第4章-理想气体的热力性质和热力过程
- 格式:ppt
- 大小:1.32 MB
- 文档页数:97
第四章 理想气体的热力过程概 述热能⇔机械能的相互转化是靠工质在热力设备中吸热、膨胀、压缩等状态变化的过程来实现的,这个状态变化的过程就是热力过程,那么,在前面第一章研究的平衡状态,第二章研究理想气体的性质以及第三章研究分析开、闭口系热力状态变化的工具——热力学第一定律都是为这一章打基础。
前面第三章已提到过相同的工质在相同的温度下,不同的热力过程,能量转化的状况是不同的。
P V q q >,00v p w w ==膨技,,因此工程上实际过程多种多样、复杂、多变,不是可逆过程,据传递能量的工质不一不可能一一加以研究,何况逐个研究不总结规律性的知识用途也不大。
因此,我们仍采用热力学常用的方法,对复杂多样的热力过程进行合理化的假设。
认为是理想气体的可逆过程,这就是我们下面要研究的理想气体○V ○P ○T ○S 。
○P :例如各种环热设备,工质一面流动一面被加热,流动中克服阻力的压力降与其压力相比小很多,故认为压力不变。
○V :汽油机工作时,火花塞一点火,气缸内已被压缩的可燃混合气即燃烧,在一瞬间烧完,这期间气缸与外界无质量交换,活塞移动极微,可近似定容过程。
○T :如往复式压气机,气体在气缸中被压缩时温度升高,为了省功气缸周围有冷却水套,若冷却效果好,气缸中温度几乎不变,可近似定温过程。
○S :例气缸中燃烧产物在气缸中膨胀对外作功过程,由于工质与外界交换的热量很少可略去不计,认为是定熵过程。
上述过程实际上是略去次要因素后的一个等同特征,就是过程中有一个状态参数不变,对理想气体()u f t = ()h f t =这研究起来就方便很多,而且只有实际意义。
4—1 研究热力过程的目的及方法一. 目的1.实现预期的能量转化,合理安排热力过程,从而来提高功力装置的热经济性。
2.对确定的过程,也可预计热→功之多少。
二.解决的问题1.根据过程特点,寻找过程方程式 2.分析状态参数在过程中的变化规律3.确定热功转化的数量关系,及过程中,,u h s ∆∆∆的变化 4.在P —V ,T —S 图上直观地表示。
第四章 理想气体的性质第一节 理想气体的概念热能转变为机械能通常是借助于工质在热动力设备中的吸热、膨胀作功等状态变化过程而实现的。
为了分析研究和计算工质进行这些过程时的吸热量和作功量,除了以热力学第一定律为主要的基础和工具外,还需具备工质热力性质方面的知识。
热能转变为机械能只能通过工质膨胀作功实现,采用的工质应具有显著的涨缩能力,即其体积随温度、压力能有较大的变化。
物质的三态中只有气态具有这一特性,因而热机工质一般采用气态物质,且视其距液态的远近又分为气体和蒸气。
气态物质的分子持续不断地做无规则的热运动,分子数目又如此的巨大,因而运动在任何一个方向上都没有显著的优势,宏观上表现为各向同性,压力各处各向相同,密度一致。
自然界中的气体分子本身有一定的体积,分子相互间存在作用力,分子在两次碰撞之间进行的是非直线运动,很难精确描述和确定其复杂的运动,为了方便分析、简化计算,引出了理想气体的概念。
理想气体是一种实际上不存在的假想气体,其分子是些弹性的、不具体积的质点,分子间相互没有作用力。
在这两点假设条件下,气体分子的运动规律极大地简化了,分子两次碰撞之间为直线运动,且弹性碰撞无动能损失。
对此简化了的物理模型,不但可定性地分析气体某些热力学现象,而且可定量地导出状态参数间存在的简单函数关系。
众所周知,高温、低压的气体密度小、比体积大,若大到分子本身体积远小于其活动空间,分子间平均距离远到作用力极其微弱的状态就很接近理想气体。
因此,理想气体是气体压力趋近于零(p →0)、比体积趋近于无穷大(v →∞)时的极限状态。
一般来说,氩、氖、氦、氢、氧、氮、一氧化碳等临界温度低(参见附表2)的单原子或双原子气体,在温度不太低、压力不太高时均远离液态,接近理想气体假设条件。
因而,工程中常用的氧气、氮气、氢气、一氧化碳等及其混合空气、燃气、烟气等工质,在通常使用的温度、压力下都可作为理想气体处理,误差一般都在工程计算允许的精度范围之内。
第4章 理想气体热力过程及气体压缩本章基本要求熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、∆u 、∆h 、∆s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。
分析对象: 闭口系统 过程性质:可逆过程过程特点: 定容过程、定压过程、定温过程、,绝热(多变)过程目的: 研究外部条件对热能和机械能转换的影响,通过有利的外部条件,达到合理安排热力过程,提高热能和机械能转换效率的目的。
基本任务: 确定过程中工质状态参数,能量转换关系实例: 取开口系统的气体压缩4.1基本热力过程一、 一般分析法1.建立过程方程 依据:过程方程线p=f (v) 2.确定初终状态参数 依据:状态方程222111T v P T v P =3.p-v 图与T-s 图分析4.求传递能量, 依据能量方程:Q-W=∆U二、参数关系式及传递能量(见下表)4.2 多变过程已知某多变过程任意两点参数221,1,,v p v p ,求n )/l n ()/l n (2112v v p p n =一、多变过程方程及多变比热过程方程:pv n=constn=0时,定压过程n=1时,定温过程n=k时, 定温过程n=±∞时,定容过程二、多变过程分析过程中q 、w 、∆u 的判断l .q 的判断: 以绝热线为基准: 2.w 的判断: 以等容线为基准 3.∆u 的判断: 以等温线为基准~例1. 1kg 空气多变过程中吸取41.87kJ 的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。
解:按题意 kg kJ q n /87.41= 1210v v = 1251p p = 空气的内能变化量:由理想气体的状态方程111RT V p = 222RT V p = 得: 12810T T = 多变指数 903.010ln 8ln )/ln()/ln(1221===v v p p n多变过程中气体吸取的热量11212141)(1)(T n kn c T T n k n c T T c q v v n n --=---=-=K T 1.571=气体内能的变化量:kg kJ T T mc U v /16.8)(1212=-=∆ 空气对外所做的膨胀功及技术功:膨胀功由闭系能量方程kg kJ u q w n /71.331212=∆-=或由公式])(1[11112112nn p p RT n w ---=来计算技术功:kg kJ nw p pRT n n w nn /49.30])(1[112112112==--=-例2:中各有1kmol 度均为p 1=1bar ,活塞压缩B 高至127℃。