验报告引言:在社会科学研究中,统计分析是不可或缺的工具之一。
SPSS(Statistical Package for the Social Sciences)作为一种广泛使用的统计软件,为研究人员提供了强大的数据处理和分析功能。
本实验报告旨在通过使用SPSS进行描述统计分析,探讨某一特定数据集的统计特征,以及对结果的解读。
实验设计:本次实验所使用的数据集是一份关于学生学业成绩的调查数据。
该数据集包含了学生的性别、年龄、家庭背景、学习时间等多个变量。
我们将使用SPSS对这些变量进行描述统计分析,以了解学生学业成绩的整体情况。
数据处理与分析:首先,我们导入数据集并浏览其整体情况。
通过查看数据的前几行和变量的属性,我们可以对数据集的结构和内容有一个初步的了解。
接下来,我们将使用SPSS的描述统计功能对各个变量进行分析。
1. 性别分布:通过对性别变量进行频数统计,我们可以得到男女生的人数分布。
根据统计结果,男生人数为300,女生人数为250。
这一结果可以帮助我们了解该样本的性别比例,为后续分析提供参考。
2. 年龄分布:对年龄变量进行描述统计,我们可以得到该样本的年龄分布情况。
平均年龄为20.5岁,标准差为1.8岁。
这些统计指标可以帮助我们了解样本的年龄分布情况,以及年龄的变异程度。
3. 家庭背景:通过对家庭背景变量进行频数统计,我们可以得到各个家庭背景类别的人数分布。
统计结果显示,家庭背景为农村的学生人数为150,城市的学生人数为400。
这一结果有助于我们了解样本中不同家庭背景的分布情况。
4. 学习时间:对学习时间变量进行描述统计,我们可以得到学生每天学习的平均时间和标准差。
统计结果显示,学生每天平均学习时间为3.5小时,标准差为1.2小时。
这些统计指标可以帮助我们了解学生学习时间的整体情况,以及学习时间的变异程度。
结果解读:通过对以上变量的描述统计分析,我们可以得到一些关于学生学业成绩的初步认识。
实验名称SPSS的基本操作指导教师贺富强实验设备一台windows XP系统的计算机学生姓名何瑜莎软件名称SPSS11.0 专业班级经济1108班日期2013年1 月7日成绩一、实验目的通过上机练习,掌握SPSS11.0建立数据文件的基本操作、常用统计图和统计报表的制作及输出以及如何运用SPSS,进行假设检验和区间估计。
二、实验内容1. 用两个以上变量编制一个指数,并对取整的指数作直方图,要求对直方图进行适当修改。
如:指数=取整(变量1÷变量2) 两个变量*100取整2. 做出分组条图(变量自选,但变量至少要有三个)。
3. 利用case summary过程做出报表(变量自选)。
4. 对某变量作置信水平为95.45%的区间估计(变量自选)。
5. 对某变量作显著性水平为5%的假设检验(变量自选,参数自定)。
6. 自选相关变量作一元线性回归分析,含散点图。
三.实验步骤1、定义指数及编辑直方图(1) 运行SPSS11.0(2) 在Data View窗口输入数据,同时在Variable View 窗口依次编辑变量的属性Name-Type-Width-Decimals-Values-Label-Missing-Columns-Align-Measure(3) 计算本年出生占总人口之比:Transform→Compute→Target Variable(ratio)→NumericExpression :RND(birth / people * 100) →OK(5) 在DATA窗口:制作直方图Graphs→Histogram→Variable(出生人口[birth])→OK(6)编辑直方图:鼠标双击直方图进入直方图编辑界面>1、fill pattern/color/bar label style/text/swap axes2、Chart→Axis→Interval→OK→Custom→Define→OK3、Chart→Axis→Interval→OK →Label→Range→Orientation→OK2、制作分组条图(1)Graphs→Bar→Clustered→Category Axis(选ratio)→Define Clustered By(选province)→Other Summary Function(选birth)→Change Summary→(2)鼠标双击条图进入条图编辑界面>→fill pattern/color/bar label style/text/swap axes3、Case Summaries过程Analyze→Reports→Case Summaries→Select Variables(选people)→Select Grouping Variables(选ratio,province)→Statistics(选Minimum,Maximum,Range,Mean)→×Display Cases→OK4、对变量作区间估计Analyze→Compare Means→One-simple T Test→Select Variables(选ratio)→Test Value=0→Options →Confidence Interval=95.45%→Continue →OK5、对变量作假设检验Analyze →Compare Means →One-Simple T Test →Select Variables (选ratio )→Test Value=70→Option →Confidence Interval=95%→OK6、一元线性回归分析a)Analyze →Correlate →Bivariate Correlations →Select Variables →Correlation Coefficient=Pearson →Test Of Significance=Two-Tailed →OKb)Analyze →Regression →Linear →Select Dependent Variables (选birth )→Select Independent Variable (dead )→OK四、实验结果与分析1、直方图:出生人口1200.01100.01000.0900.0800.0700.0600.0500.0400.0300.0200.0100.00.054321Std. Dev = 325.58 Mean = 522.8N = 27.0012112241342312、分组条图 :RATIO16.0015.0014.0013.0012.0011.0010.009.008.007.00Mean 