西邮matlab实验课后答案第二章
- 格式:doc
- 大小:54.50 KB
- 文档页数:3
第2章符号运算习题 2 及解答1说出以下四条指令产生的结果各属于哪一种数据种类,是“双精度”对象,仍是“符号”符号对象3/7+; sym(3/7+; sym('3/7+'); vpa(sym(3/7+)〖目的〗不可以从显示形式判断数据种类,而一定依赖class 指令。
〖解答〗c1=3/7+c2=sym(3/7+c3=sym('3/7+')c4=vpa(sym(3/7+)Cs1=class(c1)Cs2=class(c2)Cs3=class(c3)Cs4=class(c4)c1 =c2 =37/70c3 =c4 =Cs1 =doubleCs2 =symCs3 =symCs4 =sym2在不加特意指定的状况下,以下符号表达式中的哪一个变量被以为是自由符号变量 .sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)')〖目的〗理解自由符号变量确实认规则。
〖解答〗symvar(sym('sin(w*t)'),1)ans =wsymvar(sym('a*exp(-X)'),1)ans = asymvar(sym('z*exp(j*th)'),1) ans = za11a12a 135 求符号矩阵 A a 21 a 22 a 23 的队列式值和逆, 所得结果应采纳 “子a31a32a33表达式置换”简短化。
〖目的〗理解 subexpr 指令。
〖解答〗A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]') DA=det(A) IA=inv(A);[IAs,d]=subexpr(IA,d)A =[ a11, a12, a13] [ a21, a22, a23] [ a31, a32, a33] DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 - a13*a22)] [ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 - a13*a21)] [ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 - a12*a21)] d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)8(1)经过符号计算求 y(t)sin t 的导数dy。
第一大题:(1)a = 7/3b = sym(7/3)c = sym(7/3,'d')d = sym('7/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =2.3333b =7/3c =2.3333333333333334813630699500209d =7/3v1 =0.0v2 =0.0v3 =0.00000000000000014802973661668756666666667788716(2)a = pi/3b = sym(pi/3)c = sym(pi/3,'d')d = sym('pi/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =1.0472b =pi/3c =1.047197551196597631317786181171d =pi/3v1 =0.0v2 =0.0v3 =0.00000000000000011483642827992216762806615818554(3)a = pi*3^(1/3)b = sym(pi*3^(1/3))c = sym(pi*3^(1/3),'d')d = sym('pi*3^(1/3)')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =4.5310b =1275352044764433/281474976710656c =4.5309606547207899041040946030989d =pi*3^(1/3)v1 =0.00000000000000026601114166290944374842393221638 v2 =0.00000000000000026601114166290944374842393221638 v3 =0.0000000000000002660111416629094726767991785515第二大题:(1)c1=3/7+0.1c1 =0.5286双精度(2)c2=sym(3/7+0.1)c2 =37/70符号(3)c3=vpa(sym(3/7+0.1))c3 =0.52857142857142857142857142857143完整显示精度第三大题:(1)findsym(sym('sin(w*t)'),1)ans =w(2)findsym(sym('a*exp(-X)' ) ,1)ans =a(3)findsym(sym('z*exp(j*theta)'),1)ans =z第四大题:A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')A =[ a11, a12, a13][ a21, a22, a23][ a31, a32, a33]DA=det(A)DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31w=inv(A)w =[ (a22*a33 - a23*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a12*a33 -a13*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a12*a23 - a13*a22)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ -(a21*a33 - a23*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), (a11*a33 -a13*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), -(a11*a23 - a13*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ (a21*a32 - a22*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a11*a32 -a12*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a11*a22 - a12*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] IAs=subexpr(w,'d')d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 -a13*a22)][ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 -a13*a21)][ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 -a12*a21)]第六大题:syms ksyms x positives_s=2/(2*k+1)*((x-1)/(x+1))^(2*k+1)s_ss=simple(symsum(s_s,k,0,inf))s_s =(2*((x - 1)/(x + 1))^(2*k + 1))/(2*k + 1)警告: simple will be removed in a future release. Use simplify instead. [> In sym.simple at 41]s_ss =log(x)第八大题:syms x clearsyms xh=exp(-abs(x))*abs(sin(x))si=vpa(int(h,-5*pi,1.7*pi),64)h =abs(sin(x))*exp(-abs(x))si =1.087849417255503701102633764498941389696991336803454392428439159 第九大题:syms x y clearsyms x yr=int(int(x^2+y^2,y,1,x^2),x,1,2)r =1006/105第十大题:syms t x;f=sin(t)/t;y=int(f,t,0,x)y1=subs(y,x,sym('4.5'))ezplot(y,[0,2*pi])y =sinint(x)y1 =syms x clearsyms x ny=sin(x)^nyn=int(y,0,1/2*pi)y31=vpa(subs(yn,n,sym('1/3')))y32=vpa(subs(yn,n,1/3))y =sin(x)^nyn =piecewise([-1 < real(n), beta(1/2, n/2 + 1/2)/2], [real(n) <= -1, int(x^n/(1 - x^2)^(1/2), x, 0, 1)])y31 =1.2935547796148952674767575125656y32 =1.2935547796148952674767575125656第二十题:clearsyms y xy=dsolve('(Dy*y)/5+x/4=0','x')y =2^(1/2)*(C6 - (5*x^2)/8)^(1/2)-2^(1/2)*(C6 - (5*x^2)/8)^(1/2)y1=subs(y,'C6',1)y1 =2^(1/2)*(1 - (5*x^2)/8)^(1/2)-2^(1/2)*(1 - (5*x^2)/8)^(1/2)clfhy1=ezplot(y1(1),[-2,2,-2,2],1)set(hy1,'Color','r')grid onhold onhy2=ezplot(y1(2),[-2,2,-2,2],1)set(hy2,'Color','b')grid onxlabel('Y')ylabel('X')hold offbox onlegend('y(1)','y(2)','Location','Best')hy1 =174.0155hy2 =177.0145。
(完整版)MATLAB)课后实验答案[1]实验⼀ MATLAB 运算基础1. 先求下列表达式的值,然后显⽰MATLAB ⼯作空间的使⽤情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +??=?- (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--L (4) 2242011122123t t z t t t t t ?≤=-≤,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建⽴⼀个字符串向量,删除其中的⼤写字母。
解:(1) 结果:(2). 建⽴⼀个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验⼆ MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对⾓阵,试通过数值计算验证2 2E R RS A O S +??=。
解: M ⽂件如下;5. 下⾯是⼀个线性⽅程组:1231112340.951110.673450.52111456x x x ??=???(1) 求⽅程的解。
(2) 将⽅程右边向量元素b 3改为0.53再求解,并⽐较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M ⽂件如下:123d4e56g9实验三选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ?+-<≠-?=-+≤<≠≠??--?且且及其他⽤if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
解:M ⽂件如下:2. 输⼊⼀个百分制成绩,要求输出成绩等级A、B、C、D、E。
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
Matlab教程第二章符号计算课堂练习1 创建符号变量有几种方法?MATLAB提供了两种创建符号变量和表达式的函数:sym和syms。
sym用于创建一个符号变量或表达式,用法如x=sym(‘x’) 及f=sym(‘x+y+z’),syms用于创建多个符号变量,用法如syms x y z。
f=sym(‘x+y+z’)相当于syms x y zf= x+y+z2 下面三种表示方法有什么不同的含义?(1)f=3*x^2+5*x+2(2)f='3*x^2+5*x+2'(3)x=sym('x')f=3*x^2+5*x+2(1)f=3*x^2+5*x+2表示在给定x时,将3*x^2+5*x+2的数值运算结果赋值给变量f,如果没有给定x则指示错误信息。
(2)f='3*x^2+5*x+2'表示将字符串'3*x^2+5*x+2'赋值给字符变量f,没有任何计算含义,因此也不对字符串中的内容做任何分析。
(3)x=sym('x')f=3*x^2+5*x+2表示x是一个符号变量,因此算式f=3*x^2+5*x+2就具有了符号函数的意义,f也自然成为符号变量了。
3 用符号函数法求解方程a t2+b*t+c=0。
>> r=solve('a*t^2+b*t+c=0','t')[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]4 用符号计算验证三角等式:sin(ϕ1)cos(ϕ2)-cos(ϕ1)sin(ϕ2) =sin(ϕ1-ϕ2) >> syms phi1 phi2;>> y=simple(sin(phi1)*cos(phi2)-cos(phi1)*sin(phi2)) y =sin(phi1-phi2)5 求矩阵⎥⎦⎤⎢⎣⎡=22211211a a a a A 的行列式值、逆和特征根。
M A T L A B运算基础(第2章)答案实验01讲评、参考答案讲评未交实验报告的同学名单批改情况:问题1:不仔细,式子中出错。
