江苏省南通市中考数学试卷及解析
- 格式:pdf
- 大小:510.22 KB
- 文档页数:18
南通数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 16B. 18C. 20D. 22答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个函数的解析式可能是?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x + 1)^2 - 2D. y = -(x + 1)^2 - 2答案:B4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为1, 2, 4,那么第四项可能是?A. 6B. 7C. 8D. 16答案:D6. 一个长方体的长、宽、高分别为3, 4, 5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A7. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 一个函数y = 2x + 3的图象经过点(-1, 1),那么这个函数的斜率是多少?A. 2B. 3C. 4D. 5答案:A9. 一个扇形的圆心角为60°,半径为4,那么它的面积是多少?A. 4πB. 8πC. 6πD. 12π答案:A10. 一个数列的前三项为2, 4, 8,那么第四项可能是?A. 10B. 12C. 16D. 32答案:D二、填空题(每题4分,共20分)11. 一个圆的直径为10,那么它的周长是______。
答案:20π12. 一个等差数列的前三项为2, 5, 8,那么它的公差是______。
答案:313. 一个函数y = kx + b的图象经过点(2, 6)和(3, 9),那么k和b的值分别是______和______。
答案:3和314. 一个长方体的长、宽、高分别为2, 3, 4,那么它的表面积是______。
江苏省南通市2021年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 计算,结果正确的是()A. 3B. 1C.D.【答案】C【解析】【分析】原式利用有理数的减法法则计算即可得到结果.【详解】解:,故选:C.【点睛】本题考查了有理数的减法,熟练掌握有理数的减法法则是解本题的关键.2. 据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A. B. C. D.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1370000用科学记数法表示为:1.37×106.故选:D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. B. C. D.【答案】B【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. ,选项计算错误,不符合题意;B. ,选项计算正确,符合题意;C.,选项计算错误,不符合题意;D. ,选项计算错误,不符合题意;故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.4. 以下调查中,适宜全面调查的是()A. 了解全班同学每周体育锻炼的时间B. 调查某批次汽车的抗撞击能力C. 调查春节联欢晚会的收视率D. 鞋厂检测生产的鞋底能承受的弯折次数【答案】A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:A、了解全班同学每周体育锻炼的时间适合全面调查,符合题意;B、调查某批次汽车的抗撞击能力适合抽样调查,不符合题意;C、调查春节联欢晚会的收视率适合抽样调查,不符合题意;D、鞋厂检测生产的鞋底能承受的弯折次数适合抽样调查,不符合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5. 如图,根据三视图,这个立体图形的名称是()A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选:A .【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.6. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A. 24 B. 20C. 10D. 5【答案】B 【解析】【分析】根据菱形的性质及勾股定理可直接进行求解. 【详解】解:如图所示:∵四边形ABCD 是菱形,BD=8,AC=6, ∴AC ⊥BD ,OA=OC=3,OD=OB=4,Rt △AOD 中,,∴菱形ABCD 的周长为:4×5=20, 故选B .【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.7. 《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组为( ) A B. C. D.【答案】D在【解析】【分析】本题的等量关系是:绳长=木长+4.5;木长=绳长+1,据此可列方程组求解.详解】解:设木长x尺,绳长y尺,【依题意得,故选:D.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A. B. C. D.【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案.【详解】解:解不等式,得:,解不等式,得:,∵不等式组只有3个整数解,即5,6,7,∴,故选:C.【点睛】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于的不等式组.9. 如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】分四段考虑,①点P在AD上运动,②点P在DC上运动,且点Q还未到端点B,③点P在DC 上运动,且点Q到达端点B,④点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.【详解】解:在Rt△ADE中AD=(cm),在Rt△CFB中,BC=(cm),AB=AE+EF+FB=15(cm),①点P在AD上运动,AP=t,AQ= t,即0,如图,过点P作PG⊥AB于点G,,则PG=(0),此时y=AQ PG=(0),图象是一段经过原点且开口向上的抛物线;②点P在DC上运动,且点Q还未到端点B,即13,此时y=AQ DE=(13),图象是一段线段;③点P在DC上运动,且点Q到达端点B,即15,此时y=AB DE=(15),图象是一段平行于x轴的水平线段;④点P在BC上运动,PB=31-t,即18,如图,过点P作PH⊥AB于点H,,则PH=,此时y=AB PH=(18),图象是一段线段;综上,只有D选项符合题意,故选:D.【点睛】本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,10. 平面直角坐标系中,直线与双曲线相交于A,B两点,其中点A在第一象限.设为双曲线上一点,直线,分别交y轴于C,D两点,则的值为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据直线与双曲线相交于A,B两点,其中点A在第一象限求得,,再根据为双曲线上一点求得;根据点A与点M的坐标求得直线AM解析式为,进而求得,根据点B与点M的坐标求得直线BM解析式为,进而求得,最后计算即可.【详解】解:∵直线与双曲线相交于A,B两点,∴联立可得:解得:或∵点A在第一象限,∴,.∵为双曲线上一点,∴.解得:.∴.设直线AM的解析式为,将点与点代入解析式可得:解得:∴直线AM的解析式为.∵直线AM与y轴交于C点,∴.∴.∴.∵,∴.设直线BM的解析式为,将点与点代入解析式可得:解得:∴直线BM的解析式为.∵直线BM与y轴交于D点,∴.∴.∴.∵,∴.∴=4.故选:B.【点睛】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 分解因式:______________【答案】.【解析】【分析】根据平方差公式分解即可.【详解】解:.故答案为.【点睛】本题考查了多项式因式分解,熟练掌握分解因式的方法是关键.的12. 正五边形每个内角的度数是_______.【答案】【解析】【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.13. 圆锥的母线长为,底面圆的半径长为,则该圆锥的侧面积为___________.【答案】【解析】【分析】利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可.【详解】解:依题意知母线长=2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故答案为:2π.【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.14. 下表中记录了一次试验中时间和温度的数据.若温度的变化是均匀的,则14分钟时的温度是___________℃.【答案】52【解析】【分析】根据表格中的数据,依据时间与温度的变化规律,即可用时间t的式子表示此时的温度T,利用一次函数的性质即可解决.【详解】解:设时间为t分钟,此时的温度为T,由表格中的数据可得,每5分钟,升高15℃,故规律是每过1分钟,温度升高3℃,函数关系式是T=3t+10;则第14分钟时,即t=14时,T=314+10=52℃,故答案为:52.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.15. 如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).【答案】.【解析】【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.【详解】解:如图,作PC⊥AB于点C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案为:.【点睛】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.16. 若m,n是一元二次方程的两个实数根,则的值为___________.【答案】3【解析】【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【点睛】本题考查了根与系数关系:若x1,x2是一元二次方程()的两根时,的,.也考查了一元二次方程的解.17. 平面直角坐标系中,已知点,且实数m,n满足,则点P到原点O的距离的最小值为___________.【答案】【解析】【分析】由已知得到点P的坐标为(,),求得PO=,利用二次函数的性质求解即可.【详解】解:∵,∴,则,∴点P的坐标为(,),∴PO=,∵,∴当时,有最小值,且最小值为,∴PO的最小值为.故答案为:.【点睛】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.18. 如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.【答案】.【解析】【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.【详解】解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,设AC=BC=a,∵∴,∴,∵∴∵∴∴∴设CE=x,则FE=在Rt△AFE中,∴解得,,(不符合题意,舍去)∴∵∴∴∴在Rt△BGE中,∴∴故答案为:.【点睛】此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)化简求值:,其中;(2)解方程.【答案】(1)原式=4;(2).【解析】【分析】(1)先用完全平方差公式与多项式乘法公式将原式化简为,再将已知条件代入即可;(2)根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1、检验依次进行求解即可.【详解】解:(1)==当时,原式==;(2),去分母得:,解得:,经检验,是原方程的解.则原方程的解为:.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.20. 如图,利用标杆测量楼高,点A,D,B在同一直线上,,,垂足分别为E,C.若测得,,,楼高是多少?【答案】楼高是9米.【解析】【分析】先求出AC的长度,由∥,得到,即可求出BC的长度.【详解】解:∵,,∴m,∵,,∴∥,∴△ADE∽△ABC,∴,∵,∴,∴;∴楼高是9米.【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题关键.21. 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1)___________,___________;(2)从方差的角度看,___________种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【答案】(1)a=88,b=90;(2)乙;(3)见解析【解析】【分析】(1)根据中位数、众数的意义求解即可;(2)根据数据大小波动情况,直观可得答案;(3)从方差、中位数、众数的比较得出答案.【详解】解:(1)甲品种西瓜测评得分从小到大排列处在中间位置的一个数是88,所以中位数是88,即a=88,将乙品种西瓜的测评得分出现次数最多的是90分,因此众数是90,即b=90,故答案为:a=88,b=90;(2)由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S乙2<S甲2,故答案为:乙;(3)小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.22. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)随机摸取一个小球的标号是奇数,该事件的概率为___________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.【答案】(1);(2).【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球和是5的情况,再利用概率公式求解即可求得答案;【详解】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,“摸出的小球标号是奇数”的概率为:;故答案为:.(2)画树状图得:∴共有16种等可能的结果,两次取出小球标号的和等于5的情况有4种;∴两次取出小球标号的和等于5的概率为:.【点睛】此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.【答案】(1)55°;(2).【解析】【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.24. A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:(元);去B超市的购物金额为:(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.【答案】(1)A商场y关于x的函数解析式:;B商场y关于x的函数解析式:;(2)当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【解析】【分析】(1)利用促销方式,分别写出A、B两商场促销活动的情况,注意需要写出分段函数;(2)小刚一次购物的商品原价超过200元,则可以确定B的函数解析式,再分段求出A函数的解析式,比较两函数值即可,注意分段讨论.【详解】解:(1)A商场y关于x的函数解析式:,即:;B商场y关于x的函数解析式:,即:;(2)∵小刚一次购物的商品原价超过200元∴当时,,令,,所以,当时,即,去B超市更省钱;当时,,令,,所以,当时,即,此时去A、B超市一样省钱;当时,即,去B超市更省钱;当时,即,去A超市更省钱;综上所述,当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意B 商场根据商品原价的取值范围分情况讨论.25. 如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【解析】【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3) 为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2) 位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:【点睛】本题考查了三角形内角和定理(三角形内角和为 )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边) .26. 定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数的“等值点”为(0,0),(2,2);(2)或;(3)或..【解析】【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求A(,),B(,),利用三角形面积公式列出方程求解即可;(3)由记函数y=x2-2(x≥m)的图象为W1,将W1沿x=m翻折后得到的函数图象记为W2,可得W1与W2的图象关于x=m对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数,令y=x,则,即,解得:,∴函数的“等值点”为(0,0),(2,2);(2)∵函数,令y=x,则,解得:(负值已舍),∴函数的“等值点”为A(,);∵函数,令y=x,则,解得:,∴函数的“等值点”为B(,);的面积为,即,解得:或;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于对称,∴函数W的解析式为,令y=x,则,即,解得:,∴函数的“等值点”为(-1,-1),(2,2);令y=x,则,即,当时,函数W的图象不存在恰有2个“等值点”的情况;当时,观察图象,恰有2个“等值点”;当时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴,整理得:,解得:.综上,m的取值范围为或.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.。