出生人口140012001000800600400200江 西 辽 宁 内蒙古宁 夏 青 海 山 东山 西 陕 西四 川西 藏 新 疆云 南 浙 江3、case summary 报表:SummarizeCase Processing SummaryCasesIncludedExcludedTotalN Percent N Percent N Percent 出生人口 * 省 * 年底总人口27100.0%.0%27100.0%Case Summaries出生人口省年底总人口Mean Minimum Maximum Range 安徽5957 756.5400 756.54 756.54 .00 Total 756.5400 756.54 756.54 .00 福建3693 416.2000 416.20 416.20 .00 Total 416.2000 416.20 416.20 .00 甘肃2560 308.4800 308.48 308.48 .00 Total 308.4800 308.48 308.48 .00 广东10441 1167.3000 1167.30 1167.30 .00 Total 1167.3000 1167.30 1167.30 .00 广西4610 651.3900 651.39 651.39 .00 Total 651.3900 651.39 651.39 .00 贵州3479 485.6700 485.67 485.67 .00 Total 485.6700 485.67 485.67 .00 海南869 127.8300 127.83 127.83 .00 Total 127.8300 127.83 127.83 .00 河北7194 951.0500 951.05 951.05 .00 Total 951.0500 951.05 951.05 .00 河南9405 1083.4600 1083.46 1083.46 .00 Total 1083.4600 1083.46 1083.46 .00 黑龙江3833 281.7300 281.73 281.73 .00 Total 281.7300 281.73 281.73 .00 湖北5728 593.4200 593.42 593.42 .00 Total 593.4200 593.42 593.42 .00 湖南6570 860.6700 860.67 860.67 .00 Total 860.6700 860.67 860.67 .00 吉林2747 217.2900 217.29 217.29 .00 Total 217.2900 217.29 217.29 .00 江苏7869 765.6500 765.65 765.65 .00 Total 765.6500 765.65 765.65 .00 江西4462 612.1900 612.19 612.19 .00 Total 612.1900 612.19 612.19 .00 辽宁4375 292.2500 292.25 292.25 .00 Total 292.2500 292.25 292.25 .00 内蒙古2472 229.9000 229.90 229.90 .00 Total 229.9000 229.90 229.90 .00 宁夏633 89.5100 89.51 89.51 .00 Total 89.5100 89.51 89.51 .00 青海563 84.1100 84.11 84.11 .00 Total 84.1100 84.11 84.11 .00 山东9588 1117.0000 1117.00 1117.00 .00 Total 1117.0000 1117.00 1117.00 .00山西3574 381.7000 381.70 381.70 .00 Total 381.7000 381.70 381.70 .00 陕西3735 363.4200 363.42 363.42 .00 Total 363.4200 363.42 363.42 .00 四川8045 718.4200 718.42 718.42 .00 Total 718.4200 718.42 718.42 .00 西藏301 47.5600 47.56 47.56 .00 Total 47.5600 47.56 47.56 .00 新疆2185 349.3800 349.38 349.38 .00 Total 349.3800 349.38 349.38 .00 云南4602 602.8600 602.86 602.86 .00 Total 602.8600 602.86 602.86 .00 浙江5447 559.4100 559.41 559.41 .00 Total 559.4100 559.41 559.41 .00 Total 301 47.5600 47.56 47.56 .00 563 84.1100 84.11 84.11 .00633 89.5100 89.51 89.51 .00869 127.8300 127.83 127.83 .002185 349.3800 349.38 349.38 .002472 229.9000 229.90 229.90 .002560 308.4800 308.48 308.48 .002747 217.2900 217.29 217.29 .003479 485.6700 485.67 485.67 .003574 381.7000 381.70 381.70 .003693 416.2000 416.20 416.20 .003735 363.4200 363.42 363.42 .003833 281.7300 281.73 281.73 .004375 292.2500 292.25 292.25 .004462 612.1900 612.19 612.19 .004602 602.8600 602.86 602.86 .004610 651.3900 651.39 651.39 .005447 559.4100 559.41 559.41 .005728 593.4200 593.42 593.42 .005957 756.5400 756.54 756.54 .006570 860.6700 860.67 860.67 .007194 951.0500 951.05 951.05 .007869 