问题2:提交的过程不完整。
问题3:使用语句尾分号(;)不当,提交的过程中不该显示的结果显示。
问题4:截屏窗口没有调整大小。
附参考答案:实验01 MATLAB 运算基础(第2章 MATLAB 数据及其运算)一、实验目的1. 熟悉启动和退出MATLAB 的方法。
2. 熟悉MATLAB 命令窗口的组成。
3. 掌握建立矩阵的方法。
4. 掌握MATLAB 各种表达式的书写规则以及常用函数的使用。
二、实验内容1. 数学表达式计算先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
1.1 计算三角函数122sin 851z e=+(注意:度要转换成弧度,e 2如何给出) 《MATLAB 软件》课内实验王平示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。
命令窗口中的执行过程:1.2 计算自然对数221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(提示:clc 命令擦除命令窗口,clear 则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。
应用点乘方)命令窗口中的执行过程:1.3 求数学表达式的一组值0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。
命令窗口中的执行过程:1.4 求分段函数的一组值2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 提示:用逻辑表达式求分段函数值。
命令窗口中的执行过程:1.5 对工作空间的操作接着显示MATLAB当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load,请参考教材相关内容。
第二章作业M2_1.利用MATLAB实现下列连续时间信号。
(1)x(t)=u(t)-u(t-2)function y=heaviside(t);y=(t>0);endt=-10:0.001:10;>>xt=heaviside(t)-heaviside(t-2);>>plot(t,xt)>>axis([-10,10,-2,2])(2) x(t)=u(t)function y=heaviside(t);y=(t>0);endt=-10:0.001:10;>>xt=heaviside(t);>>plot(t,xt)>>axis([-10,10,-2,2])(3)xt=10exp(-t)-5exp(-2t)>> A=10;a=-1;>> t=0:0.001:10;>> x1t=A*exp(a*t);>> A=5;a=-2;>> t=0:0.001:10;>> x2t=A*exp(a*t);>>xt=x1t-x2t;>>plot(t,xt)(4)xt=tu(t)>> t=-10:0.001:10;>>xt=t.*heaviside(t);>>plot(t,xt)(5)xt=2|sin(10pit+pi/3)| >> A=2;w0=10*pi;phi=pi/3; >> t=0:0.001:1;>>xt=A*abs(sin(w0*t+phi)); >>plot(t,xt)>>axis([0,1,-4,4])Xt=cost+sin(2pit)>> A=1;w0=1;phi=0; >> t=0:0.002:10;>> x1t=A*cos(w0*t+phi); >> A=2;w0=2*pi;phi=0; >> t=0:0.002:10;>> x2t=A*sin(w0*t+phi); >>xt=x1t+x2t;>>plot(t,xt)(7)xt=4exp(-0.5t)cos(2pit) >> A=5;a=-0.5;>> t=0:0.001:10;>> x1t=A*exp(a*t);>> A=1;w0=2*pi;phi=0; >> t=0:0.001:10;>> x2t=A*cos(w0*t+phi); >>xt=x1t.*x2t;>>plot(t,xt)(8)Sa(pit)cos(30t)A=1;w0=30;phi=0;>> t=0:0.001:3;>> x1t=A*cos(w0*t+phi);>> t=0:0.001:3;>> x2t=sinc(t);>>xt=x1t.*x2t;>>plot(t,xt)M2-3,写出书中图示波形函数,并画出xt,x0.5t,x(2-0.5t)的图像function yt=x2_3(t)yt=t.*(t>=0&t<2)+2*(t>=2&t<3)+(-1)*(t>=3&t<=5); end>> t=0:0.001:5;>>xt=x2_3(t);>>title('x(t)');>>plot(t,xt)>>axis([0,6,-2,3])>> t=0:0.001:10;xt=x2_3(0.5*t); >>plot(t,xt)>>title('x(0.5t)')>>axis([0,10,-2,3])x(0.5t)>> t=-10:0.001:10;>>xt=x2_3(2-0.5*t);>>plot(t,xt)>>title('x(2-0.5t)')>>axis([-10,10,-2,3])M2-4画出图示的奇分量和偶分量。
matlab2022实验2参考答案报告名称:MATLAB试验二符号计算姓名:学号:专业:班级:MATLAB实验二MATLAB符号计算试验报告说明:1做试验前请先预习,并独立完成试验和试验报告。
2报告解答方式:将MATLAB执行命令和最后运行结果从命令窗口拷贝到每题的题目下面,请将报告解答部分的底纹设置为灰色,以便于批阅。
3在页眉上写清报告名称,学生姓名,学号,专业以及班级。
3报告以Word文档书写。
一目的和要求1熟练掌握MATLAB符号表达式的创建2熟练掌握符号表达式的代数运算3掌握符号表达式的化简和替换4熟练掌握符号微积分5熟练掌握符号方程的求解二试验内容1多项式运算(必做)1.1解方程:f(某)=某^4-10某某^3+34某某^2-50某某+25=0%采用数值方法:>>f=[1-1034-5025];>>root(f)%采用符号计算方法:f1=ym('某^4-10某某^3+34某某^2-50某某+25')olve(f1)1.2求有理分式R=(3某^3+某)(某^3+2)/((某^2+2某-2)(5某^3+2某^2+1))的商多项式和余多项式.a1=[3010];a2=[1002];a=conv(a1,a2);b1=[12-2];b2=[5201];b=conv(b1,b2);[p,r]=deconv(a,b);%注意:ab秩序不可颠倒。
%reidue用于实现多项式的部分分式展开,此处用deconv函数报告名称:MATLAB试验二符号计算姓名:学号:专业:班级:%%此题,有同学程序如下:某1=[3010],某2=[1002],某3=[12-2],某4=[5201]某5=conv(某1,某2)[y6,r]=deconv(某5,某3)R=deconv(y6,某4)%%这种方法较第一种解法缺点:在除法运算中,会产生误差,故此题应先将分母的多项式相乘后,再与分子部分的多项式进行运算。