煤炭基础知识
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
一.煤质有关术语1.煤coal煤炭植物遗体在覆盖地层下,经复杂的生物化学和物理化学作用,转化而成的固体有机可燃沉积岩。
2. 粉煤fine coal粒度小于6mm的煤3.矸石gangue采、掘煤炭过程中从顶、底板或煤炭层夹矸混入煤种的岩石。
4.动力煤fuel coal动力用煤通过煤的燃烧来利用其他热值的煤炭统称动力煤。
主要应用于发电煤粉锅炉、工业锅炉和工业窑炉中,主要包括电煤、锅炉煤和建材用煤等。
5.喷吹煤coal for PCI用于高炉喷吹的煤6.煤样coal sample为确定煤的某些特性而从中采取的具有代表性的一部分煤。
7.采样sampling从大量煤中采取有代表性的一部分煤的过程。
8.随机采样random sampling在采取子样时,对采样的部位或时间均不施加任何人为的意志,能使任何部位的煤都有机会采出。
9.系统采样systematic sampling按相同的时间、空间或质量的间隔采取子样,但第一个子样在第一个间隔内随机采取,其余的子样按选定的间隔采取。
10.多份采样reduplicate sampling按一定的间隔采取子样,并将它们轮流放入不同的容器中构成两个或者两个以上质量接近的煤样。
二.煤分析有关术语1.工业分析proximate analysis水分、灰分、挥发分和固定碳四个项目分析的总称。
2.全水分total moisture煤的水分分为两种,一是内在水分(Minh ) ,是由植物变成煤时所含的水分;二是外水(Mf ) 是在开采、运输等过程中附在煤表面和裂隙中的水分.全水分是煤的外在水分和内在水分总和。
一般来讲,煤的变质程度越大,内在水分越低。
褐煤、长焰煤内在水分普通较高,贫煤、无烟煤内在水分较低。
水分的存在对煤的利用极其不利,它不仅浪费了大量的运输资源,而且当煤作为燃料时,煤中水分会成为蒸汽,在蒸发时消耗热量;另外,精煤的水分对炼焦也产生一定的影响。
一般水分每增加百分之二,发热量降低100kcal/kg(大卡/千克);冶炼精煤中水分每增加百分之一,结焦时间延长5 一10min 。
煤炭必备基础知识一、煤的形成煤炭是一种固体化石燃料,要紧成分为碳、氢和氧等,是人类社会重要的基础能源和重要原料。
目前,我国在一次能源生产和消费中煤炭分别占到76%与70%。
在地质历史上,沼泽森林覆盖了大片土地,包括菌类、蕨类、灌木、乔木等植物。
因不同时代海平面常有变化,当水面升高时,植物会被淹而死亡。
假如这些死亡的植物遗体被沉积物覆盖而不透氧气,就可不能完全分解,而是在地下形成有机地层。
随着海平面的升降,会产生多层有机地层。
通过漫长的地质作用,在温度增高、压力变大的还原环境中,这一有机层最终转变为煤层。
同时,因埋藏深度、时刻的差异所形成的煤也具有不同的煤化程度。
煤炭依照其煤化程度的不同,按从低到高的分类,可分为泥炭、褐煤、烟煤和无烟煤四大类。
煤化时期的两个过程煤化时期要紧是指由泥炭向褐煤、烟煤和无烟煤转化的漫长成煤变质时期,该时期要紧包括以下两个连续的过程:过程一、在地热和压力的作用下,泥炭层发生压实、失水、肢体老化、硬结等各种变化而形成褐煤——密度比泥炭高,碳含量相对增加。
这一过程又叫成岩作用。
过程二、褐煤转变为烟煤和无烟煤的过程。
在那个过程中煤的性质发生变化,的作用下,褐煤连续经受着理化变化而被压实、失水,其内部组成结构和性质都进一步发生变化,此过程确实是褐煤变成烟煤的变质作用。
烟煤比褐煤碳含量增高,氧含量减少。
烟煤连续进行着变质作用,从低变质程度向高变质程度变化,进而显现了低变质程度的长焰煤、气煤,中变质程度的肥煤、焦煤和高变质程度的瘦煤、贫煤。
它们之间的碳含量也随着变质程度的加深而增大。
二、煤的开采人类开采利用煤炭已有几千年的历史,2009年我国煤炭总产量超30亿吨,占世界煤炭产量的40%以上。
我国2300多个县市中有1458个赋存着煤炭资源,但90%的储量分布在秦岭—淮河以北地区,专门是晋陕蒙三省区,占到全国总量的63.5%。