2024年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.3℃C.﹣5℃D.5℃2.(3分)2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为()A.158.2×109B.15.82×1010C.1.582×1011D.1.582×10123.(3分)计算×的结果是()A.9B.3C.3D.4.(3分)如图是一个几何体的三视图,该几何体是()A.球B.棱柱C.圆柱D.圆锥5.(3分)如图,直线a∥b,矩形ABCD的顶点A在直线b上,若∠2=41°,则∠1的度数为()A.41°B.51°C.49°D.59°6.(3分)红星村种的水稻2021年平均每公顷产7200kg,2023年平均每公顷产8450kg.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x,列方程为()A.7200(1+x)2=8450B.7200(1+2x)=8450C.8450(1﹣x)2=7200D.8450(1﹣2x)=72007.(3分)将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为()A.(﹣4,﹣1)B.(﹣4,2)C.(2,1)D.(2,﹣2)8.(3分)“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,n(m>n).若小正方形面积为5,(m+n)2=21,则大正方形面积为()A.12B.13C.14D.159.(3分)甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为20km.两人前进路程s(单位:km)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是()A.甲比乙晚出发1h B.乙全程共用2hC.乙比甲早到B地3h D.甲的速度是5km/h10.(3分)在△ABC中,∠B=∠C=α(0°<α<45°),AH⊥BC,垂足为H,D是线段HC上的动点(不与点H,C重合),将线段DH绕点D顺时针旋转2α得到线段DE.两位同学经过深入研究,小明发现:当点E落在边AC上时,点D为HC的中点;小丽发现:连接AE,当AE的长最小时,AH2=AB•AE 请对两位同学的发现作出评判()A.小明正确,小丽错误B.小明错误,小丽正确C.小明、小丽都正确D.小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)分解因式:ax﹣ay=.12.(3分)已知圆锥底面半径为2cm,母线长为6cm,则该圆锥的侧面积是cm2.13.(4分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根.请写出一个满足题意的k的值:.14.(4分)社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为60°,BC=6m,则旗杆AC的高度为m.15.(4分)若菱形的周长为20cm,且有一个内角为45°,则该菱形的高为cm.16.(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5.正方形DEFG的边长为,它的顶点D,E,G分别在△ABC的边上,则BG的长为.18.(4分)平面直角坐标系xOy中,已知A(3,0),B(0,3).直线y=kx+b(k,b为常数,且k>0)经过点(1,0),并把△AOB分成两部分,其中靠近原点部分的面积为,则k的值为.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:2m(m﹣1)﹣m(m+1);(2)解方程﹣1=.20.(10分)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A 2.0≤t<3.47B 3.4≤t<4.8mC 4.8≤t<6.2nD 6.2≤t<7.66E7.6≤t<9.02合计50根据上述信息,解答下列问题:(1)m=,n=;(2)这50个家庭去年月均用水量的中位数落在组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21.(10分)如图,点D在△ABC的边AB上,DF经过边AC的中点E,且EF=DE.求证:CF∥AB.22.(10分)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23.(10分)如图,△ABC中,AB=3,AC=4,BC=5,⊙A与BC相切于点D.(1)求图中阴影部分的面积;(2)设⊙A上有一动点P,连接CP,BP.当CP的长最大时,求BP的长.24.(12分)某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二A型机器人每台每天可分拣快递22万件;B型机器人每台每天可分拣快递18万件.(1)求A、B两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25.(13分)已知函数y=(x﹣a)2+(x﹣b)2(a,b为常数).设自变量x取x0时,y取得最小值.(1)若a=﹣1,b=3,求x0的值;(2)在平面直角坐标系xOy中,点P(a,b)在双曲线y=﹣上,且x0=.求点P到y轴的距离;(3)当a2﹣2a﹣2b+3=0,且1≤x0<3时,分析并确定整数a的个数.26.(13分)综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线AD的长∠BAD的度数腰长两腰之和两腰之积图①160°244图②145°2图③130°请补全表格中数据,并完成以下猜想.已知△ABC的角平分线AD=1,AB=AC,∠BAD=α,用含α的等式写出两腰之和AB+AC与两腰之积AB•AC之间的数量关系:.【变式思考】(2)已知△ABC的角平分线AD=1,∠BAC=60°,用等式写出两边之和AB+AC与两边之积AB•AC 之间的数量关系,并证明.【拓展运用】(3)如图④,△ABC中,AB=AC=1,点D在边AC上,BD=BC=AD.以点C为圆心,CD长为半径作弧与线段BD相交于点E,过点E作任意直线与边AB,BC分别交于M,N两点.请补全图形,并分析+的值是否变化?2024年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果零上2℃记作+2℃,那么零下3℃记作﹣3℃.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.【分析】根据科学记数法表示数的方法,对所给较大数进行表示即可.【解答】解:由题知,1582亿=1582×108=1.582×103×108=1.582×1011.故选:C.【点评】本题主要考查了科学记数法﹣表示较大的数,熟知科学记数法表示较大数的方法是解题的关键.3.【分析】根据二次根式的乘法法则对所给算式进行计算即可.【解答】解:.故选:B.【点评】本题主要考查了二次根式的乘除法及二次根式的性质与化简,熟知二次根式的乘法法则是解题的关键.4.【分析】结合三视图与原几何体的关系即可解决问题.【解答】解:由所给三视图可知,该几何体为圆锥.故选:D.【点评】本题主要考查了由三视图判断几何体,熟知常见几何体的三视图是解题的关键.5.【分析】根据矩形的性质得出∠B=90°,再结合平行线的性质即可解决问题.【解答】解:延长CB与直线b交于点M,∵a∥b,∠2=41°,∴∠BMA=∠2=41°.∵四边形ABCD是矩形,∴∠ABC=90°,∴∠1+∠BMA=90°,∴∠1=90°﹣41°=49°.故选:C.【点评】本题主要考查了矩形的性质及平行线的性质,熟知矩形的性质及平行线的性质是解题的关键.6.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【解答】解:由题意可得,7200(1+x)2=8450,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.7.【分析】先求出抛物线的顶点坐标,再结合所给平移方式即可解决问题.【解答】解:因为y=x2+2x﹣1=(x+1)2﹣2,所以抛物线y=x2+2x﹣1的顶点坐标为(﹣1,﹣2),所以将此抛物线向右平移3个单位长度后,所得新抛物线的顶点坐标为(2,﹣2).故选:D.【点评】本题主要考查了二次函数图象与几何变换及二次函数的性质,能根据所给二次函数解析式得出抛物线的顶线坐标及熟知平移时点的坐标变化规律是解题的关键.8.【分析】依据题意,由中间小正方形的边长为(m﹣n),根据勾股定理以及题目给出的已知数据即可求出大正方形的面积为(m2+n2),进而可以得解.【解答】解:由题意可知,中间小正方形的边长为m﹣n,∴(m﹣n)2=5,即m2+n2﹣2mn=5①,∵(m+n)2=21,∴m2+n2+2mn=21②,①+②得2(m2+n2)=26,∴大正方形的面积为:m2+n2=13,故选:B.【点评】本题主要考查了勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.【分析】根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.【解答】解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选:D.【点评】本题考查了函数的图象,培养学生观察图象的能力,分析解决问题的能力,要培养学生视图知信息的能力.10.【分析】根据等腰三角形的性质和旋转的性质即可判断小明的发现正确;当AE的长最小时,AE⊥AC,根据等腰三角形的性质和相似三角形的性质即可判断小丽的发现正确.【解答】解:小明的发现:当点E落在边AC上时,点D为HC的中点.当E落在AC上时,根据旋转的定义,DE与DH形成的角度为2α.∵AB=AC,∴∠B=∠C,这意味着小明的发现是正确的.首先,要确定AE的长度何时最小.根据题目条件,当E落在AC上时,根据小明的发现,D是HC的中点.此时,E与A,H三点共线,AE的长度达到最小.当E与A,H三点共线时,△AHE与△ABC相似.∴,∵HE=HC﹣HD=,∵D是HC的中点,并且AH是△ABC的高,∴AH2=AB•HE,∵HE=AE,当E与A,H三点共线时,AH2=AB•AE成立,∴小丽发现也是正确的.故选:C.【点评】本题考查了等腰三角形的性质和旋转的性质,相似三角形的判定和性质,熟练掌握性质定理是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.【分析】本题属于因式分解中的基础题,观察多项式的特点,直接运用提公因式法提取公因式a即可分解因式.【解答】解:ax﹣ay=a(x﹣y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.12.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×6÷2=12πcm2.故答案为:12π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.13.【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣4k>0,解之即可得出k值.【解答】【点评】【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴Δ=(﹣2)2﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了一元二次方程根的判别式,熟练掌握“当Δ>0时,方程有两个不相等的实数根”是解题的关键.14.【分析】依据题意,直接利用锐角三角函数关系即可计算得解.【解答】解:由题意可得:BC=6m,又tan60°===,∴AC=6m.故答案为:6.【点评】本题主要考查了解直角三角形的应用﹣仰角俯角,解题时要熟练掌握并能灵活运用是关键.15.【分析】根据题意画出图形,再利用45°特殊直角三角形求出菱形的高.【解答】解:过点C作CE⊥AD于点E,∵周长为20cm,∴CD=5cm,∵∠BCD=45°,∴∠CDE=45°,∴高=CE=cm,故答案为:.【点评】本题考查了菱形的性质,掌握菱形的性质是解题的关键.16.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.17.【分析】过点G作GH⊥AC于点H,证明△ABC是等腰直角三角形,△AGH是等腰直角三角形,证明△DGH≌△DEC(AAS),得GH=DC,DH=CE,设AH=HG=DC=a,DH=CE=b,得2a+b=5,a2+b2=()2,求出a的值,进而可以解决问题.【解答】解:如图,过点G作GH⊥AC于点H,∵∠ACB=90°,AC=BC=5,∴△ABC是等腰直角三角形,∴∠A=45°,AB=AC=5,∵GH⊥AC,∴△AGH是等腰直角三角形,∴AH=HG,AG=AH,∵四边形DEFG是正方形,∴DG=DE,∠GDE=90°,∴∠GDH=90°﹣∠EDC=90°﹣∠DGH=∠DEC,在△DGH和△DEC中,,∴△DGH≌△DEC(AAS),∴GH=DC,DH=CE,∴AH=HG=DC,设AH=HG=DC=a,DH=CE=b,∵正方形DEFG的边长为,∴DE=,∵AC=AH+DH+DC,DC2+CE2=DE2,∴2a+b=5,a2+b2=()2,将b=5﹣2a代入a2+b2=()2整理得:a2﹣4a+4=0,解得a=2(负值已经舍去),∴AH=a=2,∴AG=AH=2,∴BG=AB﹣AG=5﹣2=3,故答案为:3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理,代入法解二元二次方程,解一元二次方程,解决本题的关键是准确作出辅助线构造全等三角形.18.【分析】将点(1,0)代入直线y=kx+b,将b用k表示出来,利用待定系数法求出AB所在直线的函数关系式,求出它们的交点坐标;根据三角形面积公式求出远离原点部分的面积,从而求出k的值即可.【解答】解:如图,设AB与直线y=kx+b交于点P.设AB所在直线的函数关系式为y=k1x+b1(k1、b1为常数,且k1≠0).将坐标A(3,0)和B(0,3)分别代入y=k1x+b1,得,解得,∴AB所在直线的函数关系式为y=﹣x+3.将点(1,0)代入y=kx+b,得k+b=0,解得b=﹣k,∴直线y=kx+b为y=kx﹣k.,解得,∴P(,),=×3×3=,∵S Rt△AOB∴远离原点部分的面积为﹣=,∴×(3﹣1)×=,∴k=.故答案为:.【点评】本题考查一次函数图象上点的坐标特征,利用待定系数法求函数关系、求出交点坐标、掌握三角形的面积公式是解题的关键.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)根据单项式乘多项式的法则进行计算;(2)根据解分式方程的步骤进行计算.【解答】解:(1)2m (m ﹣1)﹣m (m +1)=m 2﹣2m ﹣m 2﹣m=﹣3m ;(2)﹣1=,3x ﹣(3x +3)=2x ,3x ﹣3x ﹣3=2x ,∴x =,经检验,x =是原方程的解.【点评】本题考查了单项式乘多项式,解分式方程,掌握运算法则是解题的关键.20.【分析】(1)依据题意得,C 组的频数n =×50=15,从而B 组的频数m =50﹣7﹣15﹣6﹣2=20,进而可以判断得解;(2)依据题意,根据中位数的意义,由50÷2=25,可得中位数是第25个数和第26个数的平均数,结合A 组频数为7,B 组频数为20,故可判断得解;(3)依据题意,由50个家庭中去年月均用水量小于4.8吨的家庭数有7+20=27(户),进而可以判断得解.【解答】解:(1)由题意得,C 组的频数n =×50=15.∴B 组的频数m =50﹣7﹣15﹣6﹣2=20.故答案为:20;15.(2)由题意,根据中位数的意义,∵50÷2=25,∴中位数是第25个数和第26个数的平均数.又∵A 组频数为7,B 组频数为20,∴这50个家庭去年月均用水量的中位数落在B 组.故答案为:B .(3)由题意,∵50个家庭中去年月均用水量小于4.8吨的家庭数有7+20=27(个),∴该小区有1200个家庭估计去年月均用水量小于4.8吨的家庭数有:1200×=648(个).【点评】本题主要考查了中位数、用样本估计总体、频数(率)分布表、加权平均数,解题时要熟练掌握并能灵活运用是关键.21.【分析】证明△ADE≌△CFE(SAS),得出∠ADE=∠CFE,得到CF∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠ADE=∠CFE,∴CF∥AB.【点评】本题考查了平行线的判定,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.22.【分析】(1)甲在2号出入口开展志愿服务活动的概率为;(2)根据题意画出树状图,得出概率.【解答】解:(1)P(甲在2号出入口开展志愿服务活动)=,故答案为:;(2)∵一共有16种情况,甲、乙两人在同一出入口开展志愿服务活动有4种情况,∴P(甲、乙两人在同一出入口开展志愿服务活动)=.【点评】本题考查了概率,掌握树状图法是解题的关键.23.【分析】(1)计算得出△ABC的面积和扇形的面积,作差得到阴影部分的面积;(2)当C,A,P三点共线时,CP的长最大,通过勾股定理得出BP的长.【解答】解:(1)∵AB=3,AC=4,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∵⊙A与BC相切于点D,∴AD=,S=S△ABC﹣S扇形=;(2)当C,A,P三点共线时,CP的长最大,∵AP=,AB=3,∴BP=.【点评】本题考查了切线的性质,勾股定理,扇形面积的计算等,掌握综合知识是解题的关键.24.【分析】(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,根据题意列出方程组,计算结果;(2)设购买A型智能机器人a台,则购买B型智能机器人(10﹣a)台,先求出a的取值范围,再得出每天分拣快递的件数=22a+18(10﹣a)=4a+180,当a取得最大值时,每天分拣快递的件数最多.【解答】解:(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,∴,∴,答:A型智能机器人的单价为80万元,B型智能机器人的单价为60万元;(2)设购买A型智能机器人a台,则购买B型智能机器人(10﹣a)台,∴80a+60(10﹣a)≤700,∴a≤5,∵每天分拣快递的件数=22a+18(10﹣a)=4a+180,∴当a=5时,每天分拣快递的件数最多为200万件,∴选择购买A型智能机器人5台,购买B型智能机器人5台.【点评】本题考查了一元一次不等式的应用,二元一次方程组的应用,掌握二元一次方程组,一元一次不等式的应用是解题的关键.25.【分析】(1)利用求抛物线对称轴公式即可求得答案;(2)根据题意得b=﹣,代入y=(x﹣a)2+(x﹣b)2,再根据抛物线对称轴公式建立方程求解即可;(3)由题意得b=,代入y=(x﹣a)2+(x﹣b)2,用含a的代数式表示x0,再根据题意列不等式组求解即可.【解答】解:(1)若a=﹣1,b=3,则y=(x+1)2+(x﹣3)2=2x2﹣4x+10,∵当x=﹣=1时,y取得最小值,∴x0=1;(2)∵点P(a,b)在双曲线y=﹣上,∴b=﹣,∴y=(x﹣a)2+(x+)2=2x2﹣(2a﹣)x+a2+,∵x0=﹣=,∴a1=2,a2=﹣1,当a=2时,点P到y轴的距离为2;当a=﹣1时,点P到y轴的距离1;综上所述,点P到y轴的距离为2或1;(3)∵a2﹣2a﹣2b+3=0,∴b=,由题意得:x0==,∵1≤x0<3,∴1≤<3,整理得:1≤a2<9,∴﹣3<a≤﹣1或1≤a<3,∵a为整数,∴a=﹣2或﹣1或1或2,共4个.【点评】本题是函数综合题,考查了二次函数的性质,反比例函数性质,解不等式组等,理解题意,熟练运用二次函数的性质是解题关键.26.【分析】(1)根据等腰三角形性质可得AD⊥BC,再运用解直角三角形即可求得答案;(2)过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G,运用等腰三角形性质可得DF=S△ABD+S△ACD,即可求得答案;=DE=,利用S△ABC(3)根据题目要求画图,设∠A=α,运用等腰三角形性质和三角形内角和定理可求得α=36°,过点E=S△BEM+S△BEN,即可求得答案.作EF⊥AB于F,EH⊥BC于H,过点N作NG⊥AB于G,利用S△BMN【解答】解:(1)如图③,∵AB=AC,AD平分∠BAC,∴AD⊥BC,在Rt△ABD中,AB===,∴AC=AB=,两腰之和为AB+AC=,两腰之积为AB•AC=×=,猜想:AB+AC=2,证明:如图,∵AB=AC,AD平分∠BAC,∴AD⊥BC,在Rt△ABD中,AB==,∴AB+AC=,AB•AC=,∴AB+AC=2AB•AC•cosα;故答案为:,,,AB+AC=2AB•AC•cosα;(2)AB+AC=AB•AC.证明:如图,过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G,则DE=AD•sin∠BAD=1×sin30°=,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE=,在Rt△ACG中,CG=AC•sin∠BAC=AC•sin60°=AC,=S△ABD+S△ACD,∵S△ABC∴AB•AC=AB•+AC•,∴AB•AC=AB+AC;(3)补全图形如图所示:设∠A=α,∵BD=AD,∴∠ABD=∠A=α,∴∠BDC=∠ABD+∠A=2α,∵BD=BC,∴∠BCD=∠BDC=2α,∵AB=AC,∴∠ABC=∠ACB=2α,∵∠A+∠ABC+∠ACB=180°,∴α+2α+2α=180°,解得:α=36°,∴∠A=∠ABD=∠CBD=36°,如图,过点E作EF⊥AB于F,EH⊥BC于H,过点N作NG⊥AB于G,∵S △BMN =S △BEM +S △BEN ,∴BM •NG =BM •EF +BN •EH ,∵∠ABD =∠CBD ,EF ⊥AB ,EH ⊥BC ,∴EF =EH ,∴BM •BN •sin72°=(BM +BN )•EH ,∴==+,∵=sin ∠CBD =sin36°,∴EH =BE •sin36°,∴+=,∵BE 为定长,sin36°和sin72°为定值,∴为定值,即+为定值.【点评】本题是几何综合题,考查了等腰三角形性质,角平分线性质,三角形面积,解直角三角形,添加辅助线构造直角三角形是解题关键。
123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是无理数?A. 2B. 2.5C. √2D. 0.5答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 1D. -1答案:A3. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 14D. 16答案:C4. 计算(2x-1)-(3x+2)的结果是:A. -x-3B. -x+1C. x-3D. x+1答案:A5. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C6. 已知一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 常数函数答案:A7. 一个圆的半径是4,那么这个圆的面积是:A. 16πB. 64πC. 12πD. 8π答案:B8. 计算(-2)^3的结果是:A. -8B. 8C. -6D. 6答案:A9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算2^2 * 3^3的结果是:A. 36B. 72C. 108D. 216答案:D二、填空题(每题3分,共15分)1. 一个数的立方等于27,那么这个数是______。
答案:32. 一个角的补角是120°,那么这个角的度数是______。
答案:60°3. 一个数的平方根是4,那么这个数是______。
答案:164. 一个数的倒数是1/2,那么这个数是______。
答案:25. 一个数的绝对值是5,那么这个数可以是______。
答案:5或-5三、解答题(每题10分,共55分)1. 解方程:2x - 3 = 7。
答案:x = 52. 已知一个矩形的长是10,宽是6,求这个矩形的面积。
答案:603. 已知一个直角三角形的两个直角边长分别是3和4,求斜边的长度。
南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。
()2. 负数的平方是正数。
