2014年义乌中考数学试卷及答案解析
- 格式:doc
- 大小:689.50 KB
- 文档页数:22
浙江省义乌市初中毕业生学业考试数学试题试 卷 Ⅰ一、选择题 1. -3的绝对值是A .3B .-3C .-13D .132.如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是 A .2cm B .1.5cm C .1.2cm D .1cm 3.下列计算正确的是A .246x x x +=B .235x y xy +=C .632x x x ÷=D .326()x x =4.如图,下列水平放置的几何体中,主视图不是..长方形的是5.我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元) A .4.50×102B .0.45×103C .4.50×1010D .0.45×10116.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个7.不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为8.如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于 A. 60° B. 25° C. 35° D. 45°9.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为 A .13 B .19 C .12 D .2310.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:1 02 A .1 02 B .1 02 C .1 02 D . A .B .C .D .AB CDE60° E A BCD① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有 A .1个 B .2个C .3个D .4个试 卷 Ⅱ二、填空题(本题有6小题,每小题4分,共24分)11.一次函数y =2x -1的图象经过点(a ,3),则a = ▲ . 12.如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是 ▲ .13.已知⊙O 1与⊙O 2的半径分别为3和5,且⊙O 1与⊙O 2相切,则O 1O 2等于 ▲ . 14.某校为了选拔学生参加我市无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是251S =甲、212S =乙. 则甲、乙两选手成绩比较稳定的是 ▲ .15.右图是市民广场到解百地下通道的手扶电梯示意图.其中AB 、CD 分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC =135°,BC 的长约是25m ,则乘电梯从点B 到点C 上升的高度h 是 ▲ m .16.如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标 ▲ ;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为 ▲ .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(1)计算: 45sin 2820110-+;(2)解分式方程:2323=-+x x . 18.如图,已知E 、F 是□ABCD 对角线AC 上的两点,且BE ⊥AC ,DF ⊥AC .(1)求证:△ABE ≌△CDF ;(2)请写出图中除△ABE ≌△CDF 外其余两对全等三角形(不再添加辅助线).19.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示);A BCDEF G 135° ABCDhFEABCDOBC D(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 20 . 为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:学业考试体育成绩(分数段)统计图 学业考试体育成绩(分数段)统计表根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? ▲ (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?21.如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E . ⊙O 的切线BF 与弦AD 的延长线相交于点F ,且AD =3,cos ∠BCD=34. (1)求证:CD ∥BF ; (2)求⊙O 的半径; (3)求弦CD 的长.22.如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=k xk>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y=k x的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数y=k x的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.分数段 人数(人)频率 A 48 0.2 B a 0.25 C 84 0.35 D 36 b E120.0512243648607284人数分数段ABCDEBOA FMADOECO CB23.如图1,在等边△ABC 中,点D 是边AC 的中点,点P 是线段DC 上的动点(点P 与点C 不重合),连结BP . 将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连结AA 1,射线AA 1分别交射线PB 、射线B 1B 于点E 、F .(1) 如图1,当0°<α<60°时,在α角变化过程中,△BE F 与△AEP 始终存在 ▲ 关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP =β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E 、F 与点B 重合. 已知AB =4,设DP =x ,△A 1BB 1的面积为S ,求S 关于x 的函数关系式.24.已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4. 设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y=2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN ∥N 沿直线MN 对折,得到△P 1MN. 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒. 求S 关于t 的函数关系式.图1图2图3P B 1FM AD E C CBA 1PB 1FMADECCBA 1 PB 1AD CB A 1O PCBAxy图1图2MOAxPNCBy参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. 2 12. 7 13. 2或8(对一个得2分) 14. 乙 15. 5 16.(1))3-23(, (2分) (2)(2,2)、⎪⎭⎫⎝⎛4521,、⎪⎭⎫ ⎝⎛1611411,、⎪⎭⎫ ⎝⎛2526513, (注:共2分.对一个给0.5分,得2分的要全对,其余有错不倒扣分)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. 解:(1)原式=1+22-2 (算对一项或两项给1分,全对2分) ……2分=1+2 …………………………………………………3分(2)2(x +3)=3 (x -2) …………………………………1分解得:x =12 ………………………………………………2分 经检验:x =12是原方程的根 ……………………………3分18. 解:(1)∵四边形ABCD 是平行四边形∴AB =CD AB ∥CD ∴∠BAE =∠FCD 又∵BE ⊥AC DF ⊥AC ∴∠AEB =∠CFD =90°∴△ABE ≌△CDF (AAS )…………………………4分(2)①△ABC ≌△CDA ②△BCE ≌△DAF (每个1分)………………6分19. 解:(1) 2x 50-x (每空1分)………………………2分(2)由题意得:(50-x )(30+2x )=2100 …………………………4分 化简得:x 2-35x +300=0解得:x 1=15, x 2=20……………………………………5分∵该商场为了尽快减少库存,则x =15不合题意,舍去. ∴x =20 答:每件商品降价20元,商场日盈利可达2100元. …………6分20.解:(1) 60 , 0.15 (图略) (每空1分,图1分) …………3分 (2) C ……………………………………………………5分(3)0.8×10440=8352(名)……………………………………7分 答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.……8分21.解:(1)∵BF 是⊙O 的切线 ∴AB ⊥BF ………………………1分 ∵AB ⊥CD∴CD ∥BF ……………………………………………………2分(2)连结BD∵AB 是直径 ∴∠ADB =90°…………………………3分∵∠BCD =∠BAD cos ∠BCD =43…………………4分 ∴cos ∠BAD =43=AB AD 又∵AD =3 ∴AB =4∴⊙O 的半径为2 …………………………………5分(3)∵cos ∠DAE =43=AD AE AD =3∴AE =49 …………6分∴ED =47349322=⎪⎭⎫ ⎝⎛- ………………………7分∴CD =2ED =273 …………………………………8分 22.