从东西方向看,煤炭资源的85%分布于中西部,沿海地区仅占15%。
煤炭及煤化工基础知识一、煤炭基础知识人们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。
我国古代曾称煤炭为石涅,或称石炭。
它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。
它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。
据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占75.5%,消费占75.0%。
在国民经济中,工业、农业、交通运输的发展都离不开煤炭。
随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。
可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。
(一)、煤的形成煤是由植物残骸经过复杂的生物化学作用和物理化学作用转变而成的。
这个转变过程叫做植物的成煤作用。
一般认为,成煤过程分为两个阶段泥炭化阶段和煤化阶段。
前者主要是生物化学过程,后者是物理化学过程。
在泥炭化阶段,植物残骸既分解又化合,最后形成泥炭或腐泥。
泥炭和腐泥都含有大量的腐植酸,其组成和植物的组成已经有很大的不同。
煤化阶段包含两个连续的过程:第一个过程,在地热和压力的作用下,泥炭层发生压实、失水、肢体老化、硬结等各种变化而成为褐煤。
褐煤的密度比泥炭大,在组成上也发生了显著的变化,碳含量相对增加,腐植酸含量减少,氧含量也减少。
因为煤是一种有机岩,所以这个过程又叫做成岩作用。
第二个过程,是褐煤转变为烟煤和无烟煤的过程。
在这个过程中煤的性质发生变化,所以这个过程又叫做变质作用。
地壳继续下沉,褐煤的覆盖层也随之加厚。
在地热和静压力的作用下,褐煤继续经受着物理化学变化而被压实、失水。
其内部组成、结构和性质都进一步发生变化。
这个过程就是褐煤变成烟煤的变质作用。
烟煤比褐煤碳含量增高,氧含量减少,腐植酸在烟煤中已经不存在了。
烟煤继续进行着变质作用。
由低变质程度向高变质程度变化。
煤炭基础必学知识点
1. 煤炭的定义:煤炭是一种由植物残骸经过地质作用形成的有机岩石。
2. 煤炭的类型:煤炭根据其炭质和含水量的不同可分为无烟煤、炼焦煤、褐煤和泥炭等。
3. 煤炭的组成:煤炭主要由碳、氢、氧和少量的氮、硫等元素组成。
其中碳是主要成分,占煤炭质量的一大部分。
4. 煤炭的形成过程:煤炭是在地质历史上由原始植物积聚而形成的。
这些植物在长时间的压力和温度作用下逐渐转化为煤炭。
5. 煤炭的燃烧特性:煤炭燃烧时产生热量和废气。
煤炭的燃烧分为三
个阶段:放热阶段、水汽生成阶段和煤灰形成阶段。
6. 煤炭的用途:煤炭是一种重要的能源资源,广泛用于发电、供热、
冶金、化工等行业。
同时,煤炭也用于制造煤气、焦炭和煤焦油等副
产品。
7. 煤炭储量和产量:全球煤炭储量丰富,主要储量分布在中国、美国、澳大利亚、俄罗斯等国家。
中国是全球最大的煤炭生产国和消费国。
8. 煤炭的环境影响:煤炭的燃烧会产生大量的二氧化碳和氮氧化物等
有害气体,对空气质量和气候变化有一定影响。
此外,煤炭开采和燃
烧也会对环境造成破坏。
9. 煤炭的清洁利用技术:为了减少煤炭燃烧产生的污染物排放,煤炭
的清洁利用技术得到了广泛研发和推广,包括煤炭洗选、煤气化、燃
烧增效等技术。
10. 煤炭的经济影响:煤炭是许多国家的重要经济支柱,煤炭产业的
发展与国民经济密切相关。
煤炭价格的波动也会对全球市场产生一定
影响。
一、煤炭产品基础知识(一)、煤炭的生成煤炭是古代的有机物(主要是植物)的遗体,经过生物及化学的变质作用而形成的。
大体可分为两个阶段:第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。
第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。