765.6500 765.65 765.65 .008045 718.4200 718.42 718.42 .009405 1083.4600 1083.46 1083.46 .009588 1117.0000 1117.00 1117.00 .0010441 1167.3000 1167.30 1167.30 .00Total 522.7552 47.56 1167.30 1119.744、对某变量作置信水平为95.45%的区间估计(变量自选)T-TestOne-Sample StatisticsN Mean Std. Deviation Std. Error MeanRATIO 27 11.8148 2.57259 .49510 One-Sample TestTest Value = 0t df Sig. (2-tailed)MeanDifference95% Confidence Intervalof the DifferenceLower UpperRATIO 23.864 26 .000 11.8148 10.7971 12.8325 说明:收入支出比在置信水平为95.45%下的估计区间为:(10.7971, 12.8325).5、对某变量作显著性水平为5%的假设检验(变量自选参数自定)。
spss统计实验报告SPSS统计实验报告引言:SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社会科学、经济学、医学和教育等领域。
本文将以一项关于学生学习成绩的统计实验为例,展示如何使用SPSS进行数据处理和分析。
一、实验目的本次实验的目的是探究学生的学习时间和学习成绩之间的关系。
通过对一组学生进行调查,收集他们的学习时间和成绩数据,然后使用SPSS进行统计分析,以揭示学习时间与学习成绩之间的相关性。
二、实验设计与数据收集我们选择了100名高中生作为实验对象,通过问卷调查的方式收集他们的学习时间和成绩数据。
学习时间以每周学习小时数为单位,成绩以百分制表示。
通过这种方式,我们可以得到一个包含学习时间和成绩两个变量的数据集。
三、数据处理与清洗在进行统计分析之前,我们需要对数据进行处理和清洗,以确保数据的准确性和一致性。
首先,我们检查数据是否存在缺失值或异常值。
如果发现有缺失值或异常值,我们可以选择删除这些数据或进行适当的填充和修正。
其次,我们对数据进行变量命名和编码,以便后续的分析和解释。
最后,我们对数据进行了简单的描述性统计,包括计算平均值、标准差和分布情况等。
四、数据分析与结果在进行数据分析时,我们首先进行了相关性分析,以确定学习时间和成绩之间的关系。
通过SPSS的相关性分析功能,我们计算了学习时间和成绩之间的皮尔逊相关系数。
结果显示,学习时间和成绩之间存在显著的正相关关系(r=0.75,p<0.01),即学习时间越长,成绩越好。
接下来,我们进行了回归分析,以进一步探究学习时间对成绩的影响程度。
通过SPSS的线性回归功能,我们建立了一个学习时间与成绩之间的回归模型。
回归分析的结果显示,学习时间对成绩的解释程度为56%,即学习时间可以解释学生成绩的变异程度的56%。
此外,回归模型的显著性检验结果也显示,该模型的回归系数是显著的(p<0.01)。
spss描述统计实验报告SPSS描述统计实验报告引言SPSS(Statistical Package for the Social Sciences)是一种用于数据分析和统计建模的软件工具。
它可以帮助研究人员对数据进行描述统计分析,从而得出结论并做出预测。
本实验旨在利用SPSS软件对实验数据进行描述统计分析,以探究数据的特征和规律。
实验设计本实验选取了一组包括性别、年龄、身高和体重等信息的样本数据,共计100个样本。
通过SPSS软件对这组数据进行描述统计分析,包括均值、标准差、频数分布等指标,以便对样本数据进行全面的了解。
结果分析首先,我们对样本数据中的性别进行了频数分布分析。
结果显示,样本中有55%的男性和45%的女性,性别分布相对均衡。
接着,我们对年龄、身高和体重等连续变量进行了均值和标准差的分析。
结果显示,样本的平均年龄为30岁,标准差为5岁;平均身高为170厘米,标准差为8厘米;平均体重为65公斤,标准差为10公斤。
这些数据表明样本中的年龄、身高和体重分布较为集中,且具有一定的变异性。
结论通过对样本数据的描述统计分析,我们得出了对样本特征和规律的初步认识。
样本中男女比例相对均衡,年龄、身高和体重分布较为集中且具有一定的变异性。
这些结果为我们进一步的数据分析和研究提供了重要参考。
总结SPSS软件作为一种强大的数据分析工具,可以帮助研究人员对数据进行描述统计分析,从而深入了解数据的特征和规律。
本实验利用SPSS对样本数据进行了描述统计分析,得出了对样本特征和规律的初步认识,为后续的研究工作奠定了基础。
希望本实验能够对SPSS软件的应用和描述统计分析方法有所启发,为相关研究工作提供参考。
统计学spss实验报告《统计学SPSS实验报告》在统计学领域,SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它能够帮助研究人员对数据进行分析和处理。
本实验报告将介绍使用SPSS进行统计分析的过程和结果。
实验目的:本实验旨在使用SPSS软件对一组数据进行统计分析,包括描述统计、相关分析和回归分析,以验证数据的相关性和预测能力。
实验步骤:1. 数据导入:首先将实验所需的数据导入SPSS软件中,确保数据格式正确。
2. 描述统计:对数据进行描述统计分析,包括均值、标准差、最大值、最小值等。
3. 相关分析:通过SPSS进行相关分析,探究变量之间的相关性。
4. 回归分析:进行回归分析,验证变量之间的预测能力。
实验结果:1. 描述统计结果显示,样本的平均值为X,标准差为X,最大值为X,最小值为X。
2. 相关分析结果表明,变量A与变量B之间存在显著的正相关关系(r=0.7,p<0.05)。
3. 回归分析结果显示,变量A对变量B的预测能力较高(R²=0.5,p<0.05)。
结论:通过SPSS软件的统计分析,我们得出了以下结论:变量A与变量B之间存在显著的正相关关系,并且变量A对变量B具有较高的预测能力。
这些结果为我们提供了对数据的深入理解和有效的预测能力。
总结:SPSS软件作为一种强大的统计分析工具,能够帮助研究人员对数据进行全面的统计分析。
通过本实验,我们深入了解了SPSS软件的使用方法和统计分析过程,为今后的研究工作提供了重要的参考和指导。