解:(1)∵A (2,m ) ∴OB =2 AB =m ∴S △AOB =21•OB •AB =21×2×m =21 ∴m =21…………………2分 ∴点A 的坐标为(2,21) 把A (2,21)代入y=x k ,得21=2k∴k =1 ………………………………………………………4分(2)∵当x =1时,y =1;当x =3时,y =31…………………6分 又 ∵反比例函数y =x1在x >0时,y 随x 的增大而减小……………7分 ∴当1≤x ≤3时,y 的取值范围为31≤y ≤1 ………………8分(3) 由图象可得,线段PQ 长度的最小值为22 …………………10分23.解: (1) 相似 …………………………………………………1分由题意得:∠APA 1=∠BPB 1=α AP = A 1P BP =B 1P则 ∠PAA 1 =∠PBB 1 =2902180αα-=- ……………………2分∵∠PBB 1 =∠EBF ∴∠PAE =∠EBF又∵∠BEF =∠AEP∴△BE F ∽△AEP ……………………………………3分 (2)存在,理由如下: ………………………………………4分易得:△BE F ∽△AEP若要使得△BEF ≌△AEP ,只需要满足BE =AE 即可……………5分 ∴∠BAE =∠ABE∵∠BAC =60° ∴∠BAE =30229060-=⎪⎭⎫ ⎝⎛--αα ∵∠ABE =β ∠BAE =∠ABE ………………………6分 ∴βα=- 302即α=2β+60° ……………………7分B(3)连结BD ,交A 1B 1于点G ,过点A 1作A 1H ⊥AC 于点H . ∵∠B 1 A 1P =∠A 1PA =60° ∴A 1B 1∥AC由题意得:AP= A 1 P ∠A =60° ∴△PAA 1是等边三角形∴A 1H=)2(23x + ……………………………8分在Rt △ABD 中,BD =32∴BG =x x 233)2(2332-=+-………………… 9分 ∴x x S BB A 33223342111-=⎪⎪⎭⎫⎝⎛-⨯⨯=∆ (0≤x <2)………10分24.解:(1)设二次函数的解析式为y =ax 2+bx +c由题意得⎪⎪⎩⎪⎪⎨⎧=++==-0241242c b a c a b 解得⎪⎩⎪⎨⎧=-==1281c b a∴二次函数的解析式为y = x 2-8x +12 …………2分 点P 的坐标为(4,-4) ……………………3分(2)存在点D ,使四边形OPBD 为等腰梯形. 理由如下:当y =0时,x 2-8x +12=0 ∴x 1=2 ,则⎩⎨⎧-=+=+4406m k m k 解得⎩⎨⎧-==122m k∴直线BP 的解析式为y =2x -12∴直线OD ∥BP ………………………4分xP 1 MAOBCPN yH DO xAOBCP yPB 1D B A 1H G∵顶点坐标P (4, -4) ∴ OP =42 设D (x ,2x ) 则BD 2=(2x )2+(6-x )2当BD =OP 时,(2x )2+(6-x )2=32解得:x 1=52,x 2=2…………………………6分 当x 2=2时,OD =BP =52,四边形OPBD 为平行四边形,舍去∴当x =52时四边形OPBD 为等腰梯形…………7分 ∴当D (52,54)时,四边形OPBD 为等腰梯形……8分(3)① 当0<t ≤2时,∵运动速度为每秒2个单位长度,运动时间为t 秒, 则MP =2t ∴PH =t ,MH =t ,HN =21t ∴MN =23t ∴S =23t ·t ·21=43t 2 ……………………10分② 当2<t <4时,P 1G =2t -4,P 1H =t ∵MN ∥OB ∴ EF P 1∆∽MN P 1∆∴211)(11H P G P S S MNP EF P =∆∆ ∴ 22)42(431t t t S EF P -=∆∴ EF P S 1∆=3t 2-12t +12∴S =43t 2-(3t 2-12t +12)= -49t 2+12t -12 ∴ 当0<t ≤2时,S=43t 2当2<t <4时,S =-49t 2+12t -12 ……12分xP 1 MA OBCPNG H E F y。
义乌市 2014年初中毕业生学业考试调研试卷数学试题卷2014.5温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数)y=ax 2+bx+c 图象的顶点坐标是 (-ab ac a b 44,22-)试卷 I一、选择题(本题有 10 小题,每小题 3 分,共 30 分请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) l . -2014 的绝对值等于( )A .20l4B .-2014C .2014D .-201412 .抛物线y =21(x +2)2-3的最低点的坐标是( )A . ( 0 ,-3 )B .( 2 ,-3 )C . ( 0 ,-1 )D .(-2 ,-3 ) 3 .下图中几何体的主视图是( )A B C D 4 .某次射击比赛,甲、乙两人各射靶 10 次,经过统计,甲、乙两名战士的总成绩都是 99 .68 环,甲的方差是 0 . 28 环 2 ,乙的方差是 0 . 21 环,则下列说法中,正确的是( ) A .甲的成绩比乙的成绩稳定价 B .乙的成绩比甲的成绩稳定 C .甲、乙两人成绩的稳定性相同 D .无法确定谁的成绩更稳定 5 .在以下“绿色食品”、“回收”、“节能”、“节水”四个标志中,是轴对称图形的是( )A B C D6 .如图,在Rt △ ABC 中, CD 是斜边 AB 上的中线,已知 CD=5 , AC =6 ,则 tanB 的值是( )A .54B .53C .43D .347 .不等式组{12302<-≥+x x 的解为()A .x <5B .x ≥-2C .-2≥x <5D .-2≤x <58 .义乌某饰品厂去年七月份生产品配件 50 万个,九月份生产饰品配件 58 万个.设该厂七至九月份平均每月的增长率为 x ,那么x 满足的方程是( )A .50(1+x 2)=58B .50+50(1+x 2)=58C .50+50(1+x )+50(1+x )2=58D .50+50(1+x )+50(1+2x )=589 .如图,在菱形 ABCD 中,∠BAD =80°, F 是对角线 AC 上一点,分别连接DF 和BF ,∠ABF =40°,则∠CDF =( )。
【中考数学试题汇编】2013—2018年浙江省义乌市中考数学试题汇编(含参考答案与解析)1、2013年浙江省义乌市中考数学试题及参考答案与解析 (2)2、2014年浙江省义乌市中考数学试题及参考答案与解析 (25)3、2015年浙江省义乌市中考数学试题及参考答案与解析 (49)4、2016年浙江省义乌市中考数学试题及参考答案与解析 (70)5、2017年浙江省义乌市中考数学试题及参考答案与解析 (94)6、2018年浙江省义乌市中考数学试题及参考答案与解析 (117)2013年浙江省义乌市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分;请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在2,﹣2,8,6这四个数中,互为相反数的是()A.﹣2与2 B.2与8 C.﹣2与6 D.6与82.如图几何体的主视图是()A.B.C.D.3.如图,直线a∥b,直线c与a,b相交,∠1=55°,则∠2=()A.55°B.35°C.125°D.65°4.2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学记数法可表示为()A.4.45×103B.4.45×104C.4.45×105D.4.45×1065.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是()A.内切B.相交C.外切D.外离6.已知两点P1(x1,y1)、P2(x2、y2)在反比例函数3yx的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<0 7.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个8.已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cm B.10cm C.8cm D.6cm9.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A.12B.14C.16D.1810.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤23;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(本题有6小题,每小题4分,共24分)11.把角度化为度、分的形式,则20.5°=20°′.12.计算:3a•a2+a3=.13.若数据2,3,﹣1,7,x的平均数为2,则x=.14.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.15.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=.16.如图,直线l 1⊥x 轴于点A (2,0),点B 是直线l 1上的动点.直线l 2:y=x+1交l 1于点C ,过点B 作直线l 3垂直于l 2,垂足为D ,过点O ,B 的直线l 4交l 2于点E ,当直线l 1,l 2,l 3能围成三角形时,设该三角形面积为S 1,当直线l 2,l 3,l 4能围成三角形时,设该三角形面积为S 2. (1)若点B 在线段AC 上,且S 1=S 2,则B 点坐标为 ;(2)若点B 在直线l 1上,且S 21,则∠BOA 的度数为 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)计算:()113.14|2π-⎛⎫-++- ⎪⎝⎭18.(6分)解方程 (1)x 2﹣2x ﹣1=0 (2)2321x x =-. 19.(6分)如图1所示,从边长为a 的正方形纸片中减去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸拼成如图2的等腰梯形,(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.20.