()3. 所有的偶数都是2的倍数。
()4. 两个负数相乘得到正数。
()5. 所有的正方形都是矩形。
()三、填空题1. 2的平方是______。
2. 若 a = 3,b = -2,则 a + b = ______。
3. 下列图形中,______是轴对称图形。
4. 若 3x + 5 = 14,则 x = ______。
5. 下列数中,______是素数。
四、简答题1. 解释什么是负数。
2. 解释什么是平行四边形。
3. 解释什么是无理数。
4. 解释什么是代数式。
5. 解释什么是因数分解。
五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
3. 若 2x 3 = 7,求 x 的值。
4. 一个数的平方是16,求这个数。
5. 列出所有的2的倍数,从1到10。
六、分析题1. 解释为什么负数的平方是正数。
2. 解释为什么所有的偶数都是2的倍数。
七、实践操作题1. 画出一个边长为5cm的正方形。
2. 画出一个半径为3cm的圆。
八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。
2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。
江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(•南通)下列各数中,小于﹣3的数是()A.2B.1C.﹣2 D.﹣4考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解答:解:A、2>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选D.点评:本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.2.(3分)(•南通)某市参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于85000有5位,所以可以确定n=5﹣1=4.解答:解:85 000=8.5×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(•南通)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、本选项不能合并,错误;B、利用同底数幂的除法法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选C.点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(3分)(•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.解答:解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选B.点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.(3分)(•南通)函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2考点:函数自变量的取值范围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解解:根据题意得:x﹣1>0,答:解得:x>1.故选A.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)(•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.(3分)(•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm考点:圆锥的计算分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.解答:解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5 ∴扇形的半径为5cm,故选B.点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.9.(3分)(•南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个考点:一次函数的应用专题:压轴题.分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选A.点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.(3分)(•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5 C.3D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(•南通)若反比例函数y=的图象经过点A(1,2),则k=2.考点:反比例函数图象上点的坐标特征专压轴题.题:分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.解答:解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(3分)(•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.考点:垂线;对顶角、邻补角分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.解答:解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.13.(3分)(•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.(3分)(•南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AC=2CD=4,则sinB==.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.15.(3分)(•南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是2.8.考点:方差;众数分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.解答:解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)(•南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(3分)(•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.(3分)(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.考点:二次函数的性质专题:压轴题.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6=(﹣3)2+4×(﹣3)+6=3.故答案为3.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(•南通)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.考点:分式的化简求值;零指数幂;二次根式的混合运算分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先通分,然后进行四则运算,最后将m=1代入.解答:解:(1)=÷÷1﹣3=﹣3;(2)=•=,当m=1时,原式=﹣.点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;(2)解答此题的关键是把分式化到最简,然后代值计算.20.(9分)(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C (﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.21.(8分)(•南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.考点:条形统计图;扇形统计图分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;(2)求得C等级苹果的重量,补全统计图;(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.解答:解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg),将条形图补充为:(3)×360°=90°.故C等级苹果所对应扇形的圆心角为90度.故答案为:4000,90.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(•南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)①(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?考点:列表法与树状图法分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为不放回;(3,2).点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.23.(8分)(•南通)若关于x的不等式组恰有三个整数解,求实数a的取值范围.考点:一元一次不等式组的整数解分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:解:解+>0,得x>﹣;解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.∵关于x的不等式组恰有三个整数解,∴2<2a≤3,解得1<a≤.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(8分)(•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=BC,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.25.(8分)(•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O 的切线AP与OC的延长线相交于点P,若PA=cm,求AC的长.考点:切线的性质分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,在Rt△OAP中,求出OA,即可求出答案.解答:解:∵AB是⊙O直径,∴∠ACB=90°,∵∠BAC=2∠B,∴∠B=30°,∠BAC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,AC=OA,∵PA是⊙O切线,∴∠OAP=90°,在Rt△OAP中,PA=6cm,∠AOP=60°,∴OA===6,∴AC=OA=6.点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.26.(8分)(•南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(13分)(•南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.考点:相似形综合题分析:(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤,△DEF在△ABC内部,如答图3所示;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示;③若<a<3,点E、F均在△ABC外部,如答图5所示.解答:解:(1)由题意得:tanA===,∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.如答图1所示,过点E作EH⊥AC于点H,则EH=DE•sin∠CDE=a•=a.∴点E到AC的距离为一个常数.(2)若AD=,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=.∴GE=DE﹣DG=2﹣=.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=,MN=GE=.∴T=DE+DM+MN+NE=2+++=.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤,△DEF在△ABC内部,如答图3所示:∴T=3a;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示:设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;③若<a<3,点E、F均在△ABC外部,如答图5所示:设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,∴PC=CD•tan60°=×=.∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.由(1)知,点E到AC的距离为a,∴PQ=a﹣.∴QE=PQ•tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.由②可知,四边形MDEN的周长为2a+.∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a﹣)=a+﹣.综上所述,若点D运动到AC的中点处,T的关系式为:T=.点评:本题考查了运动型综合题,新颖之处在于所求是重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.28.(13分)(•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B (x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.21 / 21。
2022年江苏南通中考数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若气温零上2 ℃记作+2 ℃,则气温零下3 ℃记作()A.-3 ℃B.-1 ℃C.+1 ℃D.+5 ℃2.下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A B C D3.沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39 000 000 000元,将39 000 000 000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1 cmB.2 cmC.3 cmD.4 cm5.如图是由5个相同的正方体搭成的立体图形,则它的主视图为()A B C D6.李师傅家的超市今年1月盈利3 000元,3月盈利3 630元。
若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%7.如图,a∥b,∠3=80°,∠1-∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°8.根据图象,可得关于x的不等式kx>-x+3的解集是()A.x<2B.x>2C.x<1D.x>19.如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为()A B C D10.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+ (m+2n)(m-2n)的最大值为()A.24B.443C.163D.-4二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是(填“全面调查”或“抽样调查”).12.分式2x−2有意义,则x应满足的条件是.13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
2022年江苏省南通市中考数学优质试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,已知 PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,DB ⊥PC 于点B ,DB=3 ㎝,PB=4cm ,则⊙O 的直径为( ) A .10 cmB .12 cmC .16 cmD .20 cm2.某人沿坡度为 26°的斜坡行进了 100 米,他的垂直高度上升了( ) A .0100sin 6米B .0100cos 26米C .0100tan 26米D .100tan 26米3.在 Rt △ABC 中,∠C= 90°,若2cos 3A =,则sinA 的值为( ) A .35B .52C .255D .534. 如图,大半圆的弧长1l 与n 个不相等的小半圆弧长的和2l 之间钓关系是( ) A .12l l <B .12l l =C .12l l >D .12l nl =5.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于0A 对称,则P 1,0,P 2三点所构成的三角形是( ) A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形6.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生 7.下列条件中,不能作出唯一..三角形的是( ) A .已知两边和夹角B .已知两边和其中一边的对角C .已知两角和夹边D .已知两角和其中一角的对边8.国家游泳中心——“水立方”是北京2008年奥运会场馆之-,它的外层膜的展开面积约为260 000平方米,用科学记数法表示260000,并保留二个有效数字,结果可表示为 ( ) A.26 B .26×104 C.2.6×105 D.2.6×106 9.观察右图,寻找规律.在“?”处填上的数字是 ( )A .128B .136C .162D .18810.计算 18÷6÷2 时,下列各式中错误的是( ) A .111862⨯⨯B . 18÷ (6÷2)C .18÷(6×2)D .(l8÷6)÷2二、填空题11.如图,PA 是⊙O 的切线,切点为A , PA=23,∠APO=30°,则⊙O 的半径长为 .12.在半径为 1 的圆中,长度为2的弦所对的劣弧是 度.13.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对.14.已知一个样本容量为40的样本,把它分成七组,•第一组到第五组的频数分别为5,12,8,5,6,第六组的频率为0.05,第七组的频率为______.15.定理“到一条线段两端点距离相等的点,在这条线段的垂直平分线上”的逆定理是 . 16. 如图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为 .17.在△ABC 和△DEF 中,AB=4,,∠A=35°,∠B =70°, DE=4 ,∠D = ,∠E=70°,根据 判定△ABC ≌△DEF.OEFABCDE FG 1218.某商场降价销售一批服装,打八折后售价为 120 元,则原售价是 元. 19.把方程0.10.2x 110.30.7x +--=中的分母化为整数,得 . 20.已知,|x|=5,y=3,则=-y x .三、解答题21.如图,在学校的操场上,有一株大树和一根旗杆.(1)请根据树在阳光照射下的影子,画出旗杆的影子(用线段表示); (2)若此时大树的影长 6m ,旗杆高 4m ,影5m ,求大树的高度.22.已知,如图,AB 是⊙O 的直径,点 P 在BA 的延长线上,PD 切⊙O 于点 C ,BD ⊥PD ,垂足为D ,连结 BC.求证: (1)BC 平分∠PBD ; (2)2BC AB BD =⋅23.填空:已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,交AB 于G ,交CA 延长线于E ,∠1=∠2. 求证:AD 平分∠BAC ,(填写分析和证明中的空白).分析:要证明AD 平分∠BAC ,只要证明 = ,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC 的两条垂线可推出 ∥ ,这时再观察这两对角的关系已不难得到结论.证明:∵AD ⊥BC ,EF ⊥BC (已知) ∴ ∥ ( )∴ _= __(两直线平行,内错角相等),_= _(两直线平行,同位角相等)∵ (已知)∴,即AD平分∠BAC()24.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲802808802800795801798797798799乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量;(2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?25.某包装盒的形状是直四棱柱,底面为长方形,其尺寸如图所示(单位:分米),现要制作1000个这样的包装盒,问至少需要包装材料多少平方米(不计接缝材料).26.如图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.27.计算:(1) 2(2)(1)(1)x x x+-+-;(2)2 (() 22x x xx x x--⋅-+.28.有一个两位数,个位上的数字与十位上的数字之和是11,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大9,求原来的两位数.29.转动如图所示的转盘,判断下列事件是不可能事件、不确定事件还是必然事件?(1)指针指到5;(2)指针指到0;(3)指针指到的数字是1~5中的任何一个数.30.2004年7月至lO月间哈尔滨市和南京市的月平均气温如下表:月份78910哈尔滨(℃)2321146南京(℃)27292418(1)?哪个月最低?(2)两市中哪个市的气温下降更快?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.B5.D6.B7.B8.C9.C10.B二、填空题11. 212.9013.614.0.0515.线段垂直平分线上的点到这条线段两端点的距离相等16.-3117.35°, ASA18.15019.101210137x x +--=20. 2或-8三、解答题 21.(1)AB 为旗杆的影子;(2)设大树高 x(m).则465x =,x=4.8 答:大树的高度是4.8 m22.(1)连结 OC .∵ PD 切⊙O 于C ,∴OC ⊥PD ,∵BD ⊥PD , BD ∥OC ,∴∠1 =∠OCB ∵OC=OB ,∴∠2=∠OCB ,∴∠1=∠2,∴BC 平分∠PBD(2)连结AC.∵AB 是⊙O直径,∴∠ACB=∠D=90°,又∵∠1=∠2,∴△ABC∽△CBD,∴AB BCBC BD=,∴2BC AB BD=⋅.23.∠BAD=∠CAD,EF∥AD,EF∥AD,在同一平面内,垂直于同一条直线两直线平行,∠1=∠BAD,∠2=∠CAD,∠1=∠2,∠BAD=∠CAD,角平分线的定义.24.(1)800x=甲kg,796.5x=乙kg;(2)甲的产量较为稳定;(3)甲种早稻较为优良25.520平方米26.120°27.(1)45x+;(2)42 x+28.设这个两位数十位上、个位上的数字分别是x、y,则11(10)(10x)9x yy x y+=⎧⎨+-+=⎩,解这个方程组得56xy=⎧⎨=⎩,经检验,符合题意,答:这个两位数是 5629.(1)不确定事件;(2)不可能事件;(3)必然事件.30.(1)平均气温南京高.哈尔滨7月份最高,10月份最低;南京8月份最高,10月份最低.(2)两市中哈尔滨市的气温下降更快。