通过本次实验报告,我们对SPSS软件的统计分析能力有了更深入的了解,也为我们今后的科研工作提供了重要的参考和指导。
希望本实验报告能够对读者有所启发和帮助。
spss统计学软件实验报告西安邮电大学统计软件实习报告书系部名称学生姓名专业名称时间经济与管理学院营销策划系陈志强商务策划管理2021年5月21日至2021年5月25日::::实习内容:熟悉和学习SPSS软件,包括1.基本统计实验(均值、中位数、众数、全距、方差与标准差、四分位数、十分位数、频数、峰度、偏度);2均值比较和T检验(均值比较、单一样本T检验、两独立样本T检验和两配对样本T检验);3.相关分析(二元定距变量的相关分析、二元定序变量的相关分析、偏相关分析、距离相关分析);4.回归分析(一元线形回归和多元线形回归)。
实习目的:掌握SPSS基本的统计描述方法,可以对要分析的数据的总体特征有比较准确的把握,从而为以后实验项目选择其他更为深入的统计分析方法打下基础。
实习过程:实验1:二元定距变量的相关分析★ 研究问题:某工厂生产多种产品,分别对其进行两标准评分,评分结果如下表,现在要研究这两个标准之间是否具有相关性。
产品的标准1和标准2评分产品名标准1 标准2 产品1 65.00 43.00 产品278.00 50.00 产品3 88.00 70.00 产品4 45.00 60.00 产品5 94.00 78.00 产品690.00 68.00 产品7 79.00 55.00 产品8 73.00 88.00 产品9 74.00 70.00 产品1080.00 75.00 产品11 67.00 80.00 产品12 68.00 68.00 产品13 65.00 74.00 产品14 56.00 76.00 产品15 81.00 88.00 产品16 89.00 91.00★ 实现步骤『步骤1』在“Analyze”菜单“Correlate”中选择Bivariate命令,如图3-1所示。
图3-1 选择Bivariate Correlate 菜单『步骤2』在弹出的如图3-2所示Bivariate Correlate对话框中,从对话框左侧的变量列表中分别选择“标准1”和“标准2”变量,单击按钮使这两个变量进入Variables框。
spss统计学实验报告SPSS统计学实验报告引言统计学是一门研究数据收集、分析和解释的学科,而SPSS(Statistical Package for the Social Sciences)是一款功能强大的统计分析软件。
本文将通过一项实验报告,展示SPSS在统计学研究中的应用。
实验目的本次实验的目的是研究不同年龄段的人口对某商品的购买意愿。
通过统计分析,我们希望了解不同年龄段的人口对该商品的态度和购买意愿是否存在显著差异。
实验设计我们从不同年龄段的人群中随机选取了200名被试者,他们分别属于18-25岁、26-35岁、36-45岁和46-55岁四个年龄段。
我们设计了一份问卷调查,包括了关于该商品的态度和购买意愿的问题。
被试者需要根据自己的实际情况进行回答。
数据收集与处理通过问卷调查,我们获得了每位被试者的年龄、性别、对该商品的态度和购买意愿等数据。
接下来,我们使用SPSS软件对这些数据进行了处理和分析。
数据分析首先,我们使用SPSS计算了各个年龄段的平均购买意愿得分,并绘制了柱状图以便直观地比较各个年龄段之间的差异。
结果显示,18-25岁年龄段的平均购买意愿得分最高,而46-55岁年龄段的平均得分最低。
接着,我们进行了方差分析(ANOVA)以确定不同年龄段之间的购买意愿是否存在显著差异。
结果表明,不同年龄段之间的购买意愿存在显著差异(F = 3.78, p < 0.05)。
进一步的事后比较(post hoc comparison)显示,18-25岁年龄段和26-35岁年龄段之间的差异是显著的(p < 0.05),而其他年龄段之间的差异则不显著。
讨论与结论通过本次实验,我们发现不同年龄段的人口对该商品的购买意愿存在显著差异。
具体而言,年龄较小的人群更倾向于购买该商品。
这可能是由于不同年龄段的人口对商品特性、需求和消费习惯存在差异所致。
然而,本次实验存在一些限制。
首先,样本容量较小,可能不足以代表整个人口。
实验报告课程名称:统计分析软件(SPSS)学生实验报告一、实验目的及要求二、实验描述及实验过程(一)、利用SPSS绘制统计图1、打开“职工数据.sav”,调用Graphs 菜单的Bar功能,绘制直条图。
直条图用直条的长短来表示非连续性资料的数量大小。
弹出Bar Chart定义选项。
2、在定义选项框的下方有一数据类型栏,大多数情形下,统计图都是以组为单位的形式来体现数据的。
在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered 为复式直条图、Stacked为堆积式直条图,本实验选单一直条图。
3、点击Define钮,弹出Define Clustered Bar: Summaries for groups of cases对话框,在左侧的变量列表中选基本工资点击按钮使之进入Bars Represent栏的Other summary function选项的Variable框,选性别/文化程度/职称点击按钮使之进入Category Axis框。
1.点击analyze中的Descriptive Statistics选择frequencies,弹出一个frequencies对话框,选中基本工资和年龄拖入Variable(s)列2.点击statistics选择相应的统计量(例如:Mean,.median,mode等)3.点击continue ,点击OK。
(三)、用SPSS做回归分析(一元线性回归)1.点击Graphs 选择Scatter/dot2.选择simple scatter 点击Define3.将基本工资这个变量输入Y-Axis ,将年龄输入X-Axise4.点击OK ,结果如图5.点击analyze中的regression选择linear,将这个基本工资变量输入 Dependent ,将年龄输入Independt(s6.点击OK(四)、用SPSS做回归分析(多元线性回归)1、在“Analyze”菜单“Regression”中选择Linear命令2、在弹出的菜单中所示的Linear Regression对话框中,从对话框左侧的变量列表中选择基本工资,将年龄,职称,文化程度添加到Dependent框中,表示该变量是因变量。
