八年级数学下册6.2平行四边形的判定学案1无答案新版北师大版
- 格式:doc
- 大小:111.50 KB
- 文档页数:2
第 2 课时平行四边形的判定(2)【知识与技能】1.理解对角线互相平分的四边形是平行四边形这一判定定理.2.理解两组对角分别相等的四边形是平行四边形,并学会简单运用.【过程与方法】经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识.【情感态度】在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力.【教学重点】平行四边形判定方法的综合运用.【教学难点】平行四边形判定方法的综合运用.一.情景导入,初步认知1.平行四边形的定义是什么?它有什么作用?2.判定四边形是平行四边形的方法有哪些?3.平行四边形有哪些性质?4.你能根据平行四边形的性质,猜想平行四边形还有哪些判定方法吗?【教学说明】对比平行四边形的性质,猜测平行四边形判断的其他方法.二.思考探究,获取新知探究1:平行四边形的判定定理 3.能否用两根不同长度的细木条摆出以木条顶端为顶点的平行四边形?思考:你能说明你得到的四边形是平行四边形吗?以上活动事实,能用文字语言表达吗?已知:如图,四边形ABCD 的对角线AC、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.证明: ∵OA=OC,OB=OD,且∠AOB=∠COD,∴△AOB≌△COD(SAS).∴AB=CD.同理可得:BC=AD.∴四边形ABCD 是平行四边形.【教学说明】在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的方法从理论上证明他们的猜想、发现;(3)学生使用几何语言的规范性和严谨性【归纳结论】对角线互相平分的四边形是平行四边形.探究2:平行四边形的判定定理 4.如图:∠A=∠C,∠B=∠D,求证:四边形ABCD 为平行四边形证明:∵∠A=∠C,∠B=∠D,∠A+∠C+∠B+∠D=360°,∴∠A+∠B=180°,∴AD∥BC,同理:AB∥CD,∴四边形ABCD 是平行四边形.【归纳结论】两组对角分别相等的四边形是平行四边形.三.运用新知,深化理解1.下列给出了四边形ABCD 中∠A、∠B、∠C、∠D 的度数之比,其中能判断四边形ABCD 是平行四边形的是()A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶2∶3D.2∶3∶3∶2答案:C.2.填空题:如图,在四边形ABCD 中,若∠A=120°,则∠B= ,∠C= ,∠D= 时,四边形ABCD 是平行四边形.答案:60°,120°,60°.3.如图,在平行四边形ABCD 中,点M、N 分别是AD、BC 上的两点,点E、F 在对角线BD 上,且DM=BN,BE=DF.求证:四边形MENF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AD∥CB,∴∠MDF=∠NBE.又∵DM=BN,DF=BE,∴△MDF≌△NBE(SAS),∴MF=EN,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥EN,∴四边形MENF 是平行四边形.4.判断下列说法是否正确(1)一组对边平行且另一组对边相等的四边形是平行四边形. ( ) (2)两组对角都相等的四边形是平行四边形. ( ) (3)一组对边平行且一组对角相等的四边形是平行四边形. ( )(4)一组对边平行,一组邻角互补的四边形是平行四边形. ( )答案:×,√,√,×.5.如图所示,D 为△ABC 的边AB 上一点,DF 交AC 于点E,且AE=CE,FC∥AB.求证:CD=AF证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF 为平行四边形.∴CD=AF.6.如图,□ABCD 中,对角线AC.BD 相交于点O,过点O 作两条直线分别与AB,BC,CD,AD 交于G,F,H,E 四点.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 是平行四边形∴AO=CO AD∥CB∴∠OAE=∠OCF又∵∠AOE=∠COF△AOE≌△COF(ASA)∴OE=OF同理可得:OG=OH∴四边形EGFH 为平行四边形【教学说明】通过练习进行强化和巩固,加深学生对定理的理解,从而达到灵活的运用.四.师生互动.课堂小结(1)判定一个四边形是平行四边形的方法有哪几种?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?五.教学板书布置作业:教材“习题 6.4”中第1、2、3 题.本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理解、典型例题的分析、精选的随堂练习,使学生一定能够掌握平行四边形的判定方法及应用判定方法解决实际生活的问题.。
