126条件概率与独立事件、二项分布
- 格式:doc
- 大小:56.50 KB
- 文档页数:2
§11.4 条件概率、二项分布【复习目标】独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。
【知识梳理】1. 条件概率叫作B 发生时A 发生的条件概率,用符号P (A |B )来表示,其公式为 2. 相互独立事件(1)一般地,对于两个事件A ,B ,如果有 ,则称A 、B 相互独立. (2)如果A 、B 相互独立,则 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有: . 3. 二项分布进行n 次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果: ;(2)每次试验“成功”的概率均为p ,“失败”的概率均为 ; (3)各次试验是 .用X 表示这n 次试验成功的次数,则P (X =k )= (k =0,1,2,…,n )若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为X ~B (n ,p ).【复习自测】1. 把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( )A.12B.14C.16D.182. 某一批花生种子,如果每粒发芽的概率都为45,那么播下4粒种子恰有2粒发芽的概率是( )A.16625B.96625C.192625D.2566253. 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.4.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.【合作探究】例1 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再取到不合格品的概率为________.例2 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.例3甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.【提升训练】1. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的编号)①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.2.某地有A 、B 、C 、D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的。
概率与统计中的条件概率与独立事件概率与统计是数学中的一个重要分支,广泛应用于各个领域,例如生物学、物理学、经济学等。
其中条件概率与独立事件是概率与统计中的两个重要概念。
本文将就条件概率与独立事件进行深入探讨。
一、条件概率条件概率是指在某个条件下事件发生的概率。
假设有两个事件A和B,那么在事件B发生的前提下,事件A发生的概率即为条件概率。
条件概率用P(A|B)表示,读作“A在B条件下发生的概率”。
在计算条件概率时,我们可以使用以下公式:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
举个例子来说明条件概率的计算方法。
假设有一批产品,其中有10个产品属于A型,90个产品属于B型。
现从中随机抽取一个产品,请问该产品是A型的概率是多少?首先,我们可以计算出产品是A型的概率,即 P(A) = 10 / (10 + 90) = 1/10 = 0.1。
接着,假设我们已知该产品是B型的条件下,它也是A型的概率记作 P(A|B)。
根据上述的条件概率公式,我们可以计算出P(A|B) = P(A∩B) / P(B)。
由于在已知产品是B型的前提下,它也是A型的概率为0,所以P(A∩B) = 0。
因此,P(A|B) = 0 / P(B) = 0。
可见,在已知产品是B型的情况下,该产品是A型的概率为0。
二、独立事件独立事件是指两个事件之间的发生没有相互影响,即一个事件的发生不会改变另一个事件的发生概率。
如果事件A和事件B是独立事件,那么它们的联合概率等于两个事件发生概率的乘积。
数学上,我们用P(A∩B) = P(A) * P(B)来表达事件A和事件B是独立事件。
在日常生活中,我们可以通过一个例子来理解独立事件的概念。
假设有一批骰子,我们分别投掷两次,A表示第一次投掷结果为1的事件,B表示第二次投掷结果为2的事件。
如果A和B是独立事件,那么它们的发生概率应为P(A∩B) = P(A) * P(B)。
条件概率与独立事件、二项分布、正态分布主标题:条件概率与独立事件、二项分布、正态分布副标题:为学生详细的分析条件概率与独立事件、二项分布、正态分布的高考考点、命题方向以及规律总结。
关键词:条件概率,独立事件,二项分布,正态分布 难度:3 重要程度:4考点剖析:1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题.命题方向:1.独立重复试验与二项分布是高中数学的重要内容,也是高考命题的热点,多以解答题的形式呈现,试题难度较大,多为中高档题目.2.高考对独立重复试验与二项分布的考查主要有以下几个命题角度: (1)已知二项分布,求二项分布列;(2)已知随机变量服从二项分布,求某种情况下的概率.规律总结:1个难点——对正态曲线的理解正态曲线指的是一个函数的图象,其函数解析式是φμ,σ(x)=12πσ·e -(x -μ)22σ2.正态曲线的性质告诉我们:(1)该函数的值域为正实数集的子集;(2)该函数图象关于直线x =μ对称,且以x 轴为渐近线;(3)解析式中前面有一个系数12πσ,后面是一个以e 为底数的指数函数的形式,幂指数为-(x -μ)22σ2,其中σ这个参数在解析式中的两个位置上出现,注意两者的一致性.2个注意点——掌握离散型随机变量分布列的注意点(1)分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为“事件”发生的概率;(2)要会根据分布列的两个性质来检验求得的分布列的正误. 3种方法——求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(2)由古典概型求出离散型随机变量的分布列;(3)由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列.知 识 梳 理1.条件概率及其性质条件概率的定义条件概率的性质 设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率(1)0≤P (B |A )≤1(2)若B ,C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A )2.事件的相互独立性设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 若事件A ,B 相互独立,则P (B |A )=P (B );事件A 与B ,A 与B ,A 与B 都相互独立.3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 4.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛a b φμ,σ(x )d x ,则称随机变量X 服从正态分布,记为X ~N (μ,σ2).函数φμ,σ(x)=,x∈R的图象(正态曲线)关于直线x=μ对称,在x=μ处达到峰值1σ2π.(2)正态总体三个基本概率值①P(μ-σ<X≤μ+σ)=0.682_6.②P(μ-2σ<X≤μ+2σ)=0.954_4.③P(μ-3σ<X≤μ+3σ)=0.997_4.导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
精锐教育学科教师辅导讲义讲义编号____________________一、条件概率1.定义设A 和B 为两个事件,0)(>A P ,那么,在“A 已发生”的条件下,B 发生的条件概率. )(A B P 读作A 发生的条件下B 发生的概率.)(A B P 定义为)()()(A P AB P A B P =。
由这个定义可知,对任意两个事件B A 、,若0)(>B P ,则有)()()(A P A B P AB P ⋅=.并称上式为概率的乘法公式. 2.(|)P B A 的性质:(1)非负性:对任意的Ω∈A . 1)(0≤≤A B P ; (2)规范性:1)(=ΩB P ;(3)可列可加性:如果是两个互斥事件,则)()()(A C P A B P A C B P +=⋃. 更一般地,对任意的一列两两部相容的事件),,2,1( =i A i ,有[])(11B A P B A U P i i i i ∑=∞=∞=3、例题例1、在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.例2、一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.4、练习1、抛掷一颗质地均匀的骰子所得的样本空间为{}6,5,4,3,2,1=S ,令事件{}5,3,2=A ,{}6,5,4,2,1=B ,求)(),(),(),(B A P AB P B P A P 。
2、一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求)(),(B A P AB P 。