竭诚为您提供优质文档/双击可除spss统计学实验报告篇一:统计学spss实验报告spss实验报告一.实验目的1.掌握spss的基本操作,能够熟练应用spss进行基本的统计分析。
2.在用spss对具体实例进行分析的基础上能对结果进行正确的解释。
3.在对spss基本操作熟练的情况下,进一步自学spss 更强大的分析能。
二.实验要求1.掌握如何通过spss进行数据的获取和管理,包括数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2.了解描述性统计的作用,并掌握其spss的实现(频数,均值,标准差,中位数,众数,极差)。
3.应用spss生成表格和图形,并对表格和图形进行简单的编辑和分析。
4.应用spss做一些探索性分析(如方差分析,相关分析)三.实验内容(一).问题的提出对不同广告方式和不同地区对某商品销售额影响进行分析。
在制定某商品的广告策略时,收集了该商品在不同地区采用不同广告形式促销后的销售额数据,分析广告形式和地区是否影响商品销售额。
自变量为广告方式(x1)和地区(x2),因变量为销售额(Y)。
涉及地区18个,每个地区抽取样本8个,共有案例144个。
具体数据如下:x11.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.00x21.001.001.001.002.002.002.002.003.003.003.003 .004.004.004.004.005.005.005.005.00Y75.0069.0063.00 52.0057.0051.0067.0061.0076.00100.0085.0061.0077.00 90.0080.0076.0075.0077.0087.0057.002.006.004.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.001.0010.002.0010.00 4.0010.003.0010.001.0011.002.0011.00 4.0011.001.0012.002.0012.00 4.0012.003.0012.001.0013.002.0013.004.0013.003.0011.003.0013.001.0014.002.0014.004.0014.003.0014.001.0015.002.0015.004.0015.003.0015.001.0016.002.0016.004.0016.003.0016.0060.0062.0052.0076.0033.0070.0033.0081.0079 .0075.0069.0063.0073.0040.0060.0094.00100.0064.0061 .0054.0061.0040.0070.0068.0067.0066.0087.0068.0051. 0041.0065.0065.0063.0061.0058.0065.0083.0075.0050.0079.0076.0064.0044.002.0017.004.0017.003.0017.001.0018.002.0018.004.0018.003.0018.001.001.002.001.004.001.003.001.001.002.002.002.004.002.003.002.001.003.002.003.004.003.003.003.001.004.002.004.004.004.00 3.004.001.005.002.005.00 4.005.003.005.001.006.002.006.00 4.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.0073.0050.0045.0075.0074.0062.0058.0068.0054. 0058.0041.0075.0078.0082.0044.0083.0079.0078.0086.0 066.0083.0087.0075.0066.0074.0070.0075.0076.0069.00 77.0063.0070.0068.0068.0052.0086.0075.0061.0061.006 2.0065.0055.0043.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.0010.0010.0010.0010.0011.0011.0011.0011.0012.0012.0012.0012.0013.0013.00 13.0013.0014.0014.0014.0014.0015.0015.0015.0015.001 6.0016.0016.0016.0017.0017.0017.0017.0018.0018.0018.0018.0088.0070.0076.0069.0056.0053.0070.0043.0086. 0073.0077.0051.0084.0079.0042.0060.0077.0066.0071.0 052.0078.0065.0065.0055.0080.0081.0078.0052.0062.00 57.0037.0045.0070.0065.0083.0060.00x1一列中,1表示报纸,2表示广播,3表示宣传品,4表示体验。
统计学spss实验报告统计学SPSS实验报告引言:统计学是一门研究数据收集、分析和解释的学科,它在各个领域都扮演着重要的角色。
SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社会科学、经济学和医学等领域。
本实验报告旨在通过使用SPSS软件对一组数据进行分析,深入探讨统计学的应用。
数据收集和描述统计分析:为了进行本次实验,我们收集了一组关于学生数学成绩的数据。
数据包括学生的年龄、性别、家庭背景、每周学习时间以及数学考试成绩等。
首先,我们对数据进行了描述统计分析,包括计算平均值、中位数、标准差和频率分布等。
根据描述统计分析的结果,我们发现学生的平均年龄为19.5岁,标准差为1.2岁。
男女生的比例大致相等,分别占总样本的48%和52%。
家庭背景方面,大多数学生(60%)来自中等收入家庭。
在每周学习时间方面,学生的平均学习时间为25小时,标准差为5小时。
最后,数学考试成绩的平均分为80分,标准差为10分。
相关性分析:接下来,我们使用SPSS进行相关性分析,以探究不同变量之间的关系。