南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。
7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。
8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。
三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。
10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。
绝密★启用前2023年江苏省南通市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.计算(−3)×2,正确的结果是( )A. 6B. 5C. −5D. −62.2023年5月21日,以“聚力新南通、奋进新时代”为主题的第五届通商大会暨全市民营经济发展大会召开,40个重大项目集中签约,计划总投资约41800000000元,将41800000000用科学记数法表示为( )A. 4.18×1011B. 4.18×1010C. 0.418×1011D. 418×1083.如图所示的四个几何体中,俯视图是三角形的是( )A. 三棱柱B. 圆柱C. 四棱锥D. 圆锥4.如图,数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,则表示数√ 10的点应在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE上5.如图,△ABC中,∠ACB=90°,顶点A,C分别在直线m,n上,若m//n,∠1=50°,则∠2的度数为( )A. 140°B. 130°C. 120°D. 110°6.若a2−4a−12=0,则2a2−8a−8的值为( )A. 24B. 20C. 18D. 167.如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为( )A. 140√ 3mB. 160√ 3mC. 180√ 3mD. 200√ 3m8.如图,四边形ABCD是矩形,分别以点B,D为圆心,线段BC,DC长为半径画弧,两弧相交于点E,连接BE,DE,BD.若AB=4,BC=8,则∠ABE的正切值为( )A. 43B. 45C. 34D. 359.如图1,△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A−C−B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图2所示,则a−b 的值为( )A. 54B. 52C. 50D. 4810.若实数x,y,m满足x+y+m=6,3x−y+m=4,则代数式−2xy+1的值可以是( )A. 3B. 52C. 2 D. 32二、填空题(本大题共8小题,共30.0分)11.计算3√ 2−√ 2=______ .12.分解因式:a2−ab=______.13.如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则S△ADES△ABC=______ .14.某型号汽车行驶时功率一定,行驶速度v(单位:m/s)与所受阻力F(单位:N)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为30m/s,则所受阻力F为______ N.15.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DAB=66°,则∠ACD=______ 度.16.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中a,b均小于c,a=12m2−12,c=12m2+12,m是大于1的奇数,则b=______ (用含m的式子表示).17.已知一次函数y=x−k,若对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,则k的取值范围是______ .18.如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是______ .三、解答题(本大题共8小题,共90.0分。
江苏省南通市通州区2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.345.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.46.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣727.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)9.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或2310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.12.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.13.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.16.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.三、解答题(共8题,共72分)17.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.20.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22.(10分)计算:2cos30°+27-33--(12)-2 23.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.24.如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.2、D【解题分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【题目详解】分两种情况讨论:①当点P顺时针旋转时,BP2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【题目点拨】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.3、D【解题分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【题目详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【题目点拨】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.4、D【解题分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、C【解题分析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解题分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【题目详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【题目点拨】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.8、C【解题分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.9、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2n﹣1,2n﹣1).【解题分析】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).12、1【解题分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.13、-23<x<0【解题分析】根据反比例函数的性质:y随x的增大而减小去解答. 【题目详解】解:函数y= 2x 中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、1.【解题分析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.16、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.三、解答题(共8题,共72分)17、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解题分析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.18、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.21、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt△ADE中,AD=3,DE=1,∴tan∠AED=ADDE=3,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=3=,∴323在Rt△CEP中,tan∠CEP=CPCE3∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB3∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.22、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=234+-7【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.23、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解题分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x =4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【题目详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为x ,y ;(2)由图可得:当点P 运动的路程x =4时,△ABP 的面积为y =2.故答案为2; (3)根据图象得:BC =4,此时△ABP 为2,∴12AB •BC =2,即12×AB ×4=2,解得:AB =8; 由图象得:DC =9﹣4=5,则S 梯形ABCD =12×BC ×(DC +AB )=12×4×(5+8)=1. 【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.24、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1,解得14t =-,24t =-,此时P 点坐标为(﹣,-1)或(﹣4,-1);当214612t t ---=时 ,解得1t =﹣,2t =﹣4﹣;此时P 点坐标为(﹣,1)或(﹣4,1).综上所述,P点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABCS S∆∆=.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.。
2018年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2018•南通)√4的值是()A.4 B.2 C.±2 D.﹣22.(3分)(2018•南通)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)(2018•南通)若√x−3在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)(2018•南通)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)(2018•南通)下列说法中,正确的是()A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)(2018•南通)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)(2018•南通)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA 的度数为()A .30°B .35°C .70°D .45°8.(3分)(2018•南通)一个空间几何体的主视图和左视图都是边长为2cm 的正三角形,俯视图是一个圆,那么这个几何体的表面积是( )A .32πcm 2B .3πcm 2C .52πcm 2 D .5πcm 2 9.(3分)(2018•南通)如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C 时停止,设运动时间为x (s ),y=PC 2,则y 关于x 的函数的图象大致为( )A .B .C .D .10.(3分)(2018•南通)正方形ABCD 的边长AB=2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M ,N ,则MN 的长为( )A .5√56B .2√53﹣1C .4√515D .√33二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)(2018•南通)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 .12.(3分)(2018•南通)分解因式:a 3﹣2a 2b +ab 2= .13.(3分)(2018•南通)已知正n 边形的每一个内角为135°,则n= .14.(3分)(2018•南通)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x ,根据题意列出的方程是 .15.(3分)(2018•南通)如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=3,AB=5,OD ⊥BC 于点D ,则OD 的长为 .16.(3分)(2018•南通)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A .求作:∠A ,使得∠A=30°.作图:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ;(3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD ,∠DAB 即为所求的角.请回答:该尺规作图的依据是 .17.(3分)(2018•南通)如图,在△ABC 中,∠C=90°,AC=3,BC=4,点O 是BC 中点,将△ABC 绕点O 旋转得△A′B'C ,则在旋转过程中点A 、C′两点间的最大距离是 .18.(3分)(2018•南通)在平面直角坐标系xOy 中,过点A (3,0)作垂直于x轴的直线AB ,直线y=﹣x +b 与双曲线y=1x交于点P (x 1,y 1),Q (x 2,y 2),与直线AB 交于点R (x 3,y 3),若y 1>y 2>y 3时,则b 的取值范围是 .三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2018•南通)(1)计算:|√3﹣2|+20130﹣(﹣13)﹣1+3tan30°; (2)解方程:1x−2=1−x 2−x ﹣3.20.(8分)(2018•南通)解不等式组{x −32(2x −1)≤4①1+3x 2>2x −1②,并写出x 的所有整数解.21.(8分)(2018•南通)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)(2018•南通)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)(2018•南通)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)(2018•南通)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)(2018•南通)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)(2018•南通)如图,△ABC中,AB=6cm,AC=4√2cm,BC=2√5cm,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)(2018•南通)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)(2018•南通)如图,⊙O 的直径AB=26,P 是AB 上(不与点A 、B 重合)的任一点,点C 、D 为⊙O 上的两点,若∠APD=∠BPC ,则称∠CPD 为直径AB 的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD 是直径AB 的“回旋角”吗?并说明理由;(2)若CD ̂的长为134π,求“回旋角”∠CPD 的度数; (3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+13√3,直接写出AP 的长.2018年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2018•南通)√4的值是()A.4 B.2 C.±2 D.﹣2【考点】22:算术平方根.【专题】1 :常规题型.【分析】根据算术平方根解答即可.【解答】解:√4=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)(2018•南通)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】11 :计算题;512:整式.【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)(2018•南通)若√x −3在实数范围内有意义,则x 的取值范围是( )A .x ≥3B .x <3C .x ≤3D .x >3【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件;列出关于x 的不等式,求出x 的取值范围即可.【解答】解:∵√x −3在实数范围内有意义,∴x ﹣3≥0,解得x ≥3.