第七章 二阶电路
- 格式:ppt
- 大小:85.00 KB
- 文档页数:20
第七章二阶电路重点要求:1. 理解二阶电路零输入响应过渡过程的三种情况;2. 了解二阶电路的阶跃响应和冲击响应。
3.学习数学中的拉普拉斯变换的定义、性质及反变换的方法;4.掌握用拉普拉斯变换求解电路的过渡过程的方法。
1§7-1 二阶电路的零输入响应二阶电路:由二阶微分方程描述的电路。
典型的二阶电路是RLC串联电路。
求全响应方法:1.经典法(时域分析法)全响应= 稳态分量(强制分量) + 暂态分量(自由分量)2.拉普拉斯变换法(频域分析法)2响应曲线:U 0u C , u L , i 0ωtiu Cu L§7-1 二阶电路的零输入响应220p ααω=−±−一. 问题的提出经典法解动态电路过渡过程存在的问题:对较复杂的电路,联立求解微分方程特别是定积分常数比较困难。
若激励不是直流或正弦交流时,特解不容易求得。
二. 拉氏变换法用积分变换的原理简化求解电路过渡过程时域电路解微分方程时域响应f(t)取拉斯变换复频域电路解代数方程复频域响应F(s)取拉斯反变换7.2 动态电路的复频域分析应用拉氏变换法进行电路分析称为电路的一种复频域分析方法,也叫运算法!是数学中的一种积分变换.优点:对复杂电路﹑无稳态情况﹑换路时出现强迫跃变等用拉氏变换法较经典法方便。
三. 拉普拉斯变换的定义设函数f(t)在0≤t ≤∞时有定义,则积分称为原函数f(t)的拉普拉斯变换(象函数)。
()dte tf s F st∫∞−−=0)(式中s=σ+ j ω----复频率。
单位:熟悉的变换:相量法⎩⎨⎧=∫∞+∞−)s (21)(ds e F j t f stj c j c π反变换正变换ZH1.象函数F (s)存在的条件:∞<∫∞−−dt et f st0)(说明:电路分析中的函数都能满足上述条件。
2. 在电路中积分的下限定义为“0-”, 更有实际意义(将奇异函数也包括在内)。
[][]⎩⎨⎧==−)( )()( )( S F t f t f S F 1简写正变换反变换在电路分析中通常直接查表得到。
第七章 二阶电路用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。
◆ 重点:1. 电路微分方程的建立 2. 特征根的重要意义 3. 微分方程解的物理意义◆ 难点:1. 电路微分的解及其物理意义 2. 不同特征根的讨论计算7.0 知识复习一、二阶齐次微分方程的通解形式0'''=++cy by ay ,其特征方程为:02=++c bp ap ,特征根:a acb a b p 44222,1-±-=。
当特征方程有不同的实根1p 、2p 时,tp t p e A e A y 2121+= 当特征方程有相同的实根p 时,pte t A A y )(21+=当特征方程有共轭的复根ω±δ-=j p 2,1时,)sin cos (21)(t A t A e ey t tj ω+ω==δ-ω+δ- 二、欧拉公式β+β=βsin cos j e j2)sin()()(j e e t t j t j β+ω-β+ω-=β+ω β-β=β-sin cos j e j2)cos()()(β+ω-β+ω+=β+ωt j t j ee t7.1 二阶电路的零输入响应7.1.1 二阶电路中的能量振荡在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。
+ U 0C L _-_C L+(d)图8-1 LC 电路中的能量振荡设电容的初始电压为0U ,电感的初始电流为零。
在初始时刻,能量全部存储于电容中,电感中没有储能。
此时电流为零,电流的变化率不为零(0≠==dt di Lu u L C ,0≠∴dt di ),这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。
当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I 0,此时电场能全部转化为电磁能,存储在电感中。