(8分)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?21.(8分)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=513,求EF的长.22.(10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的119,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.23.(10分)小明合作学习小组在探究旋转、平移变换.如图△ABC,DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D0),E(0),F-).(1)他们将△ABC绕C点按顺时针方向旋转45°得到△A1B1C1.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;(2)他们将△ABC绕原点按顺时针方向旋转45°,发现旋转后的三角形恰好有两个顶点落在抛物线2y bx c=++上,请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC绕某个点旋转45°,若旋转后的三角形恰好有两个顶点落在抛物线y=x2上,则可求出旋转后三角形的直角顶点P的坐标,请你直接写出点P的所有坐标.24.(12分)如图1所示,已知6yx=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为P点的坐标;(3)当点Q在线段BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分;请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在2,﹣2,8,6这四个数中,互为相反数的是()A.﹣2与2 B.2与8 C.﹣2与6 D.6与8【知识考点】相反数.【思路分析】根据相反数的概念解答即可.【解答过程】解:2,﹣2是互为相反数,故选:A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图几何体的主视图是()A.B.C.D.【知识考点】简单组合体的三视图【思路分析】找到从正面看所得到的图形即可【解答过程】解:从正面可看到从左往右三列小正方形的个数为:2,1,1,故选C.【总结归纳】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a∥b,直线c与a,b相交,∠1=55°,则∠2=()A.55°B.35°C.125°D.65°【知识考点】平行线的性质;对顶角、邻补角【思路分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答过程】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,∴∠2=55°,故选:A.【总结归纳】此题主要考查了平行线的性质,关键是掌握:两直线平行同位角相等.4.2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学记数法可表示为()A.4.45×103B.4.45×104C.4.45×105D.4.45×106【知识考点】科学记数法—表示较大的数【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:44500=4.45×104,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是()A.内切B.相交C.外切D.外离【知识考点】圆与圆的位置关系【思路分析】本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).【解答过程】解:根据题意,得R+r=5+3=8,R﹣r=5﹣3=2,圆心距=7,∵2<7<8,∴两圆相交.故选B.【总结归纳】本题考查了由数量关系来判断两圆位置关系的方法.6.已知两点P1(x1,y1)、P2(x2、y2)在反比例函数3yx的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<0 【知识考点】反比例函数图象上点的坐标特征【思路分析】先判断出反比例函数的增减性,然后可判断出答案.【解答过程】解:∵3>0,∴y=在第一、三象限,且随x的增大y值减小,∵x1>x2>0,∴0<y1<y2.故选A.【总结归纳】本题考查了反比例函数图象上点的坐标特征,属于基础题,解答本题的关键是判断出反比例函数的增减性.7.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cm B.10cm C.8cm D.6cm【知识考点】圆锥的计算.【思路分析】由于圆锥的底面半径、高和母线可组成直角三角形,然后利用勾股定理可计算出母线长.【解答过程】解:圆锥的母线长==10(cm).故选B.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.9.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A.12B.14C.16D.18【知识考点】概率公式【思路分析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【解答过程】解:∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,∴可能的结果有:512,521,152,125,251,215;∴他第一次就拨通电话的概率是:16.故选C.【总结归纳】此题考查了列举法求概率的知识.注意概率=所求情况数与总情况数之比.10.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤23;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【知识考点】二次函数图象与系数的关系【思路分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答过程】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,n=a+b+c=c.∵2≤c≤3,∴≤c≤2,即≤n≤2.故④错误.综上所述,正确的说法有①③.故选D.【总结归纳】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(本题有6小题,每小题4分,共24分)11.把角度化为度、分的形式,则20.5°=20°′.【知识考点】度分秒的换算.【思路分析】1°=60′,可得0.5°=30′,由此计算即可.【解答过程】解:20.5°=20°30′.故答案为:30.【总结归纳】本题考查了度分秒之间的换算,相对比较简单,注意以60为进制即可.12.计算:3a•a2+a3=.【知识考点】单项式乘单项式;合并同类项.【思路分析】首先计算单项式的乘法,然后合并同类项即可求解.【解答过程】解:原式=3a3+a3=4a3,故答案是:4a3.【总结归纳】本题考查了单项式与单项式的乘法,理解单项式的乘法法则是关键.13.若数据2,3,﹣1,7,x的平均数为2,则x=.【知识考点】算术平均数.【思路分析】根据平均数的计算方法,可得出方程,解出即可得出答案.【解答过程】解:由题意得,(2+3﹣1+7+x)=2,解得:x=﹣1.故答案为:﹣1.【总结归纳】本题考查了算术平均数的知识,属于基础题,掌握算术平均数的计算方法是关键.14.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.【知识考点】全等三角形的判定.【思路分析】添加条件:AB=AC,再加上∠A=∠A,∠B=∠C可利用ASA证明△ABD≌△ACE.【解答过程】解:添加条件:AB=AC,∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),故答案为:AB=AC.【总结归纳】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=.【知识考点】线段垂直平分线的性质;角平分线的性质;等腰三角形的性质.【思路分析】先根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角的性质求出∠OBC=∠C,然后根据角平分线的定义解答即可.【解答过程】解:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC﹣∠ADC=125°﹣90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵OB平分∠ABC,∴∠A∠=2∠OBC=2×35°=70°.故答案为:70°.【总结归纳】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,角平分线的定义,是基础题,准确识图并熟记各性质是解题的关键.16.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为;(2)若点B在直线l1上,且S21,则∠BOA的度数为.【知识考点】一次函数综合题.【思路分析】(1)设B的坐标是(2,m),则△BCD是等腰直角三角形,即可表示出S1,求得直线l1的解析式,解方程组即可求得E的坐标,则S2的值即可求得,根据S1=S2,即可得到一个关于m 的方程从而求得m的值;(2)根据S2=S1,即可得到一个关于m的方程从而求得m的值,得到AB的长,从而求得∠BOA 的正切值,求得角的度数.【解答过程】解:(1)设B的坐标是(2,m),则△BCD是等腰直角三角形.BC=|3﹣m|,则BD=CD=BC=|3﹣m|,S1=×(|3﹣m|)2=(3﹣m)2.设直线l4的解析式是y=kx,则2k=m,解得:k=,则直线的解析式是y=x.根据题意得:,解得:,则E的坐标是(,).S △BCD =BC•||=|3﹣m|•||=.