故选:A .【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)(2018•南通)函数y=﹣x 的图象与函数y=x +1的图象的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限【考点】FF :两条直线相交或平行问题.【专题】2B :探究型.【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:{y =−x y =x +1, 解得,{x =−12y =12, ∴函数y=﹣x 的图象与函数y=x +1的图象的交点是(−12,12), 故函数y=﹣x 的图象与函数y=x +1的图象的交点在第二象限,故选:B .【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)(2018•南通)下列说法中,正确的是( )A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【考点】X3:概率的意义;V2:全面调查与抽样调查;W5:众数;W7:方差.【专题】54:统计与概率.【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是110,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)(2018•南通)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)(2018•南通)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA 的度数为()A.30°B.35°C.70°D.45°【考点】N2:作图—基本作图;JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)(2018•南通)一个空间几何体的主视图和左视图都是边长为2cm 的正三角形,俯视图是一个圆,那么这个几何体的表面积是( )A .32πcm 2B .3πcm 2C .52πcm 2 D .5πcm 2 【考点】U3:由三视图判断几何体;I4:几何体的表面积;U1:简单几何体的三视图.【专题】55:几何图形.【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B .【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)(2018•南通)如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C 时停止,设运动时间为x (s ),y=PC 2,则y 关于x 的函数的图象大致为( )A .B .C .D .【考点】E7:动点问题的函数图象.【专题】16 :压轴题.【分析】需要分类讨论:①当0≤x ≤3,即点P 在线段AB 上时,根据余弦定理知cosA=AP 2+AC 2−PC 22PA⋅AC,所以将相关线段的长度代入该等式,即可求得y 与x 的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x ≤6,即点P 在线段BC 上时,y 与x 的函数关系式是y=(6﹣x )2=(x ﹣6)2(3<x ≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC 的边长为3cm ,∴∠A=∠B=∠C=60°,AC=3cm .①当0≤x ≤3时,即点P 在线段AB 上时,AP=xcm (0≤x ≤3);根据余弦定理知cosA=AP 2+AC 2−PC 22PA⋅AC ,即12=x 2+9−y 6x, 解得,y=x 2﹣3x +9(0≤x ≤3);该函数图象是开口向上的抛物线;解法二:过C 作CD ⊥AB ,则AD=1.5cm ,CD=32√3cm , 点P 在AB 上时,AP=x cm ,PD=|1.5﹣x |cm ,∴y=PC 2=(32√3)2+(1.5﹣x )2=x 2﹣3x +9(0≤x ≤3) 该函数图象是开口向上的抛物线;②当3<x ≤6时,即点P 在线段BC 上时,PC=(6﹣x )cm (3<x ≤6); 则y=(6﹣x )2=(x ﹣6)2(3<x ≤6),∴该函数的图象是在3<x ≤6上的抛物线;故选:C .【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P 的位置进行分类讨论,以防错选.10.(3分)(2018•南通)正方形ABCD 的边长AB=2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M ,N ,则MN 的长为( )A .5√56B .2√53﹣1C .4√515D .√33【考点】S9:相似三角形的判定与性质;LE :正方形的性质.【专题】1 :常规题型;55D :图形的相似.【分析】首先过F 作FH ⊥AD 于H ,交ED 于O ,于是得到FH=AB=2,根据勾股定理求得AF ,根据平行线分线段成比例定理求得OH ,由相似三角形的性质求得AM 与AF 的长,根据相似三角形的性质,求得AN 的长,即可得到结论.【解答】解:过F 作FH ⊥AD 于H ,交ED 于O ,则FH=AB=2,∵BF=FC ,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF=√FH 2+AH 2=√22+12=√5,∵OH ∥AE ,∴HO AE =DH AD =12, ∴OH=12AE=12, ∴OF=FH ﹣OH=2﹣12=32, ∵AE ∥FO ,∴△AME ∽FMO ,∴AM FM =AE OF =23, ∴AM=23AF=2√55, ∵AD ∥BF ,∴△AND ∽△FNB ,∴AN FN =AD BF=2, ∴AN=2NF=2√53, ∴MN=AN ﹣AM=2√53﹣2√55=4√515. 故选:C .【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN 与AM 的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)(2018•南通)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104 .【考点】1I :科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(3分)(2018•南通)分解因式:a 3﹣2a 2b +ab 2= a (a ﹣b )2 .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a ,再对余下的多项式利用完全平方公式继续分解.【解答】解:a 3﹣2a 2b +ab 2,=a (a 2﹣2ab +b 2),=a (a ﹣b )2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)(2018•南通)已知正n 边形的每一个内角为135°,则n= 8 .【考点】L3:多边形内角与外角.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n=36045=8. 【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)(2018•南通)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【考点】AC:由实际问题抽象出一元二次方程.【专题】123:增长率问题.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)(2018•南通)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【考点】M5:圆周角定理;KX:三角形中位线定理;M2:垂径定理.【专题】11 :计算题.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC=√52−32=4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=12AC=12×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)(2018•南通)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A = 3 0°.作图:如图,(1)作射线A B ;(2)在射线A上取一点O ,以O 为圆心,O A 为半径作圆,与射线A B 相交于C ;(3)以C 为圆心,O C 为半径作弧,与⊙O 交于点D ,作线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【考点】N3:作图—复杂作图.【专题】13 :作图题;559:圆的有关概念及性质.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)(2018•南通)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+√13.【考点】R2:旋转的性质.【专题】11 :计算题.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=√13,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=12BC=2,在Rt△AOC中,OA=√22+32=√13,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+√13,即在旋转过程中点A、C′两点间的最大距离是2+√13.故答案为2+√13.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)(2018•南通)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=1x交于点P(x1,y1),Q(x2,y2),与直线AB交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是2<b<103或x<﹣2.【考点】G8:反比例函数与一次函数的交点问题.【专题】11 :计算题.【分析】根据y2大于y3,说明x=3时,﹣x+b<13,再根据y1大于y2,说明直线l 和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y 2=13,y 3=﹣3+b , ∵y 3<y 2,∴﹣3+b <13, ∴b <103, ∵y 1>y 2,∴直线l :y=﹣x +b ①与双曲线y=1x②有两个交点, 联立①②化简得,x 2﹣bx +1=0有两个不相等的实数根,∴△=b 2﹣4>0,∴b <﹣2或b >2,∴2<b <103或x <﹣2 故答案为:2<b <103或x <﹣2. 【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2018•南通)(1)计算:|√3﹣2|+20130﹣(﹣13)﹣1+3tan30°; (2)解方程:1x−2=1−x 2−x ﹣3. 【考点】B3:解分式方程;2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【专题】511:实数;522:分式方程及应用.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣√3+1+3+√3=6;(2)去分母得:1=x ﹣1﹣3x +6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2018•南通)解不等式组{x −32(2x −1)≤4①1+3x 2>2x −1②,并写出x 的所有整数解.【考点】CC :一元一次不等式组的整数解;CB :解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x ≥﹣54, 解不等式②,得:x <3,则不等式组的解集为﹣54≤x <3, ∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2018•南通)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 60 人,扇形统计图中“了解”部分所对应扇形的圆心角为 90 度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×1560=90°, 故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×15+3060=900人. 【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)(2018•南通)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【考点】X6:列表法与树状图法;X4:概率公式.【专题】1 :常规题型;543:概率及其应用.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是34;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为612=12.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2018•南通)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【专题】11 :计算题.【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6√3,在Rt△BCH中,∠CBH=45°,∴BC=BHcos∠CBH=6√6(千米),答:B,C两地的距离为6√6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)(2018•南通)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.。
数学试卷解析 第 1 页(共 3 页)初中毕业、升学考试试卷解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的相反数是A .2-B .21-C .2D .21 考点:相反数的定义解析: 2的相反数是2- ,选A2. 太阳半径约为696000km ,将696000用科学记数法表示为A .696×103B .69.6×104C .6.96×105D .0.696×106 考点:科学记数法解析:将696000用科学记数法表示为6.96×105,选C3. 计算xx 23-的结果是 A .26x B .x 6 C .x 25 D .x1 考点:分式的减法 解析:x x 23-=x1,选D 4. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共是A . 4个B .3个C .2个D .1个考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选C5. 若一个多边形的外角和与它的内角和相等,则这个多边形是A .三角形B .四边形C .五边形D .六边形考点:多边形的内角和解析:多边形的外角和为 360,多边形的外角和与它的内角和相等,则内角和为 360,为四边形,选B数学试卷解析 第 2 页(共 3 页) 6. 函数y=112--x x 中,自变量x 的取值范围是 A .21≤x 且1≠x B .21≥x 且1≠x C .21>x 且1≠x D .21<x 且1≠x 考点:二次根式的意义,分式的意义,函数自变量的取值范围解析:由⎩⎨⎧≠-≥-01012x x ,解得21≥x 且1≠x ,选B 7. 如图为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,沿N 点方向前进16 m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于 A .8(3+1)m B . 8 (3—1) mC . 16 (3+1) mD .16(3-1)m考点:锐角三角函数解析:由1645tan 30tan =- MN MN ,得)13(81316+=-=MN m ,选A 8. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4 cm ,则该圆锥的底面周长是A .π3 cmB .π4 cmC .π5 cmD .π6 cm考点:扇形、弧长公式,圆周长,圆锥侧面展开图解析:圆锥底面圆的半径为34522=-cm ,该圆锥的底面周长是π6cm9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰直角三角形ABC ,使点C 在第一象限, 90=∠BAC .设点B 的横坐标为 x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是考点:函数图象,数形结合思想 解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴(第8题) (第7题) MNAB(第9题)数学试卷解析 第 3 页(共 3 页) 设点B 的横坐标为x ,点C 的纵坐标为y ;则x y =-1(0>x );1+=x y (0>x ),故选A10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,,1(m D 是一个动点,当 ACD ∆周长最小时,ABD ∆的面积为A .31B .32C .34D .38 考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC直线BC 方程为:131-=x y ,右图为ACD ∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C (第9题)。
2022年江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果a∠是等腰直角三角形的一个锐角,则tanα的值是()A.12B.22C.1D.22.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C两点,则 BC=()A.63B.62C.33D.323.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或44.在ABC∆中,︒=∠90C,AB=15,sinA=13,则BC等于()A.45 B.5 C.15D.1455.下面几个命题中,正确的有()(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A.1 个B.2 个C.3 个D.4 个6.二次函数y=―3x2―7x―12的二次项系数、一次项系数及常数项分别是()A.―3,―7,―12 B.-3,7,12 C.3,7,12 D.3,7,-12 7.在π=3.141 592 653 589 7中,频数最大的数字是()A.1 B.3 C.5 D.98.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球9.分式2221m mm m-+-约分后的结果是()A .1m m n -+B .1(1)m m m --+C .1m m -D .1(1)m m m -+ 10.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定 11. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165° 12.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3二、填空题13.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.14.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.15.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克.16.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.17.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .18.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .19.已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是220cm ,那么△DEF 中EF 边上的高是__________cm .20.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.21.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm 、3 cm 、2cm ,王叔 叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为 .22.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题23.如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.24.已知不等式组3(2)821132x xx xx-+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a+=-,求a的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的高度吗?说说其中的道理.27.解下面的方程,并说明每一步的依据.0.6x=50+0.4x28.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.A7.C8.D9.C10.C11.CC二、填空题13.414.∠E=∠C或∠D=∠B 15.16016.517.2318.2.719.820.6a521.136cm222.135°三、解答题23.提示:∵DE//12BC,FG//12BC,∴DE//FG,∴四边形DFGE是平行四边形24.解原不等式组,得21x-<≤.∴原不等式组的整数解是1x=-.∴612a a-+=--,∴7a=-.25.它们的结果有36种可能;不同,甲赢的机会大,理由略3 cm,理由略27.x=250,依据略28.设原来的两位数是10a+b,则调换位置后的新数是10b+a.(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除29.填法不唯一30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。