平行四边形的判定两组对边分别相等的四边形是平行四边形1.下面给出的是四边形ABCD 中,AB ,BC ,CD ,DA 的长度之比,其中能满足四边形ABCD 是平行四边形的是( )A .1:2:3:4B .2:2:3:3C .2:3:2:3D .2:3:3:22.四边形ABCD 中,AB =7cm ,BC =5cm ,CD =7cm ,当AD = cm 时,四边形ABCD 是平行四边形.3.将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD 是平行四边形.4.已知四边形ABCD 的四条边长依次为a,b ,c,d ,且满足()()022=-+-d b c a ,求证:AB//CD一组对边平行且相等的四边形是平行四边形5.如图,在平行四边形ABCD 中,点E 、F 分别为边BC ,AD 的中点,则图中共有平行四边形的个数是( )A.3B.4C.5D.66.把线段AB沿某一方向平移3个单位长,该线段移动前后和对应端点连线所组成的图形是______ .7.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).8.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.练习1.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个条件,不能使四边形ABCD是平行四边形的组合是()A.①②B.②③C.①③D.③④2.如图,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(﹣4,1)C.(1,﹣1)D.(﹣3,1)3.如图所示,△ABC为等边三角形,P是△ABC内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=.4.如图所示,▱ABCD中,M,N,P,Q分别为AB,BC,CD,DA上的点,且AM=BN=CP=DQ.求证:四边形MNPQ为平行四边形.5.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=.(2)当t为何值时,四边形APQB是平行四边形?对角线互相平分的四边形是平行四边形1.能判断一个四边形是平行四边形的是()A.有两条边相等,并且另外两条边也相等B.对角线相等C.对角线互相平分D.一条对角线平分另一条对角线2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO3.如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于点F,若BC=4,AC=5,则四边形ACFD的周长为_____.4.如图,AO=OC,BD=16cm,则当OB=cm时,四边形ABCD是平行四边形.5.要做一个平行四边形框架,只要将两根木条AC、BD的中点重叠并用钉子固定,这样四边形ABCD就是平行四边形,这种做法的依据是.6.如图所示,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.7.如图,▱ABCD的对角线AC,BD交于点O,点E,F在AC上,点G,H在BD上,AF=CE,BH=DG,求证:GF∥HE.8.如图,▱ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证:BM∥DN,且BM =DN.练习1.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,当点E,F满足下列条件时,四边形DEBF不一定是平行四边形()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB2.如图,已知:在▱ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是()A.GF⊥FH B.GF=EH C.EF与AC互相平分D.EG=FH3.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)4.已知,如图,AB与CD相交于点O,AC∥DB,AO=BO,点E、F分别是OC、OD中点,求证:四边形ADBC是平行四边形.5.如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.6.如图所示,▱ABCD的对角线AC、BD相交于点O,BD=12cm,点E在线段BO上从点B开始以1cm/s 的速度运动,点F在线段OD上从O点开始以2cm/s的速度运动.若点E、F同时运动,且当点F运动到D点时,点E、F同时停止运动,设运动时间为ts,当t为何值时,四边形AECF是平行四边形?。
教师寄语:人的潜能是无限的,只要努力,你的理想就一定会实现!相信自己,你才是最棒的!一、学习目标:1、探索平行四边形的判定方法。
2、会用平行四边形的判定方法解决有关问题。
二、学生自学、探究、交流。
1、完成学习目标1:探索平行四边形的判定方法。
(试一试,我能行!)活动1:取四根细木条,其中两根长度相等,另两根长度也相等,能否在平面内将这四根细木条首尾顺次相接搭成一个平行四边形?说说你的理由.由此你能得到平行四边形的一种判定方法吗?定理:活动2:议一议:(1)取两根长度相等的细木条,你能将它们摆放在一张纸上,使得这两根细木条的四个端点恰好是一个平行四边形的四个顶点吗?(2)如果四边形有一组对边相等,那么还需添加什么条件,才能使它成为平行四边形?由此你能得到平行四边形的一种判定方法吗?定理:2、完成学习目标2:会用平行四边形的判定方法解决有关问题。