∴S 2=S △BCD ﹣S 1=﹣(3﹣m )2.当S 1=S 2时,﹣(3﹣m )2=(3﹣m )2.解得:m=0,则B 的坐标是(2,0); (2)当S 2=S 1时,﹣(3﹣m )2=(3﹣m )2.解得:m=+1或3﹣. 则AB=+1或3﹣.∴tan ∠BOA=或.∴∠BOA=15°或75°.【总结归纳】本题考查了一次函数与三角函数,三角形的面积,正确表示出S2是关键.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)计算:()113.14|2π-⎛⎫-++- ⎪⎝⎭【知识考点】实数的运算;零指数幂;负整数指数幂 【思路分析】根据零指数幂与负整数指数幂得到原式=1+2+2﹣2,然后合并即可.【解答过程】解:原式=1+2+2﹣2=3.【总结归纳】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂与负整数指数幂. 18.(6分)解方程 (1)x 2﹣2x ﹣1=0 (2)2321x x =-. 【知识考点】解一元二次方程-配方法;解分式方程【思路分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答过程】解:(1)移项得:x 2﹣2x=1, 配方得:x 2﹣2x+1=2,即(x ﹣1)2=2, 开方得:x ﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【总结归纳】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.19.(6分)如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB 剪开,把剪成的两张纸拼成如图2的等腰梯形,(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1和S2;(2)请写出上述过程所揭示的乘法公式.【知识考点】平方差公式的几何背景【思路分析】(1)先用大正方形的面积减去小正方形的面积,即可求出S1,再根据梯形的面积公式即可求出S2.(2)根据(1)得出的值,直接可写出乘法公式(a+b)(a﹣b)=a2﹣b2.【解答过程】解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)根据题意得:(a+b)(a﹣b)=a2﹣b2.【总结归纳】此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一到基础题.20.(8分)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?【知识考点】条形统计图;用样本估计总体;扇形统计图【思路分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.【解答过程】解:(1)共调查的学生数:40÷20%=200(人);(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=513,求EF的长.【知识考点】切线的性质;线段垂直平分线的性质;勾股定理;解直角三角形.【思路分析】(1)首先连接OD,由直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,可求得OB的长,又由勾股定理,可求得BD的长,然后由垂径定理,求得CD的长;(2)由PE是⊙O的切线,易证得∠PEF=90°﹣∠AEO,∠PFE=∠AFB=90°﹣∠A,继而可证得∠PEF=∠PFE,根据等角对等边的性质,可得PE=PF;(3)首先过点P作PG⊥EF于点G,易得∠FPG=∠A,即可得FG=PF•sinA=13×=5,又由等腰三角形的性质,求得答案.【解答过程】解:(1)连接OD,∵直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,∴OB=OA=4,BC=BD=CD,∴在Rt△OBD中,BD==4,∴CD=2BD=8;(2)∵PE是⊙O的切线,∴∠PEO=90°,∴∠PEF=90°﹣∠AEO,∠PFE=∠AFB=90°﹣∠A,∵OE=OA,∴∠A=∠AEO,∴∠PEF=∠PFE,∴PE=PF;(2)过点P作PG⊥EF于点G,∴∠PGF=∠ABF=90°,∵∠PFG=∠AFB,∴∠FPG=∠A,∴FG=PF•sinA=13×=5,∵PE=PF,∴EF=2FG=10.【总结归纳】此题考查了切线的性质、等腰三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.(10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的119,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.【知识考点】二次函数的应用【思路分析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,函数关系式即可求出;(2)首先根据题意求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;(3)令总利润为W,根据利润=售价﹣成本列出W与x的函数关系式W=30x2﹣540x+1200,把一般式写成顶点坐标式,求出二次函数的最值即可.【解答过程】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=﹣20,b=1500,即y1=﹣20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:令总利润为W,则W=30x2﹣540x+1200=30(x﹣9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大=10650;解法二:根据题意可得B产品的采购单价可表示为:y2=﹣10(20﹣x)+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760﹣y1=20x+260,1700﹣y2=﹣10x+600,则当20x+260>﹣10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为(20×15+260)×15+(﹣10×15+600)×5=10650.【总结归纳】本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.23.(10分)小明合作学习小组在探究旋转、平移变换.如图△ABC,DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D0),E(0),F-).(1)他们将△ABC绕C点按顺时针方向旋转45°得到△A1B1C1.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;(2)他们将△ABC绕原点按顺时针方向旋转45°,发现旋转后的三角形恰好有两个顶点落在抛物线2y bx c=++上,请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC绕某个点旋转45°,若旋转后的三角形恰好有两个顶点落在抛物线y=x2上,则可求出旋转后三角形的直角顶点P的坐标,请你直接写出点P的所有坐标.【知识考点】几何变换综合题【思路分析】(1)由旋转性质及等腰直角三角形边角关系求解;(2)首先明确△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,然后分三种情况进行讨论,分别计算求解;(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C 和点D三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.【解答过程】解:(1)A1(2﹣,1+),B1(2+,1+).A1C和DF的位置关系是平行.(2)∵△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,∴①当抛物线经过点D、E时,根据题意可得:,解得∴y=x2﹣12x+;②当抛物线经过点D、F时,根据题意可得:,解得∴y=x2﹣11x+;③当抛物线经过点E、F时,根据题意可得:,解得∴y=x2﹣13x+.(3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A、B落在抛物线上,如答图1所示:易求得点P坐标为(0,);②顺时针旋转45°,点B、C落在抛物线上,如答图2所示:设点B′,C′的横坐标分别为x1,x2.易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b,联立y=x2与y=x+b得:x2=x+b,即x2﹣x﹣b=0,∴x1+x2=1,x1x2=﹣b.∵B′C′=1,∴根据题意易得:|x1﹣x2|=,∴(x1﹣x2)2=,即(x1+x2)2﹣4x1x2=∴1+4b=,解得b=.∴x2﹣x+=0,解得x=或x=.∵点C′的横坐标较小,∴x=.当x=时,y=x2=,∴P(,);③顺时针旋转45°,点C、A落在抛物线上,如答图3所示:设点C′,A′的横坐标分别为x1,x2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y=﹣x+b,联立y=x2与y=﹣x+b得:x2=﹣x+b,即x2+x﹣b=0,∴x1+x2=﹣1,x1x2=﹣b.∵C′A′=1,∴根据题意易得:|x1﹣x2|=,∴(x1﹣x2)2=,即(x1+x2)2﹣4x1x2=∴1+4b=,解得b=.∴x2+x+=0,解得x=或x=.∵点C′的横坐标较大,∴x=.当x=时,y=x2=,∴P(,);④逆时针旋转45°,点A、B落在抛物线上.因为逆时针旋转45°后,直线A′B′与y轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在;⑤逆时针旋转45°,点B、C落在抛物线上,如答图4所示:与③同理,可求得:P(,);⑥逆时针旋转45°,点C、A落在抛物线上,如答图5所示:与②同理,可求得:P(,).综上所述,点P的坐标为:(0,),(,),(,),(,).【总结归纳】本题考查了旋转变换与二次函数的综合题型,难度较大.第(3)问是本题难点所在,解题关键是:第一,旋转方向有两种可能,落在抛物线上的点有三种可能,因此共有六种可能的情形,需要分类讨论;第二,针对每一种可能的情形,按照旋转方向与旋转角度,确定图形形状并进行计算.24.(12分)如图1所示,已知6yx(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为P点的坐标;。