2022年江苏省南通市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A .34RB .32RC .3RD .23R2.如图所示,CD 是Rt △ABC 斜边 AB 上的高,将△BCD 沿 CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于( )A .25°B . 30°C . 45°D . 60°3.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.如图,直线AB 对应的函数表达式是( )A .3y x 32=-+B .3y x 32=+ C .2y x 33=-+ D .2y x 33=+ 5. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等6.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( )A .4 cmB .5 cmC .9cmD .13 cm 7.二元一次方程组⎩⎨⎧=+=-52723y x y x 的解是( ) A .⎩⎨⎧==23y x B .⎩⎨⎧==21y x C .⎩⎨⎧==24y x D .⎩⎨⎧==13y x8.一副三角板按如图方式摆放,且∠l 比∠2大50°.若设∠1=x ,则可列出方程( )A .x+(x+500)=180°B .x+(x-50°)=180°C . x+(x+500)=90°D .x+(x-50°)=90°9.如图,△A8C ≌△BAD ,A 和B ,C 和D 是对应点,若AB=4 cm ,BD=3 cm ,AD=2 cm ,则BC 的长度为( )A .4 cmB .3 cmC .2 cmD .不能确定10.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km11.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是( )A .36.7℃B .36.8℃C .36.9℃D .37.0℃二、填空题12.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是 m .13.如图,若△ABC ∽△DEF ,则∠D 的度数为______________.14. 如图,已知⊙O 的半径为 4,点C 在⊙O 上,∠ACB=45°,求弦AB 的长.15.自由下落物体的高度h (米)与下落的时间t (秒)的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒. 解答题 16.若y 与 x 2成反比例,且当x=2时,y= 8,则当 y=16 时,x= .17.请写出命题“直角三角形的两个锐角互余”的逆命题: .18. 方程2230x x --=的根是 .19.已知正比例函数232ky kx -=的函数值y 随着x 的增大而减小,则k= . 20.01(1)2π--⨯= ;32(63)(3)a a a -÷= . 三、解答题21.如图,在△ABC 中,⊙O 截△ABC 的三条边所得的弦长相等,求证:0是△ABC 的内心.22.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB 为半径作圆弧⌒BD 得一扇形CBD ,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a ,求该圆锥的底面半径.23.如图:在四边形ABCD 中,M 是BC 的中点,AM ,BD 互相平分于点 0,求证:AM=DC.24.已知y=x2-5x+4,问x取什么值时,y的值等于0?x取什么值时,y的值等于4? 25.图中有三棱柱的展开图吗?26.请你先将分式2211x x xx x---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.27.有甲、乙两家单位到某商店购买空调,可供选择的空调型号有A、B、C三种:(1)空调价格如下表所示,已知甲单位购买两种不同型号的空调 50 台,用去 90 000元,你知道甲单位购买的是哪两种空调吗?说明你的理由.空调价目表空调型号单价A1500元B2100元C2500元5 000元,购买A 空调5 台﹑C空调 1 台共需 8000元. 已知乙单位购买了A空调20台、B空调 5 台、C空调 8 台,共需多少元?28.一个多项式加上2532x x+-的2倍得213x x-+,求这个多项式.21355x x--+29.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?30.如图所示的每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有 n(n≥2)个棋子,每个图案的棋子总数为S,按其排列规律推断,S 与n 之间的关系可以用式子来表示.=-44S n【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.A5.A6.C7.D8.D9.C10.D11.A二、填空题12.613.30°14. 42 15.2 16.2±17.两个角互余的三角形是直角三角形18.13x =,21x =-19.-220.12,22a a -三、解答题21.作 OD ⊥AB 于D ,OE ⊥BC 于 E ,DF ⊥AC 于F.∵⊙O 截△ABC 的三条边所得的弦长相等,∴ OD= OE=OF ,∴ 点0在∠ABC 和∠ACB 的角平分线上,即0是△ABC 的内心.22.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 23. 提示:连结MD24.x 取1、4时,y 的值等于0;x 取0、5值时,y 的值等于4.25.①、②、③都是26.22x -(代入0,1x ≠-的数都可以)27.(1)①设甲单位购买的是A 、B 两种型号的空调,且购买A 型空调x 台,则购买B 型空调(50x -)台.根据题意,得15002100(50)90000x x +-=,化简得60015000x =,解得 25x =,5025x -=即购买A 、B 两利'空调各25 台.②设甲单位购买的是A 、C 两种型号的空调,且购买A 型空调x 台, 则购买C 空调(50x -)台,根据题意,得15002500(50)90000x x +-=,化简,得100035000x =,解得35x =,5015x -=即分别购买 A .C 两种空调35 台和 15 台.③设甲单位购买的是B 、C 两种型号的空调,且购买B 型空调x 台,则购买 C 型空调(50x -)台,根据题意,得21002500(50)90000x x +-=,化简,得40035000x =,解得87.5x =(不合题意,舍去).答:甲单伟购买的可能是A 、B 两种空调,也可能是A 、C 两种空调.(2)设A 型空调的单价为x 元,则 C 型空调的单价为(80005x -)元,B 型 调的单价为5000(80005)43000x x x ---=-元.所以乙单位购买A 型空调20 台、B 型空调5台、C 型空调8台共需:205(43000)8(80005)202015000640004049000x x x x x x +-+-=+-+-=(元) 28.21355x x --+29.两条对角线上的三个日期数之和都等于3n30.44S n =-。
2021年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)计算1﹣2,结果正确的是()A.3B.1C.﹣1D.﹣32.(3分)据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A.0.137×107B.1.37×107C.0.137×106D.1.37×106 3.(3分)下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3 4.(3分)以下调查中,适宜全面调查的是()A.了解全班同学每周体育锻炼的时间B.调查某批次汽车的抗撞击能力C.调查春节联欢晚会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数5.(3分)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥6.(3分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A.24B.20C.10D.57.(3分)《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y 尺,可列方程组为()A .{x =y +4.512x =y +1B .{y =x +4.512y =x +1C .{x =y +4.512x =y −1D .{y =x +4.512y =x −18.(3分)若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7<a ≤8C .7≤a <8D .7≤a ≤89.(3分)如图,四边形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,垂足分别为E ,F ,且AE =EF =FB =5cm ,DE =12cm .动点P ,Q 均以1cm /s 的速度同时从点A 出发,其中点P 沿折线AD ﹣DC ﹣CB 运动到点B 停止,点Q 沿AB 运动到点B 停止,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 对应关系的图象大致是( )A .B .C.D.10.(3分)平面直角坐标系xOy中,直线y=2x与双曲线y=kx(k>2)相交于A,B两点,其中点A在第一象限.设M(m,2)为双曲线y=kx(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为()A.2B.4C.6D.8二、填空题(本大题共8小题,第11~12题每题3分,第13~18题每题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)分解因式:x2﹣9y2=.12.(3分)正五边形每个内角的度数为.13.(4分)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为cm2.14.(4分)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是℃.15.(4分)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(4分)若m ,n 是一元二次方程x 2+3x ﹣1=0的两个实数根,则m 3+m 2n 3m−1的值为 .17.(4分)平面直角坐标系xOy 中,已知点P (m ,3n 2﹣9),且实数m ,n 满足m ﹣n 2+4=0,则点P 到原点O 的距离的最小值为 .18.(4分)如图,在△ABC 中,AC =BC ,∠ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,过点C 作CE ∥AB ,交BD ̂于点E ,连接BE ,则CE BE的值为 .三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)化简求值:(2x ﹣1)2+(x +6)(x ﹣2),其中x =−√3; (2)解方程2x−3−3x=0.20.(11分)如图,利用标杆DE 测量楼高,点A ,D ,B 在同一直线上,DE ⊥BC ,BC ⊥AC ,垂足分别为E ,C .若测得AE =1m ,DE =1.5m ,CE =5m ,楼高BC 是多少?21.(12分)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号123456775858688909696甲种西瓜(分)乙种西瓜80838790909294(分)甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜88a96乙种西瓜8890b (1)a=,b=;(2)从方差的角度看,种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.22.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球的标号是奇数,该事件的概率为;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.23.(9分)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.(1)求∠B的度数;̂的长.(2)若AB=2,求EC24.(12分)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.25.(13分)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.(1)求∠BCF的大小(用含α的式子表示);(2)过点C作CG⊥AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.26.(13分)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=12x+12的图象的“等值点”.(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y=3x(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.2021年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)计算1﹣2,结果正确的是()A.3B.1C.﹣1D.﹣3【解答】解:1﹣2=1+(﹣2)=﹣1,故选:C.2.(3分)据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A.0.137×107B.1.37×107C.0.137×106D.1.37×106【解答】解:将1370000用科学记数法表示为:1.37×106.故选:D.3.(3分)下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3【解答】解:A.a3+a3=2a3,故本选项不合题意;B.a3•a3=a6,故本选项符合题意;C.(a2)3=a6,故本选项不合题意;D.(ab)3=a3b3,故本选项不合题意;故选:B.4.(3分)以下调查中,适宜全面调查的是()A.了解全班同学每周体育锻炼的时间B.调查某批次汽车的抗撞击能力C.调查春节联欢晚会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数【解答】解:A.了解全班同学每周体育锻炼的时间,适合全面调查,故选项A符合题意;B.调查某批次汽车的抗撞击能力,适合抽样调查,故选项B不符合题意;C.调查春节联欢晚会的收视率,适合抽样调查,故选项C不符合题意;D.鞋厂检测生产的鞋底能承受的弯折次数,适合抽样调查,故选项D不符合题意;故选:A.5.(3分)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.6.(3分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A.24B.20C.10D.5【解答】解:如图所示,根据题意得AO=12×6=3,BO=12×8=4,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB=√AO2+BO2=5,∴此菱形的周长为:5×4=20.故选:B.7.(3分)《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y 尺,可列方程组为()A .{x =y +4.512x =y +1B .{y =x +4.512y =x +1C .{x =y +4.512x =y −1D .{y =x +4.512y =x −1【解答】解:由题意可得, {y =x +4.512y =x −1, 故选:D .8.(3分)若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7<a ≤8C .7≤a <8D .7≤a ≤8【解答】解:{2x +3>12①x −a ≤0②,解不等式①,得x >4.5, 解不等式②,得x ≤a ,所以不等式组的解集是4.5<x ≤a ,∵关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解(整数解是5,6,7),∴7≤a <8, 故选:C .9.(3分)如图,四边形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,垂足分别为E ,F ,且AE =EF =FB =5cm ,DE =12cm .动点P ,Q 均以1cm /s 的速度同时从点A 出发,其中点P 沿折线AD ﹣DC ﹣CB 运动到点B 停止,点Q 沿AB 运动到点B 停止,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 对应关系的图象大致是( )A.B.C.D.【解答】解:∵AD=√AE2+DE2=√122+52=13,∴AB>AD,∴点P先到D,当0≤t<13时,过点P作PH⊥AB于H,则PH AP=PH t=1213,∴PH =1213t , ∴S △AQP =12×t ×1213t =613t 2, ∴图象开口向上, ∴A ,B 不符合题意,当18<t <31时,点P 在BC 上,∴S △AQP =12×15×1213×(31−t)=−9013t +279013, 只有D 选项符合题意, 故选:D .10.(3分)平面直角坐标系xOy 中,直线y =2x 与双曲线y =kx (k >2)相交于A ,B 两点,其中点A 在第一象限.设M (m ,2)为双曲线y =kx (k >2)上一点,直线AM ,BM 分别交y 轴于C ,D 两点,则OC ﹣OD 的值为( ) A .2B .4C .6D .8【解答】解:解法一:设A (a ,2a ),M (m ,2),则B (﹣a ,﹣2a ), 设直线BM 的解析式为:y =nx +b , 则{−an +b =−2a mn +b =2,解得:{n =2+2am+a b =2a−2ma m+a ,∴直线BM 的解析式为:y =2+2am+a x +2a−2ma m+a , ∴OD =2ma−2am+a, 同理得:直线AM 的解析式为:y =2−2am−a x +2ma−2am−a , ∴OC =2ma−2am−a, ∵a •2a =2m , ∴m =a 2, ∴OC ﹣OD =2ma−2a m−a−2ma−2am+a =4;解法二:由题意得:{y =2xy =k x,解得:{x 1=√2k2y 1=√2k ,{x 2=−√2k2y 2=−√2k , ∵点A 在第一象限, ∴A (√2k 2,√2k ),B (−√2k 2,−√2k ), ∵M (m ,2)为双曲线y =kx (k >2)上一点, ∴2m =k , ∴m =k2, ∴M (k 2,2),如图,过点A 作AP ⊥y 轴于P ,过点M 作ME ⊥y 轴于E ,过点B 作BF ⊥y 轴于F ,∴∠MED =∠BFD =90°, ∵∠EDM =∠BDF , ∴△EMD ∽△FBD , ∴EM BF=EDDF,即k 2√2k2=√2k−OD=√2k2, ∴OD =2k−4√=√2k −2,∵∠CP A =∠CEM =90°,∠ACP =∠ECM , ∴△CP A ∽△CEM ,∴PA EM=CPCE,即√2k 2k 2=OC−√2k OC−2=√2√k, ∴OC =√2(k−2)√k−√2=√2(√k +√2)=√2k +2,∴OC ﹣OD =√2k +2﹣(√2k −2)=4. 故选:B .