(比一比,我最棒!)例1 如图6-10,在ABCD中,E、F分别为AD和BC的中点.求证:四边形BFDE是平行四边形.变式训练:如图6-10,在 ABCD中,E、F分别为AD和BC的中点.连接AF交BE于点M,连接CE交DF于点N,四边形EMFN是平行四边形吗?为什么?生活链接一块平行四边形形状的装饰玻璃被打破成三块,小明准备只带其中的一块到玻璃店去配一块与原来形状、大小一样的玻璃,请你帮忙选择一下,带哪一块才能画出与原来大小一样的玻璃?怎么画?三、小结反思:本节课学习了哪些知识?你有哪些收获?有哪些疑惑?平行四边形的判定㈠导学案班级-------- 姓名----------讲课教师:万荣县城镇中学吴飞娟BM N四、目标检测:(拼一拼,我能赢!)1、如图, ∠1= ∠2,∠3= ∠4, 四边形ABCD 是不是平行四 边形?为什么?2 、如图,在 ABCD 中,点E 、F 分别 是 BC 、AD 的中点,四边形ABEF , 四边形ECDF 是平行四边形吗?说说 你的理由。
第六章平行四边形平行四边形的判定(一)知识要点1.平行四边形的判定定理:(1)两组对边分别相等的四边形是四边形.(2)一组对边的四边形是平行四边形.基础训练1.如图,下列条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB∥CD,AD=BC D.AB∥CD,AB=CD第1题第2题第3题第4题第5题2.如图,在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BDC.∠A=∠C D.∠A=∠B3.如图,在□ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中平行四边形共有()A.7个B.8个C.9个D.11个4.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF5.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充一个条件,下列错误的是() A.AB=DC B.AD∥BCC.∠A+∠B=180°D.∠A+∠D=180°6.如图,小津不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能从商店配到一块与原来相同的玻璃,他带了其中两块玻璃去商店,其编号应该是()A.①②B.②④C.③④D.①③7.如图,在四边形ABCD中,AB=CD,则添加一个条件:(只需填写一个)可以使得四边形ABCD为平行四边形.8.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长,交AD的延长线于点F,请你只添加一个条件:,使得四边形BDFC为平行四边形.9.如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF.求证:四边形BFDE是平行四边形.10.如图,已知AB∥CD,BE⊥AD于点E,CF⊥AD于点F,且AF=DE,求证:四边形BECF是平行四边形.11.如图,在四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.12.(2019·重庆九龙坡区十校联考)如图,在□ABCD中,点E在AD上,连接BE,DF∥BE 交BC于点F,AF与BE交于点M,CE与DF交于点N.(1)求证:DE=BF;(2)求证:四边形MFNE是平行四边形.1~6:CCC DDD7、AD =BC(答案不唯一) /8、BD ∥FC(答案不唯一)9、证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC.∵AE =CF ,∴AD -AE =BC -CF ,即ED =BF .又∵AD ∥BC ,∴四边形BFDE 是平行四边形.10、证明:∵BE ⊥AD ,CF ⊥AD ,∴∠AEB =∠DFC =90°.∵AB ∥CD ,∴∠A =∠D .∵AF =DE ,∴AE =DF .在△AEB 与△DFC 中,⎩⎪⎨⎪⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA).∴BE =CF .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CF .∴四边形BECF 是平行四边形./11、证明:∵AE ⊥AD ,CF ⊥BC ,∴∠EAD =∠FCB =90°, ∵AD ∥BC ,∴∠ADE =∠CBF .在△AED 和△CFB 中,⎩⎪⎨⎪⎧ ∠ADE =∠CBF ∠EAD =∠FCBAE =CF,∴△AED ≌△CFB (AAS ),∴AD =BC.∵AD ∥BC ,∴四边形ABCD 是平行四边形.12、(1)证明:在□ABCD 中,AD ∥BC ,∵DF ∥BE ,∴四边形BFDE是平行四边形,∴DE=BF.(2)证明:在□ABCD中,AD∥BC且AD=BC,∵DE=BF,∴AD-DE=BC-BF,即AE=CF,∴四边形AFCE是平行四边形,∴AF∥CE.又∵DF∥BE,∴四边形MFNE是平行四边形.。