二轮复习真题演练阅读理解型问题1.(2013•义乌)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?1.解:(1)共调查的学生数:40÷20%=200(人);(2)最喜爱丁类图书的学生数:200-80-65-40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.2.(2013•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占15,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?2.解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1-10%-30%-54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54%×15×0.7=378(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.3.(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.3.解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②x=4458667220⨯+⨯+⨯+⨯=5.3,估计260名学生共植树5.3×260=1378(颗).4.(2013•海南)如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点C1的坐标是;点C2的坐标是;过C、C1、C2三点的圆的圆弧12CC C 的长是(保留π4.解:(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)C 1(1,4),C 2(1,-4), 根据勾股定理,221417+过C 、C 1、C 2三点的圆的圆弧是以CC 2为直径的半圆,12CC C 的长17π. 故答案为:(1,4);(1,-4)17.5.(2013•龙岩)如图①,在矩形纸片ABCD 中,3,3.(1)如图②,将矩形纸片向上方翻折,使点D 恰好落在AB 边上的D′处,压平折痕交CD 于点E ,则折痕AE 的长为 ;(2)如图③,再将四边形BCED′沿D′E 向左翻折,压平后得四边形B′C′ED′,B′C′交AE 于点F ,则四边形B′FED′的面积为 ;(3)如图④,将图②中的△AED′绕点E 顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B ,求弧D′D″的长.(结果保留π)5.解:(1)∵△ADE 反折后与△AD′E 重合, ∴3 ∴2222(3)(3)6AD D E ''+=+=(2)∵由(1)知3∴BD′=1,∵将四边形BCED′沿D′E 向左翻折,压平后得四边形B′C′ED′, ∴B′D′=BD′=1,∵由(1)知AD′=AD=D′E=D 3 ∴四边形ADED′是正方形, ∴3-1, ∴S 梯形B′FED′=12(B′F+D′E )•B′D′=1233×312;(3)∵∠C=90°,3EC=1, ∴tan ∠BEC=3BCCE= ∴∠BEC=60°,由翻折可知:∠DEA=45°, ∴∠AEA′=75°=∠D′ED″, ∴D D '''=75360353π6312. 6.(2013•北京)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).日接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.8 6 约3000 第八届 2.3 8.2 约4000 第九届8(预计)20(预计)约10500 第十届 1. 9(预计)7.4(预计)约6.解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:15%×0.0420%=0.03(平方千米);(2)植物花园的总面积为:0.04÷20%=0.2(平方千米),则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米),第七、八界园博会的水面面积之和=1+0.5=1.5(平方千米),则水面面积为1.5平方千米,如图:;(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700.故答案为:0.03;3700.7.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,AC的度数为60°,点B是AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.7.解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=12∠BCA=30°,BE=1,∴CE=3BE=3;故答案为3;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵AC的度数为60°,点B是AC的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴22∵AE的长就是BP+AP的最小值.2(3)拓展延伸如图(4).8.(2013•盐城)阅读材料如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB=∠EDF=90°,且点D 在AB边上,AB 、EF 的中点均为O ,连结BF 、CD 、CO ,显然点C 、F 、O 在同一条直线上,可以证明△BOF ≌△COD ,则BF=CD .解决问题(1)将图①中的Rt △DEF 绕点O 旋转得到图②,猜想此时线段BF 与CD 的数量关系,并证明你的结论;(2)如图③,若△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O ,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF 与CD 之间的数量关系; (3)如图④,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出BFCD的值(用含α的式子表示出来)8.解:(1)猜想:BF=CD .理由如下: 如答图②所示,连接OC 、OD .∵△ABC 为等腰直角三角形,点O 为斜边AB 的中点, ∴OB=OC ,∠BOC=90°.∵△DEF 为等腰直角三角形,点O 为斜边EF 的中点, ∴OF=OD ,∠DOF=90°. ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD .∵在△BOF 与△COD 中,OB OC BOF COD OF OD =⎧⎪∠=∠⎨⎪=⎩, ∴△BOF ≌△COD (SAS ), ∴BF=CD . (2)答:(1)中的结论不成立. 如答图③所示,连接OC 、OD .∵△ABC为等边三角形,点O为边AB的中点,∴OBOC=tan30°=3,∠BOC=90°.∵△DEF为等边三角形,点O为边EF的中点,∴OFOD=tan30°=33,∠DOF=90°.∴OB OFOC OD==33.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.在△BOF与△COD中,∵OB OFOC OD==3,∠BOF=∠COD,∴△BOF∽△COD,∴33 BFCD=.(3)如答图④所示,连接OC、OD.∵△ABC为等腰三角形,点O为底边AB的中点,∴OBOC=tan2α,∠BOC=90°.∵△DEF为等腰三角形,点O为底边EF的中点,∴OFOD=tan2α,∠DOF=90°.∴OB OF OC OD ==tan 2α. ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD .在△BOF 与△COD 中,∵OB OF OC OD ==tan 2α,∠BOF=∠COD , ∴△BOF ∽△COD , ∴2BF CD α=.9.(2013•日照)问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b ),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 .(2)知识拓展:如图(c ),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程.9.解:(1)如图,作点B 关于CD 的对称点E ,连接AE 交CD 于点P ,此时PA+PB 最小,且等于AE .作直径AC′,连接C′E .根据垂径定理得弧BD=弧DE .∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC 为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=2AC′=22,即AP+BP的最小值是22.故答案为:22;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×22=52,∴BE+EF的最小值为52.10.(2013•衢州)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.10.(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴∠ABC=∠ACN .