二、填空题(本大题共8小题,第11~12题每题3分,第13~18题每题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11.(3分)分解因式:x 2﹣9y 2= (x +3y )(x ﹣3y ) . 【解答】解:x 2﹣9y 2=(x +3y )(x ﹣3y ). 12.(3分)正五边形每个内角的度数为 108° . 【解答】解:方法一:(5﹣2)•180°=540°, 540°÷5=108°;方法二:360°÷5=72°, 180°﹣72°=108°,所以,正五边形每个内角的度数为108°. 故答案为:108°.13.(4分)圆锥的母线长为2cm ,底面圆的半径长为1cm ,则该圆锥的侧面积为 2π cm 2. 【解答】解:∵圆锥的底面半径为1cm , ∴圆锥的底面周长为:2πr =2πcm ,∵圆锥的侧面展开扇形的弧长等于圆锥的周长, ∴圆锥的侧面积为:12lr =12×2×2π=2πcm 2,故答案为:2π.14.(4分)下表中记录了一次试验中时间和温度的数据.时间/分钟 0 5 10 15 20 25 温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是 52 ℃.【解答】解:根据表格中的数据可知温度T 随时间t 的增加而上升,且每分钟上升3℃, 则关系式为:T =3t +10,当t =14min 时,T =3×14+10=52(℃). 故14min 时的温度是52℃. 故答案为:52.15.(4分)如图,一艘轮船位于灯塔P 的南偏东60°方向,距离灯塔50海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东45°方向上的B 处,此时B 处与灯塔P 的距离为 25√6 海里(结果保留根号).【解答】解:过P 作PC ⊥AB 于C ,如图所示:由题意得:∠APC =30°,∠BPC =45°,P A =50海里, 在Rt △APC 中,cos ∠APC =PCPA , ∴PC =P A •cos ∠APC =50×√32=25√3(海里),在Rt △PCB 中,cos ∠BPC =PCPB, ∴PB =PCcos∠BPC =25√3√22=25√6(海里),故答案为:25√6.16.(4分)若m ,n 是一元二次方程x 2+3x ﹣1=0的两个实数根,则m 3+m 2n 3m−1的值为 3 .【解答】解:m ,n 是一元二次方程x 2+3x ﹣1=0的两个实数根, ∴m 2+3m ﹣1=0, ∴3m ﹣1=﹣m 2, ∵Δ=13>0, ∴m +n =﹣3, ∴m 3+m 2n 3m−1=m 2(m+n)3m−1=−3m 2−m 2=3,故答案为3.17.(4分)平面直角坐标系xOy 中,已知点P (m ,3n 2﹣9),且实数m ,n 满足m ﹣n 2+4=0,则点P 到原点O 的距离的最小值为 3√1010.【解答】解:∵m ﹣n 2+4=0, ∴n 2﹣4=m , ∴3n 2﹣9=3m +3, ∵P (m ,3n 2﹣9),∴P 点到原点的距离为√m 2+(3n 2−9)2=√m 2+(3m +3)2=√10m 2+18m +9=√10(m +910)2+910,∴点P 到原点O 的距离的最小值为√910=3√1010,故答案为3√1010. 18.(4分)如图,在△ABC 中,AC =BC ,∠ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,过点C 作CE ∥AB ,交BD ̂于点E ,连接BE ,则CE BE的值为√22.【解答】解:如图,过点A 作CE 的垂线交EC 延长线于F , 过E 作EG ⊥AB 交AB 于G ,连AE ,∵AC =BC ,∠ACB =90°, ∴∠CAB =45°, ∵CE ∥AB , ∴∠F AB =90°, ∴∠F AC =45°,∴△AFC 为等腰直角三角形, 设AF =x ,则CF =x , ∴AC =√AF 2+CF 2=√2x , ∴AB =√AC 2+BC 2=√2AC =2x , ∵AE 、AB 均为⊙的半径, ∴AE =2x ,∴EF =√AE 2−AF 2=√3x , ∴CE =(√3−1)x ,∵∠F =∠F AB =∠AGE =90°, ∴四边形F AGE 为矩形, ∴AF =EG =x ,EF =AG =√3x , ∴BG =AB ﹣AG =(2−√3)x , ∴BE =√EG 2+BG 2=(√6−√2)x , ∴CE BE=√3−1√6−√2=√22. 故答案为:√22. 三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)化简求值:(2x ﹣1)2+(x +6)(x ﹣2),其中x =−√3; (2)解方程2x−3−3x=0.【解答】解:(1)原式=4x 2﹣4x +1+x 2+4x ﹣12 =5x 2﹣11, 当x =−√3时, 原式=5×3﹣11 =15﹣11 =4. (2)2x−3−3x=0,2x−3=3x,2x =3x ﹣9, x =9,检验:将x =9代入x (x ﹣3)≠0, ∴x =9是原方程的解.20.(11分)如图,利用标杆DE 测量楼高,点A ,D ,B 在同一直线上,DE ⊥BC ,BC ⊥AC ,垂足分别为E ,C .若测得AE =1m ,DE =1.5m ,CE =5m ,楼高BC 是多少?【解答】解:∵DE ⊥BC ,BC ⊥AC , ∴DE ∥BC , ∴△ADE ∽△ABC , ∴AE AC =DE BC, ∴11+5=1.5BC,∴BC =9(m ), 答:楼高BC 是9m .21.(12分)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号1234567 75858688909696甲种西瓜(分)乙种西瓜80838790909294(分)甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜88a96乙种西瓜8890b(1)a=88,b=90;(2)从方差的角度看,乙种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【解答】解:(1)将甲种西瓜的得分从小到大排列,处在中间位置的一个数是88,因此中位数是88,即a=88,乙种西瓜的得分出现次数最多的是90分,所以众数是90,即b=90,故答案为:88,90;(2)由甲、乙两种西瓜得分的大小波动情况,直观可得s甲2>s乙2,∴乙种西瓜的得分较稳定, 故答案为:乙;(3)甲种西瓜的品质较好些,理由为:甲种西瓜得分的众数比乙种的高. 乙种西瓜的品质较好些,理由为:乙种西瓜得分的中位数比甲种的高.22.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4. (1)随机摸取一个小球的标号是奇数,该事件的概率为12;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.【解答】解:(1)随机摸取一个小球的标号是奇数,该事件的概率为 24=12,故答案为:12;(2)画树状图如图:共有16种等可能的结果,两次取出小球标号的和等于5的结果有4种, ∴两次取出小球标号的和等于5的概率为416=14.23.(9分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,∠CAD =35°,连接BC . (1)求∠B 的度数; (2)若AB =2,求EĈ的长.【解答】解:(1)连接OC ,如图,∵CD 是⊙O 的切线,∴OC ⊥CD ,∵AE ⊥CD ,∴OC ∥AE ,∴∠CAD =∠OCA ,∵OA =OC ,∴∠OCA =∠OAC ,∴∠CAD =∠OAC =35°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠OAC +∠B =90°,∴∠B =90°﹣∠OAC =90°﹣35°=55°;(2)连接OE ,∵⊙O 的直径AB =2,∴OA =1,∵CÊ=CE ̂, ∴∠COE =2∠CAE =2×35°=70°,∴EC ̂的长为:70π⋅1180=7π18.24.(12分)A ,B 两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A 超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B 超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A 超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B 超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x 元,购物金额为y 元,分别就两家超市的促销方式写出y 关于x 的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.【解答】解:(1)由题意可得,当x ≤300时,y A =0.9x ;当x >300时,y A =0.9×300+0.7(x ﹣300)=0.7x +60,故y A ={0.9x(x ≤300)0.7x +60(x >300); 当x >100时,y B =100+0.8(x ﹣100)=0.8x +20;y B ={100(x ≤100)0.8x +20(x >100); (2)由题意,得0.9x >0.8x +20,解得x >200,∴200<x ≤300时,到B 超市更省钱;0.7x +60>0.8x +20,解得x <400,∴300<x <400,到B 超市更省钱;0.7x +60=0.8x +20,解得x =400,∴当x =400时,两家超市一样;0.7x +60<0.8x +20,解得x >400,∴当x >400时,到A 超市更省钱;综上所述,当200<x <400到B 超市更省钱;当x =400时,两家超市一样;当x >400时,到A 超市更省钱.25.(13分)如图,正方形ABCD 中,点E 在边AD 上(不与端点A ,D 重合),点A 关于直线BE 的对称点为点F ,连接CF ,设∠ABE =α.(1)求∠BCF的大小(用含α的式子表示);(2)过点C作CG⊥AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.【解答】解:(1)如图1,连接BF,∵点A关于直线BE的对称点为点F,∴AB=BF,BE⊥AF,∴∠ABE=∠EBF=α,∴∠CBF=90°﹣2α,∵四边形ABCD是正方形,∴AB=BC,∴BF=BC,∴∠BCF=180°−(90°−2α)2=45°+α;(2)DG∥CF,理由如下:如图2,连接AC,∵四边形ABCD是正方形,∴∠ACD=45°,∠ADC=90°,∵CG⊥AF,∴∠CGA=∠ADC=90°,∴点A,点D,点G,点C四点共圆,∴∠AGD=∠ACD=45°,∵AB=BF,∠ABF=2α,∴∠AFB=180°−2α2=90°﹣α,∴∠AFC=135°,∴∠CFG=45°=∠DGA,∴DG∥CF;(3)∵BE>AB,∴BH>BF,∴BH≠BF;如图3,当BH=FH时,过点H作HN⊥BF于N,∵将△ABE绕点B顺时针旋转90°得到△CBH,∴△ABE≌△BCH,∠EBH=90°=∠ABC,∴AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,∴∠HBF=90°﹣α,∵BH=FH,HN⊥BF,∴BN=NF=12BF=12AB,∠BNH=90°=∠BAE,∴∠BHN=α,∴∠ABE=∠BHN,∴△ABE≌△NHB(ASA),∴BN=AE=1,∴BE =√AE2+AB 2=√5AE , ∴sin α=AE BE =√55, 当BF =FH 时,∴∠FBH =∠FHB =90°﹣α,∴∠BFH =2α=∠ABF ,∴AB ∥FH ,即点F 与点C 重合,则点E 与点D 重合,∵点E 在边AD 上(不与端点A ,D 重合),∴BF =FH 不成立,综上所述:sin α的值为√55. 26.(13分)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y =12x +12的图象的“等值点”.(1)分别判断函数y =x +2,y =x 2﹣x 的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y =3x (x >0),y =﹣x +b 的图象的“等值点”分别为点A ,B ,过点B 作BC ⊥x 轴,垂足为C .当△ABC 的面积为3时,求b 的值;(3)若函数y =x 2﹣2(x ≥m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【解答】解:(1)在y =x +2中,令x =x +2,得0=2不成立,∴函数y =x +2的图象上不存在“等值点”;在y =x 2﹣x 中,令x 2﹣x =x ,解得:x 1=0,x 2=2,∴函数y =x 2﹣x 的图象上有两个“等值点”(0,0)或(2,2);(2)在函数y =3x (x >0)中,令x =3x ,解得:x =√3,∴A (√3,√3),在函数y =﹣x +b 中,令x =﹣x +b ,解得:x =1b ,∴B (12b ,12b ),∵BC ⊥x 轴,∴C (12b ,0),∴BC =12|b |,∵△ABC 的面积为3,∴12×12|b |×|√3−12b |=3,当b <0时,b 2﹣2√3b −24=0,解得b =﹣2√3,当0≤b <2√3时,b 2﹣2√3b +24=0,∵Δ=(﹣2√3)2﹣4×1×24=﹣84<0,∴方程b 2﹣2√3b +24=0没有实数根,当b ≥2√3时,b 2﹣2√3b −24=0,解得:b =4√3,综上所述,b 的值为﹣2√3或4√3;(3)令x =x 2﹣2,解得:x 1=﹣1,x 2=2,∴函数y =x 2﹣2的图象上有两个“等值点”(﹣1,﹣1)或(2,2), ①当m <﹣1时,W 1,W 2两部分组成的图象上必有2个“等值点”(﹣1,﹣1)或(2,2),W 1:y =x 2﹣2(x ≥m ),W 2:y =(x ﹣2m )2﹣2(x <m ),令x =(x ﹣2m )2﹣2,整理得:x 2﹣(4m +1)x +4m 2﹣2=0,∵W 2的图象上不存在“等值点”,∴Δ<0,∴(4m +1)2﹣4(4m 2﹣2)<0,∴m <−98,②当m =﹣1时,有3个“等值点”(﹣2,﹣2)、(﹣1,﹣1)、(2,2),③当﹣1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<−98或﹣1<m<2.。
2022年江苏南通数学标卷标答注意事项:考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置。
3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 若气温零上2℃记作2+℃,则气温零下3℃记作()A. 3-℃B. 1-℃C. 1+℃D. 5+℃【答案】A【解析】【分析】根据气温是零上2℃记作+2℃,则可以表示出气温是零下3℃,从而可以解答本题.【详解】解:∵气温是零上2℃记作+2℃,∴气温是零下3℃记作−3℃.故选:A.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题中表示的含义.2. 下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A.不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3. 沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为( )A. 113.910⨯B. 110.3910⨯C. 103.910⨯D. 93910⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知:1039000000000=3.910⨯,故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 用一根小木棒与两根长分别为3cm,6cm 的小木棒组成三角形,则这根小木棒的长度可以为( )A. 1cmB. 2cmC. 3cmD. 4cm【答案】D【解析】【分析】设第三根木棒的长为x cm ,再根据三角形的三边关系得出x 取值范围即可.【详解】解:设第三根木棒的长为x cm ,则6−3<x <6+3,即3<x <9.观察选项,只有选项D 符合题意.故选:D .【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.5. 如图是中5个相同的正方体搭成的立体图形,则它的主视图为( )A. B. C. D.【答案】A【解析】【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【详解】解:从正面看该组合体,所看到的图形与选项A 中的图形相同,故选:A .【点睛】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.6. 李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( )A. 10.5%B. 10%C. 20%D. 21%【答案】B【解析】【分析】设每月盈利的平均增长率为x ,根据今年1月盈利3000元,3月盈利3630元,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每月盈利的平均增长率为x ,依题意,得:3000(1+x )2=3630,解得:x 1=0.1=10%,x 2=−2.1(不合题意,舍去).故选:B .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7. 如图,,380,1220∠=︒∠-∠︒=∥a b ,则1∠的度数是( )A. 30°B. 40︒C. 50︒D. 80︒【答案】C【解析】【分析】根据平行线的性质和三角形外角的性质可得∠1+∠2=80°,结合1220∠-∠=︒,两式相加即可求出1∠.【详解】解:如图,∵//a b ,∴∠4=∠1,∴∠3=∠4+∠2=∠1+∠2=80°,∵1220∠-∠=︒,∴21100∠=︒,∴150∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,求出∠1+∠2=80°是解题的关键.8. 根据图像,可得关于x 的不等式3>-+kx x 的解集是( )A. 2x <B. 2x >C. 1x <D. 1x >【答案】D【解析】【分析】写出直线y =kx 在直线y =−x +3上方所对应的自变量的范围即可.【详解】解:根据图象可得:不等式kx >−x +3的解集为:x >1.故选:D .【点睛】本题考查了一次函数与一元一次不等式,根据两个函数的交点坐标及图象确定不等式的解集是解题的关键.9. 如图,在ABCD 中,对角线,AC BD 相交于点O ,,4,60⊥=∠=︒AC BC BC ABC ,若EF 过点O 且与边,AB CD 分别相交于点E ,F ,设2,==BE x OE y ,则y 关于x 的函数图像大致为( )A. B. C. D.【答案】C【解析】【分析】过点O 向AB 作垂线,交AB 于点M ,根据含有30°角的直角三角形性质以及勾股定理可得AB 、AC 的长,再结合平行四边形的性质可得AO 的长,进而求出OM 、AM 的长,设BE x =,则5EM x =-,然后利用勾股定理可求出y 与x 的关系式,最后根据自变量的取值范围求出函数值的范围,即可做出判断.【详解】解:如图过点O 向AB 作垂线,交AB 于点M ,∵AC ⊥BC ,∠ABC =60°,∴∠BAC =30°,∵BC =4,∴AB =8,AC =,∵四边形ABCD 是平行四边形,∴12AO AC ==,∴12OM AO ==,∴3AM ==,设2,==BE x OE y ,则835EM AB AM EM x x =--=--=-,∵222OE OM EM =+,∴()253y x =-+,∵08x ≤≤,∴312y ≤≤.故选:C .【点睛】此题主要考查了平行四边形的性质、勾股定理、含有30°角的直角三角形的性质以及二次函数图象等知识,解题关键是求解函数解析式和函数值的范围.10. 已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( )A. 24B. 443C. 163D. 4-【答案】B【解析】【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案. 【详解】解:2(23)(2)(2)-++-m n m n m n222241294m mn n m n =-++-225125m mn n =-+()5212mn mn =+-107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn ,∴220mn mn ++≥,∴32mn ≥-, ∴23mn ≥-, ∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键.二、填空题(本人题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是___________(填“全面调查”或“抽样调查”).【答案】抽样调查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查了抽样调查和全面调查区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12. 分式22x -有意义,则x 应满足的条件是___________. 的【答案】2x≠【解析】【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可.【详解】解:分式22x-有意义,即20x-≠,∴2x≠,故答案为:2x≠.【点睛】本题考查分式有意义的条件,牢记分式有意义的条件是分式的分母不为0.13. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