我们选择了学习时间和数学成绩作为研究对象。
通过计算皮尔逊相关系数,我们发现学习时间和数学成绩之间存在显著的正相关关系(r = 0.7, p < 0.01)。
这意味着学生每增加1小时的学习时间,数学成绩将提高0.7个标准差。
回归分析:为了进一步研究学习时间对数学成绩的影响,我们进行了回归分析。
我们将学习时间作为自变量,数学成绩作为因变量。
通过回归分析,我们得到了以下回归方程:数学成绩 = 60 + 0.5 * 学习时间。
这意味着学生每增加1小时的学习时间,数学成绩将增加0.5分。
方差分析:除了学习时间,我们还对家庭背景对数学成绩的影响进行了方差分析。
我们将家庭背景分为三个类别:低收入、中等收入和高收入。
通过方差分析,我们发现不同家庭背景之间的数学成绩存在显著差异(F = 5.2, p < 0.05)。
SPSS数据统计软件实验报告SPSS数据统计软件实验报告专业信息与计算科学班级级班组别指导教师姓名同组人实验时间2018****年**月**日实验地点实验名称方差分析实验目的通过对数据的分析,使其掌握用方差分析的方法来比较数据。
实验仪器:1、支持IntelPentiumⅢ及其以上CPU,内存256MB以上、硬盘1GB以上容量的微机;软件配有Windows98/2000/XP操作系统及SPSS软件。
2、了解SPSS软件的特点及系统组成,在电脑上操作SPSS软件。
实验内容、步骤及程序:一、1.实例内容:下表给出销售方式对销售量的对比试验数据,利用单因素方差分析来分析不同的销售方式对销售量的影响。
2.实例操作:Step01打开对话框。
打开数据文件,选择菜单栏中的【分析】|【比较均值】|【单因素 ANOVA】命令,弹出【单因素ANOVA检验】对话框。
Step02选择因变量。
在候选变量列表框中选择【销售量】变量作为因变量,将其添加至【因变量列表】列表框中。
Step03选择因变量。
在候选变量列表框中选择【销售方式】变量,将其添加至【因子】文本框中。
Step04定义相关统计选项以及缺失值处理方法。
单击【单因素ANOVA检验】对话框【选项】,在弹出的对话框选中【方差同质性检验】、【平均值图】复选框,然后单击【继续】。
Step05事后多重比较。
单击【单因素ANOVA检验】对话框【事后比较】,在弹出图中选中Bonferroni复选框,然后单击【继续】。
Step06对组间平方和进行线性分解并检验。
单击【单因素ANOVA检验】对话框【对比】,弹出图的对话框选中【多项式】,将【等级】设为【线性】,单击【继续】返回【单因素ANOVA检验】的对话框。
Step07单击【确定】,输出分析结果。
3.实例结果及分析變異數同質性測試销售量Levene統計資料df1df2顯著性.346.793给出了方差齐性检验的结果。
从该表可以得到Levene方差齐性检验的P值为0.793,与显著性水平0.05相差大,因此基本可以认为样本数据之间的方差是非齐次的。
统计软件学习实验报告一、实验目的本实验旨在学习和掌握常用的统计软件,了解其使用方法和功能,并通过实际案例掌握统计软件在数据分析与处理中的应用。
二、实验过程本次实验我选择了SPSS软件,以下是我学习并实践的步骤:1. 下载和安装首先,我在官方网站上下载了SPSS软件的安装包,并按照说明完成了安装过程。
2. 学习基本操作在安装完成后,我读取了软件提供的用户手册并进行了阅读,了解了软件的基本操作方法和相关术语。
我学会了如何打开数据文件、导入和导出数据、如何进行数据清洗和转换等基本操作。
3. 数据探索我选择了一组关于市场调研的数据进行实践。
首先,我导入了数据文件并进行数据预览,了解了数据的整体样貌。
然后,我使用软件提供的统计手段(如频率分析、描述统计等)对数据进行了初步探索,了解了数据的分布情况以及相关变量的关系。
4. 数据可视化为了更加直观地展现数据,我使用SPSS软件的可视化功能绘制了多种图表,如柱状图、折线图、饼状图等。
这些图表能够帮助我更加直观地理解数据的特征和趋势,为后续的数据分析和决策提供依据。
5. 数据分析在数据探索和可视化之后,我使用SPSS软件进行了更深层次的数据分析。
我运用了一些常见的统计分析方法,如t检验、方差分析、回归分析等,来探索数据之间的关系,并得出了一些结论。
6. 结果呈现最后,我使用SPSS软件编写了报告,并导出为Word文档。
在报告中,我将实验的目的、方法、分析过程、结果和结论进行了详细的描述和解释,并通过表格、图表等形式将分析结果呈现出来,以便他人阅读和理解。
三、实验结果通过本次实验,我掌握了SPSS软件的基本使用方法,并在实际数据分析的过程中熟悉了常用的统计分析方法与技巧。
我成功地完成了对市场调研数据的探索和分析,并得出了一些相关结论,为决策提供了有力的支持。
四、实验总结通过本次实验,我深刻认识到统计软件在数据分析与处理中的重要性和实用性。
统计软件不仅能够提供丰富的统计分析工具和方法,还能够快速地处理和展示数据,提高数据分析的效率和准确性。
SPSS统计软件实训报告一、引言SPSS(Statistical Product and Service Solutions)统计软件是一种常用的统计分析软件,被广泛应用于数据分析和统计研究领域。
本报告旨在总结并分析在SPSS实训课程中所学到的基本操作和统计分析方法。
二、实训内容在SPSS统计软件实训中,我们学习了以下主要内容: 1. SPSS软件的安装和介绍; 2. 数据输入和修改; 3. 数据清洗和处理; 4. 描述性统计分析; 5. 参数检验和非参数检验; 6. 方差分析; 7. 相关分析; 8. 回归分析等。
三、实训过程1. SPSS软件的安装和介绍我们首先安装了SPSS统计软件,并对其界面和基本功能进行了介绍。
SPSS软件提供了直观的用户界面,可以进行数据输入、数据处理和统计分析等操作。
2. 数据输入和修改为了方便后续的统计分析,我们学习了数据的输入和修改方法。
在SPSS软件中,我们可以手动输入数据,也可以从Excel等其他文件中导入数据。
此外,我们还学习了如何修改数据,包括添加变量、删除变量、重命名变量等操作。
3. 数据清洗和处理在实际应用中,数据往往存在一些错误或缺失。
为了保证统计分析的准确性,我们需要对数据进行清洗和处理。
SPSS软件提供了一系列的数据清洗工具,如删除重复数据、替换缺失值、筛选数据等。
4. 描述性统计分析描述性统计分析是对收集到的数据进行总结和描述的方法。
我们学习了如何计算数据的均值、中位数、众数、标准差等统计量。
通过绘制直方图、箱线图等图表,我们可以对数据的分布进行可视化展示。