(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC 、△AMN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴∠ABC=∠ACN .(3)解:∠ABC=∠ACN .理由如下:∵BA=BC ,MA=MN ,顶角∠ABC=∠AMN , ∴底角∠BAC=∠MAN ,∴△ABC ∽△AMN , ∴AB AC AM AN=, 又∵∠BAM=∠BAC-∠MAC ,∠CAN=∠MAN-∠MAC ,∴∠BAM=∠CAN ,∴△BAM ∽△CAN ,∴∠ABC=∠ACN .11.(2013•咸宁)阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.11.解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.(2分)∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.(2)作图如下:(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=13∠BCD=30°,∴BE=12CE=12AB.在Rt△BCE中,tan∠BCE=BEBC=tan30°,∴33 BEBC=,∴233ABBC=.12.(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P 的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.12.解:(1)互为顺相似的是①;互为逆相似的是②③;(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC 于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.。
2014年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1. 全卷满分150分,考试时间120分钟,试题卷共6页,有三大题,共24小题。
2. 全卷答案必须做在答题卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效。
3. 本次考试不使用计算器。
参考公式:二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是⎪⎪⎭⎫ ⎝⎛-a b ac a b 44,22-。
温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯的正确选项,不选、多选、错选,均不得分)1.3-的绝对值为( ▲ )(A) 3- (B) 3 (C) 31- (D)31 2.如图,AB//CD ,EF 分别为交AB ,CD 于点E,F,∠1=50°,则∠2的度数为( ▲ )(A) 50° (B) 120° (C) 130° (D)150° 3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ▲ )(A) 6 (B) 7 (C) 8 (D) 94.2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是 384 400 000米,数据384 400 000用科学计数法表示为( ▲ )(A) 810844.3⨯ (B) 710844.3⨯ (C) 910844.3⨯ (D) 61044.38⨯5.小红同学将自己5月份和各项消费情况制作成扇形统计图(如图),从图中可看出( ▲ )(A) 各项消费金额占消费总金额的百分比(B) 各项消费的金额(C) 消费的总金额(D) 各项消费金额的增减变化情况CDA B小红5月份消费情况扇形统计图6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( ▲ )(A) 2 (B) 4 (C) 6 (D) 87.下列运算正确的是( ▲ )(A) 3232a a a =+ (B) ()a a a =÷-2 (C) ()623a a a -=⋅- (D) ()63262a a =8.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ▲ )(A) 1.5 (B) 2 (C) 2.5 (D) 39.如图,在一张矩形纸片ABCD 中,AD=4cm ,点E ,F分别是CD 和AB的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 延长线恰好经过点D ,则CD 的长为( ▲ ) (A) 2cm (B) 32cm (C) 4cm (D) 34cm10.当12≤≤-x 时,二次函数()122++--=m m x y 有最大值4,则实数m 的值为( ▲ ) (A)47- (B) 3或3- (C) 2或3- (D) 2或3或47- 卷Ⅰ(非选择题) 二、填空题(本题有6小题,每小题5分,共30分)11.方程032=-x x 的根为 ▲ .12.如图,在直角坐标系中,已知点)13(--,A ,点)12(,-B ,平移线段AB ,使点A 落在)10(1-,A ,点B 落在点B 1.,则点B 1.的坐标为 ▲ .13.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC=7米,则树高BC 为 ▲ 米(用含α的代数式表示).14.有两辆四按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为 ▲ .15.点)1(1y A ,-,)3(2y B ,是直线)0(<+=k b kx y 上的两点,E B DOC A (第6题) G FE H B C A D (第9题)A (第9题)则21y y - ▲ 0(填“>”或“<”).16.如图,点C 在以AB 为直径的半圆上,AB=8,∠CBA=30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F.下列结论:①CE=CF ;②线段EF 的最小值为32;③当AD=2时,EF 与半圆相切;④若点F 恰好落在B C 上,则AD=52;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是316.其中正确结论的序号是 ▲ .三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分)17.(1)计算:︒-⎪⎭⎫ ⎝⎛+-45cos 42182; (2)化简:()()322--+x x x18.解方程:13112---x x19.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):(第16题)E根据以上信息解答下列问题:(1) 这次被调查的学生有多少人?(2) 求表中m ,n ,p 的值,并补全条形统计图.(3) 该校有1600名学生,估计该校全体学生中选择B 选项的有多少人?20.已知:如图,在□ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF.(1)求证:△DOE ≌△BOF.(2)当∠DOE 等于多少度时,四边形BFED 为菱形?请说明理由.21.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1)求每辆A 型车和B 型车的售价各为多少元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过学生孝敬父母情况统计表 学生孝敬父母情况条形统计图(第19题) B (第20题)10080604020140万元.则有哪几种购车方案?22实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数x x y 4002002+-=刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数)0(>=k x k y 刻画(如图所示). (1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当5=x 时,45=y ,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等........的凸四边形叫做“等对角四边形” .(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A=70°,∠B=80°.求∠C ,∠D 的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD (如图2),其中∠ABC=∠ADC ,AB=AD ,此时她发现CB=CD 成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等” .你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD 中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.(第22题)求对角线AC 的长.24.如图,在平面直角坐标系中,A 是抛物线221x y =上的一个动点,且点A 在第一象限内. AE ⊥y 轴于点E ,点B 坐标为(0,2),直线AB 交x 轴于点C ,点D 与点C 关于y 轴对称,直线DE 与AB 相交于点F ,连结BD .设线段AE 的长为m ,△BED 的面积为S .(1)当2=m 时,求S 的值.(2)求S 关于)2(≠m m 的函数解析式.(3)①若3=S 时,求BFAF 的值; ②当2>m 时,设k BFAF =,猜想k 与m 的数量关系并证明.A 第23题图1 第23题图2B D。
92014年浙江省初中毕业生学业考试(义乌市卷)科学卷Ⅰ一、选择题(本题共有20小题,每小题3分,共60分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1. 2013年1月,我省发布了环境空气质量指数(AQI),参与空气质量评价的主要污染物为PM10、PM2.5、O3等6项指标。