第七章 二阶电路 §7-1 二阶电路的零输入响应用二阶方程描述的动态电路称为二阶电路,当电路有电感,又有电容时就是一个二阶电路,二阶电路中给定的初始条件有2个 一、方程及特征根(RLC 串联)022=++C CC u dt du RC dtu d LC特征根为:LC L R L R p 12221-⎪⎭⎫⎝⎛+-=LC L R L R p 12221-⎪⎭⎫⎝⎛--=零输入响应为:t t P P C e A e A u 2121+= 1.电路的初始条件有三种情况,分别为:①0)0(0)0(≠≠++L C i u ②0)0(0)0(=≠++L C i u ③0)0(0)0(≠=++L C i u我们讨论第二种情况,设0)0()0()0()0(====-+-+L L C C i i u u u2.特征根p 1、p 2有不等负实数根、相等负实数根、一对共轭复数根三种情况,这三种情况决定零输入响应不同。
二、CLR 2>(1P 、2P 有不等负实根)时电路的响应 —是一个非振荡放电过程 1.电容上的电压和电流及电感上的电压响应表达式为:)(2112120t t P P C e P e P P P U u --=LCp p 121=)()()(2121120112210t t t t P P P P C e e P P L U e P e P P P P CU dt du Ci ---=---=-=)(2121120t t P P L e P e P P P U dt di Lu ---==2.响应曲线2112)/ln(P P P P T m -=此时电感电压过0,电流取得最大值m t t 2= 此时电感电压有极值三、CLR 2<(1P 、2P 有共轭复根)时电路的响应—是一个振荡放电过程1.电容上的电压和电流及电感上的电压为: )(2112120t t P P C e P e P P P U u --=[])2)(0)(00t j i t j j e e e e j U ωδβωδβωωω---+-+--=⎥⎦⎤⎢⎣⎡-=+-+-j e e eU t j t t j t2)()(00βωβωδωω)sin(00βωωωδ+=-t e U t)sin(0t e LU i tωωδ-=)sin(00βωωωδ--=-t e U u t其中:2RLδ=0ω=ω= arctg ωβδ= 2.波形图如下:ttπδ3.理想情况下,,2,1,0,00πβωωδ=====LCR 则:)2sin(00πω+=t U u Ct CLUt L U i 00000sin sin ωωω==C L u t U t U u =+=--=)2sin()2sin(0000πωπω 即等幅振荡放电过程。
第七章二阶电路一、教学基本要求1、了解二阶电路零状态响应、零输入响应、全响应的物理意义和概念。
2、会分析简单的二阶电路。
二、教学重点与难点1. 教学重点: (1).二阶电路的方程和特征根(2). 二阶电路的零输入响应、零状态响应、全响应的概念(3). 二阶电路过渡过程的过阻尼、欠阻尼及临界阻尼的概念及分析(4). 二阶电路的阶跃响应。
2.教学难点:1.应用基尔霍夫定律和电感、电容的元件特性建立动态电路方程;2. 二阶电路的过阻尼、欠阻尼及临界阻尼放电过程分析方法和基本物理概念。
三、本章与其它章节的联系:本章讨论的仍是线性电路,因此前面讨论的线性电路的分析方法和定理全部可以用于本章的分析中。
第 9 章讨论的线性电路的正弦稳态响应就是动态电路在正弦激励下的稳态分量的求解。
四、学时安排总学时:2五、教学内容§7.1 二阶电路的零输入响应二阶电路是指用二阶微分方程来描述的电路。
下面主要通过分析RLC 串联电路来说明求二阶电路响应的方法。
1.方程和初始条件图 7.1图7.1所示的RLC串联电路在t=0时刻闭合开关,设电容原本充有电压U0,此电路的放电过程是二阶电路的零输入响应问题。
电路的KVL方程及元件的VCR 为:若以电容电压为变量,从以上方程中消去其他变量得二阶齐次微分方程:初始条件为:u C (0+)= U 0 ,i (0+)=0 ,或若以电感电流为变量,则方程为:初始条件为:i (0+)=0 ,根据得:2.二阶微分方程的解及其物理意义以电容电压为变量,电路方程为:从中得特征方程:特征根为:上式表明特征根仅与电路参数和结构有关,而与激励和初始储能无关。
当R、L、C的参数不同,特征根为不同的形式。
下面分三种情况讨论。
(1)当时,特征根为两个不相等的负实根,电路处于过阻尼状态。
此时方程的解为:由初始条件:,得:即:因此电容电压为:电流为:电感电压为:图7.2给出了电容电压、电流和电感电压随时间变化的波形,从中可以看出,电容电压和电流始终不改变方向,且最终衰减至零,说明电容始终在释放能量,称过阻尼放电。