5. 参数检验和非参数检验参数检验和非参数检验是统计分析中常用的两种方法,用于判断样本间差异是否显著。
我们学习了t检验、方差分析、卡方检验等方法,并通过SPSS软件进行了实际操作。
6. 方差分析方差分析是用于比较三个或三个以上样本均值是否存在显著差异的方法。
我们学习了单因素方差分析和多因素方差分析,并通过SPSS软件进行了实际分析。
统计学spss实验报告统计学SPSS实验报告引言:统计学是一门研究数据收集、分析和解释的学科,它在各个领域中都扮演着重要的角色。
SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了丰富的数据处理和分析工具,广泛应用于社会科学、医学、市场调研等领域。
本实验旨在通过使用SPSS软件,对一组数据进行统计分析,并得出相关结论。
方法:本实验采用了一组假想数据,包含了100位学生的考试成绩和他们的学习时间。
首先,我们使用SPSS软件导入数据,并对数据进行初步的描述性统计分析。
然后,我们进一步进行了相关性分析和回归分析,以探索学习时间与考试成绩之间的关系。
结果:在描述性统计分析中,我们计算了学生们的平均学习时间和考试成绩的平均值、标准差等指标。
结果显示,学生们的平均学习时间为3小时,考试成绩的平均值为80分,标准差分别为1小时和10分。
这些数据为后续的分析提供了基础。
接下来,我们进行了相关性分析,以确定学习时间与考试成绩之间的相关性。
通过SPSS软件的相关性分析功能,我们计算了学习时间和考试成绩之间的皮尔逊相关系数。
结果显示,学习时间与考试成绩之间存在显著的正相关关系(r = 0.8, p < 0.001)。
这意味着学习时间越长,考试成绩越高。
进一步地,我们进行了回归分析,以确定学习时间对考试成绩的影响程度。
通过SPSS软件的回归分析功能,我们建立了一个线性回归模型,将学习时间作为自变量,考试成绩作为因变量。
结果显示,学习时间对考试成绩有显著的预测作用(F(1, 98) = 100, p < 0.001)。
回归方程为:考试成绩 = 70 + 10 * 学习时间。
这意味着每多学习1小时,考试成绩将提高10分。
讨论:通过本实验的统计分析,我们得出了以下结论:学习时间与考试成绩之间存在显著的正相关关系,学习时间对考试成绩有显著的预测作用。
西安邮电大学统计软件实习报告书系部名称:经济与管理学院营销策划系学生姓名:陈志强专业名称:商务策划管理时间:2012年5月21日至2012年5月25日实习内容:熟悉和学习SPSS软件,包括1.基本统计实验(均值、中位数、众数、全距、方差与标准差、四分位数、十分位数、频数、峰度、偏度);2均值比较和T检验(均值比较、单一样本T检验、两独立样本T检验和两配对样本T检验);3.相关分析(二元定距变量的相关分析、二元定序变量的相关分析、偏相关分析、距离相关分析);4.回归分析(一元线形回归和多元线形回归)。
实习目的:掌握SPSS基本的统计描述方法,可以对要分析的数据的总体特征有比较准确的把握,从而为以后实验项目选择其他更为深入的统计分析方法打下基础。
实习过程:实验1:二元定距变量的相关分析★研究问题:某工厂生产多种产品,分别对其进行两标准评分,评分结果如下表,现在要研究这两个标准之间是否具有相关性。
★实现步骤『步骤1』在“Analyze”菜单“Correlate”中选择Bivariate命令,如图3-1所示。
图3-1 选择Bivariate Correlate 菜单『步骤2』在弹出的如图3-2所示Bivariate Correlate对话框中,从对话框左侧的变量列表中分别选择“标准1”和“标准2”变量,单击按钮使这两个变量进入Variables框。
在Correlation Coefficients框中选择相关系数,本例选用Pearson项。
在Test of significance框中选择相关系数的双侧(Two-tailed)检验,检验两个变量之间的相关取向,也就是从结果中来得到是正相关还是负相关。
图3-2 Bivariate Correlate对话框选中Flag significations correlations选项,则相关分析结果中将不显示统计检验的相伴概率,而以星号(*)显示。
一个星号表示当用户指定的显著性水平为0.05时,统计检验的相伴概率值小于等于0.05,即总体无显著性相关的可能性小于等于0.05;两个星号表示当用户指定的显著性水平为0.01时,统计检验的相伴概率值小于等于0.01,即总体无显著线形相关的可能性小于等于0.01。
显然,在这两个星号比一个星号的检验更加精确。
『步骤3』单击Options按钮,出现Bivariate Correlate:Options对话框,如图3-3所示。
图3-3 Options对话框Statistics框中的Means and standard deviations表示在输出相关系数的同时计算输出各变量的平均值和标准差;选中Cross-product deviations and covariances 项表示输出叉积离差和协方差。
叉积离差即为Pearson简单相关系数公式的分子部分,协方差为:叉积离差/(–1),也反映变量间的相关程度。
Missing Values框中为对缺失值进行处理,Exclude cases pairwise项表示如果正参与计算的两个变量中有缺失值,则暂时提出那些在这两个变量上去缺失值的个案;Exclude cases listwise项为剔除所有具有缺失值的个案后再计算。
本例中选择Means and standard deviations和Exclude cases pairwise项,单击Continue按钮,返回Bivariate Correlate对话框,单击OK按钮,则可得到SPSS 相关分析的结果。
结果和讨论:SPSS的运行结果如下:Correlations从以上结果可以得出第一个表格:(n=16)的标准1的平均值(74.5000)、标准1的标准差(13.19596)、标准2的平均值(70.8750)和标准2的标准差(13.61311)。
第二个表格则是所要求的相关系数,它以一个矩阵的形式表示。
从中可以看出,标准1和标准2的相关系数为0.278。
在这个数据的旁边有没有星号,说明变量之间的相关程度极弱,可视为不相关。
实验2.绘制相关散点图如果对变量之间的相关程度不需要那么精确,则可以通过绘制变量的散点图来直接判断。
仍以上例作为说明。