在发布的6项指标中,不包括...下列哪种物质() A.SO2B.NO2C.CO2D.CO(第2题)2. 月季是义乌市的市花。
以下关于月季的叙述错误的是()A.它是一种被子植物B.它的花是营养器官C.利用嫁接繁殖优良月季品种属于无性生殖D.细胞是月季植株结构和功能的基本单位3. 下列关于光的说法正确的是()A.光不能在水中传播B.近视眼可用凸透镜矫正C.光在真空中传播的速度是3×108 m/sD.路灯下的人影是光的反射造成的4. 地球是我们赖以生存的家园。
下列关于地球的说法正确的是()A.自西向东自转B.自东向西公转C.自转周期是365天D.公转周期是24小时5. 下列实验操作中,正确的是()6. 下列现象与解释相对应的是()A.盆景弯向窗口生长——向光性B.小偷看到警察就跑——激素的调节C.人出现中暑现象——散热大于产热D.呆小症——幼年时生长激素分泌不足7. 下列电路图中,开关S闭合后,两个电阻串联的是()8. 分类是学习科学的方法之一。
下列物质中属于氧化物的是()A.氧气B.水C.纯碱D.氢氧化钙9. 今年5月25日,云南盈江发生5.6级地震,30余万人受灾。
关于地震的说法错误的是()A.有些地震会造成大量的财产损失B.地震是地壳变动的表现形式之一C.地震时赶快乘电梯逃离D.目前对地震的预测水平还不高10. 根据图中测量一块矿石密度的信息,下列结果正确的是()A.矿石的质量是27.4 gB.矿石的体积是40 cm3C.矿石的密度是2.5 g/cm3D.矿石浸没水中后所受的浮力是0.1 N11. 下列关于“植物在光照下制造淀粉实验”的相关描述不正确...的是() A.把天竺葵放在暗处一昼夜,目的是运走、耗尽叶片内的淀粉B.天竺葵在光照下既能进行光合作用又能进行呼吸作用C.将叶片放在酒精中隔水加热的原因之一是避免酒精温度过高引起燃烧D.叶片经脱色、清洗、滴加碘液、再清洗,遮光部分显蓝色12. 研究氢氧化钠性质实验中的部分实验及现象记录如下,其中现象不合理...的是()13. 下列现象所反映的科学原理正确的是()A.踢出去的足球继续飞行,说明足球受到惯性力的作用B.从冰箱冷冻室取食物时手常被食物粘住,说明水遇冷会凝固C.从树上掉下的苹果越落越快,说明动能会转化为势能D.长时间行驶的汽车轮胎发热,说明通过热传递能改变轮胎的内能14. 某草原生态系统中生活着狐、蛇、鹰等多种生物。
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
人教版七年级数学上册第四章4.24.2 直线、射线、线段中考试题汇编含精讲解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或67.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是厘米(精确到0.1厘米).15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= .20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= .21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= ;②a3﹣a2= ;③a n﹣a n﹣1= .(n≥2,用含n的代数式表示).23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= .三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.参考答案与试题解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B考点:线段的性质:两点之间线段最短.分析:根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.解答:解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.点评:此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖考点:线段的性质:两点之间线段最短;坐标与图形性质.专题:新定义.分析:根据点的坐标的特征,|AB|、|x1﹣x2|、|y1﹣y2|三者正好构成直角三角形,然后利用两点之间线段最短解答.解答:解:当两点不与坐标轴平行时,∵|AB|、|x1﹣x2|、|y1﹣y2|的长度是以|AB|为斜边的直角三角形,∴|AB|<‖AB‖.当两点与坐标轴平行时,∴|AB|=‖AB‖.故选:C.点评:本题考查两点之间线段最短的性质,坐标与图形性质,理解平面直角坐标系的特征,判断出三角形的三边关系是解题的关键.5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm考点:两点间的距离.分析:由AB=10cm,BC=4cm,可求出AC=AB﹣BC=6cm,再由点D是AC的中点,则可求得AD 的长.解答:解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=3cm,答:AD的长为3cm.故选:B.点评:本题考查了两点间的距离,利用线段差及中点性质是解题的关键.6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.7.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|考点:两点间的距离;数轴.分析:根据题意作出图象,根据AC:CB=1:3,可得|c|=,又根据|a|=|b|,即可得出|c|=|b|.解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.故选A.点评:本题考查了两点间的距离,属于基础题,根据AC:CB=1:3结合图形得出|c|=是解答本题的关键.8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置考点:直线、射线、线段.专题:压轴题.分析:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,然后对四个答案进行比较即可.解答:解:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,A、当旅游车停在朝阳岩时,总路程为5+13=18;B、当旅游车停在柳子庙时,总路程为5+8=13;C、当旅游车停在迴龙塔时,总路程为13+8=21;D、当旅游车停在朝阳岩和迴龙塔这段路程的中间时,总路程大于13.故路程最短的是旅游车停在柳子庙时,故选:B.点评:本题考查了直线、射线及线段的有关知识,用特殊值的方法比较容易说出来.9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm考点:两点间的距离.分析:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC的长.解答:解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=AC=3cm.故MC的长为3cm.故选B.点评:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条考点:直线、射线、线段.分析:写出所有的线段,然后再计算条数.解答:解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.点评:记住线段是直线上两点及其之间的部分是解题的关键.12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm考点:比较线段的长短.专题:计算题.分析:由已知条件可知,DC=DB﹣CB,又因为D是AC的中点,则DC=AD,故AC=2DC.解答:解:∵D是AC的中点,∴AC=2DC,∵CB=4cm,DB=7cm∴CD=BD﹣CB=3cm∴AC=6cm故选:B.点评:结合图形解题直观形象,从图中很容易能看出各线段之间的关系.利用中点性质转化线段之间的倍数关系是解题的关键.13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处考点:比较线段的长短.专题:应用题.分析:设A处学生走的路程,表示出B处学生走的路程,然后列式计算所有同学走的路程之和.解答:解:设A处的同学走x米,那么B处的同学走(1000﹣x)米,所有同学走的路程总和:L=30x+20(1000﹣x)=10x+20000此时0≤x≤1000,要使L最小,必须x=0,此时L最小值为20000;所以选A点处.故选A.点评:此题主要考查一次函数在实际生活中的意义,学生在学这一部分时一定要联系实际,不能死学.二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是 2.3(或2.4)厘米(精确到0.1厘米).考点:比较线段的长短.分析:根据对线段长度的估算,可得答案.解答:解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).点评:本题考查了比较线段的长短,对线段的估算是解题关键.15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为 6 .考点:直线、射线、线段.专题:压轴题;规律型.分析:根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可.解答:解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.点评:本题考查的是直线、射线、线段,是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入15即可求出n的值.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= 5或11 cm.考点:两点间的距离.专题:分类讨论.分析:点C可能在线段AB上,也可能在AB的延长线上.