这样褐煤逐渐变成了烟煤、无烟煤。
如果有更高的温度,最终可能变成石墨。
成煤必须具备四个先决条件:(1)植物条件。
(2)气候条件。
(3)地理条件。
(4)地壳运动条件。
(二)、煤炭资源的分布❖世界煤炭资源目前,世界煤炭储量估计为1.083 万亿吨,按目前的煤炭消费水平计算,足以可供开采200 多年。
世界各地的煤炭资源分布并不平衡,煤炭主要集中在北半球,世界煤炭资源的70%分布在北半球北纬30°~70°之间。
其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。
世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4 个国家共占29%。
2001 年,上述7 国的煤炭产量占世界总产量的80%。
澳大利亚、美国和加拿大可供炼焦的优质烟煤储量丰富,2002 年3 国的炼焦煤总产量占世界贸易总量的81%。
❖中国煤炭资源1.煤炭资源丰富,但人均占有量低。
2.煤炭资源的地理分布极不平衡。
中国煤炭资源北多南少,西多东少,煤炭资源的分布与消费区分布极不协调。
从各大行政区内部看,煤炭资源分布也不平衡,如华东地区的煤炭资源储量的87%集中在安徽、山东,而工业主要在以上海为中心的长江三角洲地区;中南地区煤炭资源的72%集中在河南,而工业主要在武汉和珠江三角洲地区;西南煤炭资源的67%集中在贵州,而工业主要在四川;东北地区相对好一些,但也有52%的煤炭资源集中在北部黑龙江,而工业集中在辽宁。
3.各地区煤炭品种和质量变化较大,分布也不理想。
中国炼焦煤在地区上分布不平衡,四种主要炼焦煤种中,瘦煤、焦煤、肥煤有一半左右集中在山西,而拥有大型钢铁企业的华东、中南、东北地区,炼焦煤很少。
煤炭基础知识一、煤炭的生成煤炭的生成。
煤炭是古代的有机物(主要是植物)的遗体,经过生物及化学的变质作用而形成的。
大体可分为两个阶段,第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。
当植物枯死之后,堆积在充满水的沼泽中,开始是水存在的氧气不足,后来在水面下隔绝空气,并在细菌的作用下,直到植物的各部分不断分解,相互作用,最后植物的遗体变成了褐色或黑褐色的淤泥物质,这就是泥炭。
这个过程,叫做泥炭化过程。
这个阶段需要漫长的地质历史时期,需要进行千百万年。
第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。
当泥炭层形成后。
有水经常冲刷大陆的低洼地方,带来了大量的砂、石,在泥潭层逐渐形成岩层(称为顶板)。
被埋在顶板下的泥炭层在顶板下的泥潭层在顶板岩石层的压力作用下,发生了压紧、失水、胶体老化、硬结等一系列变化,同时它的化学组成也发生了缓慢的变化,逐步变成比重较大,较致密的黑褐色的褐煤。
当顶板逐渐加厚,顶板的静压力逐渐增高,煤层中温度也逐渐升高后,煤质便发生变化,逐渐由成岩作用变成了以温度影响为主的变质作用。
这样褐煤逐渐变成了烟煤、无烟煤。
如果有更高的温度,最终可能变成石墨。
成煤必须具备四个先决条件:(1)植物条件。
(2)气候条件。
(3)地理条件。
(4)地壳运动条件。
二、煤炭的分类及各类煤的主要特征和用途(1)煤炭按煤的用途分为:动力煤、炼焦煤、喷吹煤及无烟煤凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于动力用煤,简称动力煤;作为生产原料,用来生产焦炭,进而用于钢铁行业的煤炭种,称为炼焦煤;钢铁行业高炉喷吹用的喷吹煤;无烟煤块煤主要应用是化肥(氮肥、合成氨)、陶瓷、制造锻造等行业;无烟粉煤主要应用在冶金行业用于高炉喷吹。
我国约1/3的煤用于发电,目前平均消耗为标准煤(7000大卡)370g/kw.h。
(2)煤炭按粒度分类:经简单筛选后剩下的大块有烟煤,筛选常用通过网目大小来规定最小尺寸的块度。
煤炭基础知识
一.煤的组成
煤包含有很多元素,由可燃物和不可燃物组成。
可燃物主要包括有机质和少量的矿物质,不可燃物包括水和大部分矿物质,如碱金属,碱土金属,铁,铝等的盐类。