★实现步骤『步骤1』在“Graphs”菜单中选择Scatter命令,如图3-4所示。
图3-4 选择Scatter命令『步骤2』本例只需绘制出数学成绩和化学成绩两者的散布情况,因此选择“Simple”图,如图3-5所示。
图3-5 Scatterplot对话框『步骤3』单击Define按钮,打开Simple Scatterplot对话框,如图3-6所示。
在此对话框中,把左侧的“数学”、“化学”这个两个变量分别通过单击按钮使之添加到右侧的X Axis和Y Axis框中,表示散点图将分别把数学成绩和化学成绩绘制在X轴和Y轴上。
其他悬想不变,然后单击OK,开始绘图。
图3-6 Simple Scatterplot对话框结果和讨论绘出的散点图如图3-7所示,从中明显看出这两个变量线形不相关。
图3-7 散点图实验3.二元定序变量的相关分析★研究问题某专家先后对一个工程的多个项目加以评分,两次评分分别记为变量“分值1”和“分值2”,如下表所示。
问两次评分的等级相关有多大,是否达到显著水平?工程项目两次的得分情况项目名分值1 分值2项目1 78.00 75.00项目2 77.00 83.00项目3 81.00 83.00项目4 87.00 8300项目5 91.00 92.00项目6 77.00 74.00项目7 96.00 93.00项目8 81.00 87.00项目9 67.00 65.00项目10 79.00 73.00项目11 89.00 85.00项目12 78.00 70.00项目13 95.00 90.00项目14 88.00 81.00项目15 95.00 85.00★实现步骤『步骤1』在“Analyze”菜单“Correlate”中选择Bivariate命令,如3-8所示。
图3-8 选择Bivariate Correlate菜单『步骤2』在弹出如图3-9所示的Bivariate Correlate对话框中,从对话框左侧的变量列表中分别选择“分值1”和“分值2”变量,单击按钮使这两个变量添加到Variables框。
在Correlation Coefficients框中选择Spearman和Kendall’s tua-b等级相关系数;在Test of significance框中选择相关系数的双侧(Two-tailed)检验,选中Flag significations correlations选项,则相关分析结果中将不显示统计检验的相伴概率,而以星号(*)显示。
如图3-9。
图3-9 Bivariate Correlate对话框『步骤3』单击OK按钮,SPSS开始计算Spearman和Kendall’s tua-b等级相关系数。
⑶结果和讨论SPSS的运行结果如下:Nonparametric Correlations从结果中可以看出,两次评分的Spearman和Kendall’s tua-b等级相关系数分别为0.663和0.822。
在这个数据的旁边有两个星号,表示用户指定的显著性水平为0.01时,统计检验的相伴概率小于等于0.01,即两次评分显著相关,且为正相关。
实验4.偏相关分析★研究问题某农业实验场通过试验取得小麦产量与单位虫害值和平均温度的数据,如下表所示。
现求单位虫害值对产量的偏相关。
小麦产量与单位虫害值和温度之间的关系产量单位虫害值温度170.00 15.00 7.00200.00 23.00 9.00230.00 35.00 11.00350.00 38.00 13.00400.00 41.00 17.00480.00 44.00 19.00530.00 47.00 20.00590.00 50.00 23.00670.00 55.00 28.00710.00 59.00 31.00 ★实现步骤『步骤1』在“Analyze”菜单“Correlate”中选择Partial命令,如图3-10所示。
图3-10 选择Bivariate Partial 菜单『步骤2』在弹出的如图2所示Bivariate Partial对话框中,从对话框左侧的变量列表中分别选择“产量”和“单位虫害”变量,单击按钮使这两个变量进入Variables框中,在选择“温度”变量,单击按钮使这个变量添加到Controlling For框中,表示现在所求的是剔除“温度”变量影响后“产量”和“单位虫害”变量之间偏相关系数。
图3-11 Partial Correlations对话框在Test of significance框中选择相关系数的双侧(Two-tailed)检验。
本例选中Flag significations correlations选项,则相关分析结果中将不显示统计检验的相伴概率,而以星号(*)显示,星号的意义与计算简单相关系数中的相同。
『步骤3』单击Options按钮,出现Partial Correlations对话框,如图3-12所示。
图3-12 Partial Correlations对话框在Statistics框中选择Zero-order correlations项,在输出偏相关系数的同时还输出变量间的简单相关系数。
在Missing Values框中选择Exclude cases listwise项,剔除所有具有缺失值的个案后再计算。
『步骤4』单击Continue按钮,返回Partial Correlations对话框,单击OK按钮,即可得到SPSS相关分析的结果。
结果和讨论SPSS的运行结果如下。
Partial Corr从结果中可以看到,上半部分是变量两两之间的Partial简单相关系数,以“产量”和“单位虫害”为例,它们之间的Partial简单相关系数为0.954。
下半部分是偏相关分析的输出结果,其中,对每个变量都有三行输出结果:第一行为偏相关系数,第二行为检验统计量的相伴概率、第三行为统计检验的自由度。
从中可知,在剔除“温度”变量的影响条件下,“产量”与“单位虫害”二变量的影响条件下,“产量”与“降雨量”二变量的偏相关系数为0.304,自由度为7,相伴概率为0.427。
可见,简单相关系数和偏相关系数相比,前者有夸大的成分,后者更符合实际。
实验5.距离相关分析★研究问题1----变量之间的相似性预测分析对6个人进行3次体能测试,测得结果如下表所示。
问测试结果是否一致。
1 2 3 4 5 685 87 81 88 89 84第一次第二91 92 88 90 91 87次89 87 85 89 90 88第三次★实现步骤『步骤1』激活数据管理窗口,定义变量名:第一次测量值为r1,第二次测量值为r2,第三次测量值为r3,输入相应数值。