2016年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016?南通)2的相反数是()A.﹣2 B.﹣C.2 D.2.(3分)(2016?南通)太阳半径约为696000km,将696000用科学记数法表示为()A.696×103B.69.6×104C.6.96×105D.0.696×1063.(3分)(2016?南通)计算的结果是()A.B.C.D.4.(3分)(2016?南通)下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(3分)(2016?南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.(3分)(2016?南通)函数y=中,自变量x的取值范围是()A.x且x≠1 B.x且x≠1 C.x且x≠1 D.x且x≠17.(3分)(2016?南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A.8()m B.8()m C.16()m D.16()m 8.(3分)(2016?南通)如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是()A.3πcmB.4πcm C.5πcm D.6πcm9.(3分)(2016?南通)如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB 为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是()A.B.C.D.10.(3分)(2016?南通)平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2016?南通)计算:x 3?x2=______.12.(3分)(2016?南通)已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于______度.13.(3分)(2016?南通)某几何体的三视图如图所示,则这个几何体的名称是______.14.(3分)(2016?南通)如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=______.15.(3分)(2016?南通)已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.16.(3分)(2016?南通)设一元二次方程x 2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=______.17.(3分)(2016?南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=______cm.18.(3分)(2016?南通)平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m 2+2(m>0)上,且满足a2+b2﹣2(1+2bm)+4m2+b=0,则m=______.三、解答题(本大题共10小题,共96分)19.(10分)(2016?南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣;(2)解方程组:.20.(8分)(2016?南通)解不等式组,并写出它的所有整数解.21.(9分)(2016?南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为______kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为______度.22.(7分)(2016?南通)不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求两次都摸到红色小球的概率.23.(8分)(2016?南通)列方程解应用题:某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.24.(9分)(2016?南通)已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.(1)求∠AOB的度数;(2)当⊙O的半径为2cm,求CD的长.25.(8分)(2016?南通)如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.26.(10分)(2016?南通)平面直角坐标系xOy中,已知抛物线y=x 2+bx+c经过(﹣1,m 2+2m+1)、(0,m2+2m+2)两点,其中m为常数.(1)求b的值,并用含m的代数式表示c;(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.27.(13分)(2016?南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.(1)求AO的长;(2)求PQ的长;(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.28.(14分)(2016?南通)如图,平面直角坐标系xOy中,点C(3,0),函数y=(k>0,x>0)的图象经过?OABC的顶点A(m,n)和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;(3)若P为函数y═(k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的?OABC的一边交于点N,设点P的横坐标为t,当时,求t的值.2016年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:2的相反数是﹣2.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为: 6.96×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】分式的加减法.【分析】根据同分母的分式相加的法则:分母不变,分子相加.【解答】解:原式==,故选D.【点评】本题考查了分式的加减,掌握分时加减的法则是解题的关键.4.(3分)【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形,掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.(3分)【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)?180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)?180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.6.(3分)【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数为非负数且分母不为0,列出不等式组,即可求x的范围.【解答】解:2x﹣1≥0且x﹣1≠0,解得x≥且x≠1,故选B.【点评】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0;当函数表达式是二次根式时,要注意考虑二次根式的被开方数大于等于.7.(3分)【考点】解直角三角形的应用-仰角俯角问题.【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角的正切列式求出x的值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MN的高度等于8(+1)m;故选A.【点评】本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角或俯角,知道仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长.8.(3分)【考点】圆锥的计算;弧长的计算.【分析】根据题意首先求出圆锥的底面半径,进而利用圆周长公式得出答案.【解答】解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为:=3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选:D.【点评】此题主要考查了圆锥的计算以及圆周长公式,正确得出圆锥的底面半径是解题关键.9.(3分)【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.10.(3分)【考点】轴对称-最短路线问题;坐标与图形性质.【分析】先根据△ACD的周长最小,求出点C关于直线x=1对称的点E的坐标,再运用待定系数法求得直线AE的解析式,并把D(1,m)代入,求得D的坐标,最后计算,△ABD 的面积.【解答】解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1),设直线AE的解析式为y=kx+b,则,解得,∴y=﹣x﹣,将D(1,m)代入,得m=﹣﹣=﹣,即点D的坐标为(1,﹣),∴当△ACD的周长最小时,△ABD的面积=×AB×|﹣|=×4×=.故选(C)【点评】本题属于最短路线问题,主要考查了轴对称性质的运用以及待定系数法的运用,解决问题的关键是运用两点之间线段最短这一基本事实.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)【考点】同底数幂的乘法.【分析】根据同底数的幂的乘法即可求解.【解答】解:原式=x5.故答案是:x5.【点评】本题考查了同底数幂的乘法法则,底数不变指数相加,理清指数的变化是解题的关键.12.(3分)【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∠ACE的度数,根据余角的性质,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由垂线的定义,得∠AOE=90°,由余角的性质,得∠AOC=∠AOE﹣∠COE=30°,由对顶角相等,得∠BOD=∠AOC=30°,故答案为:30.【点评】本题考查了垂线,利用了垂线的定义,余角的性质,对顶角的性质.13.(3分)【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.14.(3分)【考点】直角三角形斜边上的中线;锐角三角函数的定义.【分析】首先根据直角三角形斜边上的中线等于斜边的一半,即可求得AB的长,然后利用余弦函数的定义求解.【解答】解:∵直角△ABC中,CD是斜边AB上的中线,∴AB=2CD=2×2=4,则cosA==.故答案是:.【点评】本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,以及三角函数的定义,理解性质求得AB的长是关键.15.(3分)【考点】中位数;算术平均数.【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.【点评】本题主要考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(3分)【考点】根与系数的关系.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.17.(3分)【考点】旋转的性质;正方形的性质.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出DE的长度,再根据正方形以及旋转的性质即可得出线段BF 的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=EM=cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1++1=2+cm.故答案为:2+.【点评】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段BC以及CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.18.(3分)【考点】一次函数图象上点的坐标特征.【分析】把b=2ma+m2+2代入a2+b2﹣2(1+2bm)+4m2+b=0,利用非负数的性质,求出a、b(用m表示),再代入b=2ma+m 2+2解方程即可解决问题.【解答】解:∵点(a,b)在直线y=2mx+m2+2(m>0)上,∴b=2ma+m2+2代入a2+b2﹣2(1+2bm)+4m2+b=0,整理得到(b﹣2m)2+(a+m)2=0,∵(b﹣2m)2≥0,(a+m)2≥0,∴a=﹣m,b=2m代入b=2ma+m2+2得到,2m=﹣2m 2+m2+2,∴m2+2m﹣2=0,∴m=﹣1,∵m>0,∴m=﹣1+,故答案为﹣1+【点评】本题考查一次函数图象上点的特征,非负数的性质,完全平方公式等知识,解题的关键是熟练应用非负数的性质解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分)19.(10分)【考点】解二元一次方程组;实数的运算;零指数幂.【分析】(1)先用绝对值,零指数,算术平方根化简最后合并即可;(2)用加减消元法解方程组即可.【解答】解(1)原式=2+1+1﹣2=2,(2)①+②得,4x=4,∴x=1,把x=1代入①得,1+2y=9,∴y=4,∴原方程组的解为.【点评】此题是解二元一次方程组,主要考查了绝对值,零指数幂,二次根式的化简,方程组的解法,解本题的关键是解方程组消元的方法的选择.20.(8分)【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得它的所有整数解.【解答】解:由①,得x<2,由②,得x>﹣4,故原不等式组的解集是﹣4<x<2,∴这个不等式组的所有整数解是x=﹣3或x=﹣2或x=﹣1或x=0或x=1.【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解题的关键是明确解一元一次不等式的方法.21.(9分)【考点】条形统计图;扇形统计图.【分析】(1)设这批水果总重量为mkg,根据西瓜的重量占这批水果总重量的40%,列出方程即可解决.(2)根据苹果的重量=总重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量,即可画出图形.(3)根据圆心角=360°×百分比,即可解决问题.【解答】解:(1)设这批水果总重量为mkg,应用m?40%=1600,解得m=4000kg,故答案为4000.(2)∵苹果的重量=总重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量=4000﹣1600﹣1000﹣200=1200,条形图如图所示,(3)∵桃子的重量占这批水果总重量的==25%,∴桃子所对应扇形的圆心角为360°×25%=90°,故答案为90.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(7分)【考点】列表法与树状图法.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的只有1种情况,∴两次都摸到红球的概率是.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.23.(8分)【考点】分式方程的应用.【分析】设提速前列车的平均速度为xkm/h,根据提速后,列车用相同时间比提速前多行驶100km,列方程求解.【解答】解:设提速前列车的平均速度为xkm/h,由题意得,=,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:提速前列车的平均速度为120km/h.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.(9分)【考点】切线的性质.【分析】(1)由AM为圆O的切线,利用切线的性质得到OA与AM垂直,再由BD与AM 垂直,得到OA与BD平行,利用两直线平行内错角相等得到一对角相等,再由OC为角平分线得到一对角相等,以及OB=OC,利用等边对等角得到一对角相等,等量代换得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;(2)过点O作OE⊥BD于点E,进而得出四边形OADE是矩形,得出DC的长即可.【解答】解:(1)∵AM为圆O的切线,∴OA⊥AM,∵BD⊥AM,∴∠OAD=∠BDM=90°,∴OA∥BD,∴∠AOC=∠OCB,∵OB=OC,∴∠OBC=∠OCB,∵OC平分∠AOB,∴∠AOC=∠BOC,∴∠BOC=∠OCB=∠OBC=60°,∴∠AOB=120°;(2)过点O作OE⊥BD于点E,∵∠BOC=∠OCB=∠OBC=60°,∴△OBC是等边三角形,∴BE=EC=1,∵∠OED=∠EDA=∠OAD=90°,∴四边形OADE是矩形,∴DE=OA=2,∴EC=DC=1.【点评】此题考查了切线的性质,平行线的判定与性质以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.25.(8分)【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD 是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.26.(10分)【考点】二次函数综合题.【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b和c;(2)令y=0,抛物线和x轴有公共点,即△≥0,和非负数确定出m的值,(3)将两点代入抛物线解析式中,表示出y1,y2,求出y2﹣y1分情况讨论即可【解答】解:(1)∵抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,∴,∴,即:b=2,c=m2+2m+2,(2)由(1)得y=x2+2x+m2+2m+2,令y=0,得x2+2x+m2+2m+2=0,∵抛物线与x轴有公共点,∴△=4﹣4(m2+2m+2)≥0,∴(m+1)2≤0,∵(m+1)2≥0,∴m+1=0,∴m=﹣1;(3)由(1)得,y=x2+2x+m2+2m+2,∵(a,y1)、(a+2,y2)是抛物线的图象上的两点,∴y1=a2+2a+m2+2m+2,y2=(a+2)2+2(a+2)+m2+2m+2,∴y2﹣y1=[(a+2)2+2(a+2)+m2+2m+2]﹣[a2+2a+m2+2m+2]=4(a+2)当a+2≥0,即a≥﹣2时,y2﹣y1≥0,当a+2<0,即a<﹣2时,y2﹣y1<0.【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线与x轴的交点,比较代数式的大小,解本题的关键是求出b,用m表示出抛物线解析式,难点是分类讨论.27.(13分)【考点】平行线分线段成比例;绝对值.【分析】(1)由△ABC∽△ACO,得=,由此即可求出OA.(2)如图2中,取BD中点F,CD中点Q,连接PF、QF,在Rt△PFQ中,求出PF,QF 即可解决问题.(3)如图3中,取AD中点G,连接GQ,由PF∥GQ,推出△PMF∽△QMG,推出==,由PM+QM=,可以求出PM,QM,即可解决问题.【解答】解:(1)如图1中,∵CO⊥AB,∴∠AOC=∠ACB=90°,∵∠A=∠A,∴△ABC∽△ACO,∴=,∵AB===13,∴OA==.(2)如图2中,取BD中点F,CD中点Q,连接PF、QF,则PF∥ED,FQ∥BC,PF⊥FQ,且PF=ED=1,FQ=BC=6,在Rt△PFQ中,PQ===.(3)如图3中,取AD中点G,连接GQ,∵GQ∥AC,ED∥AC,PF∥ED,∴PF∥GQ,∴△PMF∽△QMG,∴==,∵PM+QM=,∴PM=,MQ=,∴|PM﹣QM|=.【点评】本题考查三角形相似综合题、平行线的性质、勾股定理、相似三角形的判定和性质、解题的关键是学会添加常用辅助线,构造特殊三角形以及相似三角形解决问题,属于中考压轴题.28.(14分)【考点】反比例函数综合题.【分析】(1)根据平行四边形的性质确定出B的坐标从而确定出D的坐标,而点A,D在反比例函数图象上,建立方程求出m,(2)根据三角形OAD的面积是平行四边形OABC面积的一半,确定出n即可;(3)根据平行四边形的性质和双曲线的性质,确定出PM,ON即可.【解答】解:(1)∵点C(3,0),?OABC的顶点A(m,n),∴B(m+3,n),∴D(+3,n),∵函数y=(k>0,x>0)的图象经过?OABC的顶点A(m,n)和边BC的中点D,∴mn=k,,∴m=2,(2)∵点D是平行四边形BC中点,∴S平行四边形OABC=2S△OAD=12,∵S平行四边形OABC=3×n=12,∴n=4,由(1)知,m=2,∴k=mn=8,(3)如图,由(2)知,k=8,设P(t,),∴PM=,PN=n=4﹣,∵,∴,∴t=.【点评】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积,平行四边形的面积,平行四边形的性质,解本题的关键是求出m,n的值.。