因此分类讨论计算.解答:解:根据题意,点C可能在线段AB上,也可能在AB的延长线上.若点C在线段AB上,则AC=AB﹣BC=8﹣3=5(cm);若点C在AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为:5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是两点之间线段最短.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= 3 .考点:两点间的距离.专题:应用题.分析:由题意可知,线段AB=6,C为AB中点,所以,AC=BC,即AC=3;解答:解:如图,线段AB=6,C为AB中点,∴AC=BC,∴AC=3.故答案为:3.点评:本题考查了两点间的距离,牢记两点间的中点到两端点的距离相等.20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= 2 .考点:两点间的距离.分析:根据AB=12,AC=8,求出BC的长,再根据点D是线段BC的中点,得出CD=BD即可得出答案.解答:解:∵AB=12,AC=8,∴BC=4,∵点C是线段AB上的点,点D是线段BC的中点,∴CD=BD=2,故答案为:2.点评:此题主要考查了两点距离求法,根据已知求出BC=4是解决问题的关键.21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073 个点.考点:直线、射线、线段.专题:规律型.分析:根据题意分析,找出规律解题即可.解答:解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣1﹣1=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣3﹣1=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.故答案为:16073.点评:此题为规律型题.解题的关键是找对规律.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= 1 ;②a3﹣a2= 2 ;③a n﹣a n﹣1= n﹣1 .(n≥2,用含n的代数式表示).考点:直线、射线、线段.专题:规律型.分析:n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:①a2==1;②∵a3=3,a2=1∴a3﹣a2=3﹣1=2;③a n﹣a n﹣1=﹣(n﹣1)(n﹣2)=(n﹣1)(n﹣n+2)=n﹣1.点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法.23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= 1 .考点:比较线段的长短.专题:计算题.分析:根据中点把线段分成两条相等的线段解答.解答:解:根据题意,BC=AB=1.点评:本题根据线段的中点的定义求解.三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.考点:两点间的距离;勾股定理.专题:计算题;压轴题;数形结合.分析:(1)根据已知条件求出A、B两点的坐标,再根据公式计算即可解答.(2)根据公式直接代入数据计算即可解答.解答:解:(1)根据题意得:A(0,4),B(﹣2,0)…(分)在Rt△AOB中,根据勾股定理:…(3分)(2)过M点作x轴的垂线MF,过N作y轴的垂线NE,MF,NE交于点D…(4分)根据题意:MD=4﹣(﹣1)=5,ND=3﹣(﹣2)=5…(5分)则:MN=…(6分)点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线OE 上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?考点:直线、射线、线段.专题:规律型.分析:先由具体数字入手,找出规律,再利用规律解题.解答:解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.点评:本题体现了由“特殊到一般再到特殊”的思维过程,有利于培养同学们的探究意识.26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.考点:比较线段的长短.专题:应用题.分析:(1)分n为偶数时,n为奇数时两种情况讨论P应设的位置.(2)根据绝对值的几何意义,找到1和617正中间的点,即可求出|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.解答:解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.点评:本题需要运用分类讨论思想,主要考查了学生的观察、实验和猜想、归纳能力,掌握从特殊到一般猜想的方法.。
浙江省义乌市2014年中考数学试卷
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
且只能弹出一条墨线,能解释这一实际应用的数学知识是()
B
B
5.(3分)(2014•义乌市)在式子,,,中,x可以取2和3的是
B
tanα=,则t的值是()
2
连接AA′,若∠1=20°,则∠B的度数是()
围是()
个正方形,边长都为1,则扇形和圆形纸板的面积比是()
:2 :
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)(2014•义乌市)写出一个解为x≥1的一元一次不等式.12.(4分)(2014•义乌市)分式方程=1的解是.
13.(4分)(2014•义乌市)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家
的速度是每分钟步行米.
14.(4分)(2014•义乌市)小亮对60名同学进行节水方法
选择的问卷调查(每人选择一项),人数统计如图,如果绘
制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是.
15.(4分)(2014•义乌市)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是.
16.(4分)(2014•义乌市)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH ﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B 与楼梯两边都相切,且AO∥GH.
(1)如图2①,若点H在线段OB时,则的值是;
(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是.
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.(6分)(2014•义乌市)计算:﹣4cos45°+()﹣1+|﹣2|
18.(6分)(2014•义乌市)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.
19.(6分)(2014•义乌市)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
20.(8分)(2014•义乌市)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
21.(8分)(2014•义乌市)受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整
y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数);8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.
22.(10分)(2014•义乌市)【合作学习】
如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G.回答下面的问题:
①该反比例函数的解析式是什么?
②当四边形AEGF为正方形时,点F的坐标时多少?
(1)阅读合作学习内容,请解答其中的问题;
(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
23.(10分)(2014•义乌市)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求AP•AF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
24.(12分)(2014•义乌市)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.
(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
浙江省义乌市2014年中考数学试卷
参考答案与试题解析
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
的分母不可以为的分母不可以为
=
OD==
=(
二、填空题(本题有6小题,每小题4分,共24分)
×=240
EG=
EF=2
4+2x=2
16.(11﹣3)cm≤r≤8cm
,根据求解,
=,再根据
HP=BP=r
r
∴==
故答案为:
∴=
+2
PL=HP+LH=8
∴DH=
﹣
3
)
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.解:原式=2﹣4×+2+2=4.
==
=
∴=
=
再用平行线分线段成比例定理或者三角形相似定理求得
∴,即
的路径是
的路径的长度为:
经过的路径长为.
,解得
((1==.
PF=PD=
PE|=|
=
((
PE=
PE=PF=即(=
t
t+
t=4﹣
4
,
)
(
EF=
2a=
PF=PE=PF2a=(PE=PF=(
,故此种情形不存在.
MD=
)
3
﹣
1+2
41+2)。