煤的元素组分,即碳,氢,氧,氮,硫五个元素。
碳是组成煤大分子的骨架,在各元素中最高,一般大于70%。
随着煤化程度的不断增高,煤中碳元素的含量也越高,如某些超无烟煤,碳含量可达97%。
氢是煤中第二个重要组成元素,它占煤的质量分数为1-6%,越是年青的煤,其含量也越高。
氧元素是组成煤有机质的十分重要的元素,越是年青的煤,氧元素的比例也越大,发热量常随氧元素的增高而降低,其含量从1-30%均有。
氮元素在煤中的比例较少,一般为0.5-3%。
硫元素也是组成煤的有机质的一种常见元素,它在煤中含量的多少,与煤化程度的高低没有明显关系,其含量从最低的0.1到最高的10%均有。
煤的元素组分的不同,不仅能反映出煤化程度,而且也直接表征出煤性质的不同。
如碳含量低氧含量高的煤,多是粘结性很差或是没有粘结性的年轻煤;碳含量高氧含量低的煤则常是一些无粘结性的年老煤;只有碳含量在84-85%,氢含量在5%以上的中等变质程度的煤,才是结焦性较好的炼焦用煤。
二.煤的分类
煤的种类很多,质量也相差悬殊,不同类型的煤有不同的用途。
如结焦性好或粘结性好的煤是优质的炼焦用煤;热稳定性好的无烟块煤是合成氨厂的主要原料;挥发分和发热量都高的煤是较好的动力用煤;一些低灰,低硫的年轻煤则是加压气化制造煤气和加氢液化制取人造液体燃料的较好原料。
2-1. 煤的国际分类(简单分类)
black coal/hard coal (黑煤或硬煤):包括烟煤(bituminous,主要用于钢铁制造工业)和无烟煤(anthracite).
brown coal(褐煤),包括低热值的lignite(褐煤,大部分用于电厂)和peat(泥煤,用于电厂,水泥等工业制造行业)。
2-2. 中国的分类法是以炼焦用煤为主的工业分类法
就煤分类国家标准把我国的煤从褐煤到无烟煤之间共划分为14个大类和17个小类:
常见的三类:无烟煤,褐煤,烟煤。
无烟煤分为三个小类,即年老无烟煤,典型无烟煤和年轻无烟煤,主要按各小类工艺利用特性不同而划分。
褐煤分为两类,即年老褐煤和年轻褐煤,根据其性质和利用特征不同而划分。
烟煤共12个煤类,即贫煤,贫廋煤,廋煤,焦煤,肥煤,气肥煤,气煤,1/3焦煤,1/2中
粘煤,弱粘煤,不粘煤,长焰煤。
按挥发分烟煤分为四类:
低挥发分烟煤(挥发分大于10-20%);
中挥发分烟煤(挥发分大于20-28%);
中高挥发分烟煤(挥发分大于28-37%);
高挥发分烟煤(挥发分大于37%)。
按粘结性(G值)烟煤分类:
0-5为不粘结性和微粘结煤;
大于5-20为弱粘性煤;
大于20—50为中等偏弱粘结煤;
大于50-65为中等偏强粘结煤;
大于65为强粘结煤。
对于强粘结煤,又把其中胶质层最大厚度y大于25mm或奥亚膨胀度b大于150%(对于Vdaf大于28%的烟煤,b大于220%)的煤分为特强粘结煤。
关于焦,肥,气,廋煤的命名
对G大于85的煤需要再测定胶质层最大厚度y值或奥亚膨胀度B值来区分肥煤,气肥煤与其它烟煤的界限。
当y值大于25mm时,如Vdaf大于37%,则划分为气肥煤;如Vdaf小于37%,则划分为肥煤。
当y值小于25mm时,则按其Vdaf值的大小而划分为相应的其它煤类。
如Vdaf大于37%,则应划分为气煤类;如Vdaf大于28-37%,则应划分为1/3焦煤;如Vdaf小于8%,则应划分为焦煤类。
国外焦煤分类(美,澳,加)
硬焦煤(hard coking coal, 灰分小于10,挥发分小于27,CSN/FSI大于6)
软焦煤(soft coking coal,挥发分大于27,CSN/FSI小于6)
弱/半软焦煤(weak/semi coking coal,挥发分大于27,CSN/FSI小于6)
喷吹煤(PCI coal)
三.炼焦工业用煤的要求及相应指标:
煤炭的主要用途是燃烧,炼焦和造气等,也可以作化工原料。
为了得到强度高,灰分硫分低的优质冶金用焦,对炼焦用煤有以下要求:
有较强的结焦或粘结性;
煤的灰分要低;
煤的硫分要低;
配合煤的挥发分要合适。
炼焦煤与非炼焦煤基本区别指标在于粘结性与结焦性:
煤的粘结性反应烟煤在干馏过程中能够软化熔融形成胶质体并固化粘结的能力。
煤的粘结性是煤形成焦炭的前提和必要条件,炼焦煤中肥煤的粘结性最好。
煤的结焦性反映烟煤在干馏过程中软化熔融粘结成半焦以及半焦进一步热解收缩最终形成
焦炭全过程的难能力。
在炼焦煤中焦煤的结焦性最好。
炼焦煤粘结性与结焦性的测定方法:
常用方法有七种:
坩埚膨胀序数(CSN)或自由膨胀序数(FSI):是表征煤的膨胀性和粘结性的指标之一,序数越大表示煤的粘结性越强;主焦煤CSN一般都在6以上。
罗加指数(RI/LR):是通过测定烟煤对惰性添加物(无烟煤)的粘结性能力来确定煤粘结性的一种方法。
罗加指数LR越高,煤的粘结性越强。
一般而言,LR小于5,煤不具有粘结性;LR大于5小于20,煤粘结性很差或不具有粘结性;LR大于20小于45,煤粘结性比较差;LR大于45小于80,良好;LR大于80小于90,很强。
粘结指数(G值):粘结指数的测定原理与罗加指数测定原理相似,不单能较好地表征煤的粘结性,还可用作指导焦煤配煤,预测焦炭强度以及作为煤分类等的较好指标。
一般主焦煤的G值在80以上。
基氏流动度
胶质层指数(y值):表征煤粘结性的好坏。
一般煤的y值越大粘结性越好,而且,当煤的Vdaf为30%左右时,y值出现最大值,Vdaf小于13%和大于50%的煤y值都几乎为零;y 值对中等粘结性和较强粘结性烟煤都有较好的区分能力。
奥亚膨胀度(最大膨胀度b值):为国际上最通用的一种测定煤膨胀性和结焦性的方法,b值是专门用来区分肥煤和其它类型的一个重要指标,与胶质层最大厚度y值并列。
Vdaf小于28%的煤,b值大于150%的为肥煤;对Vdaf大于28%的煤,b值小于220%的为肥煤(当Vdaf小于37%时)或气肥煤(当Vdaf大于37%时)。
当按b值划分的煤类与按y值划分的煤类有矛盾时,则以y值确定的煤为准)
葛金焦型
煤的工业分析法:
煤的分析检验,根据目的不同,一般可分为工业分析法和元素分析法。
煤的工业分析又叫技术分析或实用分析,是评价煤的基本依据,它包括煤的水分,灰分,挥发分产率和固定碳四个指标的测定。
通常,水分,灰分,挥发分产率都直接测定,固定碳不作直接测定,而是用差减法进行计算。
有时也将上述四个测定项目叫做半工业分析,再加上煤的发热量和煤中全硫的测定,称为全工业分析。
煤的工业分析法:
煤的工业分析师了解煤的性质和用途的重要指标。
如水分和灰分高的煤,它的有机质含量就少,经济价值就小。
根据煤的灰分,水分,挥发分及其焦渣特征等指标,就可以比较可靠地算出煤的高位发热量和低位发热量。
煤中全硫分是确定炼焦用烟煤的重要指标。
对于合成氨工业,空气干燥基的固定碳含量(Fcad)是评价无烟煤用于制造合成气(半水煤气)是经济价值的一个重要指标。
煤的外在水分和全水分,不仅影响动力用煤的低位发热量,而且还与煤的运输与储存等都有十分密切的关系。
煤工业分析常用符号:
AD air dried 空干基
AR As received 收到基
DAF dry ash free 干燥无灰基
CSN crucible swell number
CV calorific value
DDPM dial divisions per minute
FC fixed carbon
HGI hardgrove grindability index
IM inherent moisture
Kcal/kg kilocalories per kilogram
M40 percentage of sample remaining over 40mm after a rotating drum test M10 percentage of sample under 10mm in size after a rotating drum test Max maximum
Mm millimeters
P phosphorus
PCI (coal for) pulverized coal injection
TM total moisture
TS total sulphur
VM volatile matter
A ash。