2020年天津市南开区中考一模数学试卷--带答案--天津中考
- 格式:pdf
- 大小:2.86 MB
- 文档页数:14
xx学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:(﹣2)×(﹣6)的结果等于()A.12 B.﹣12 C.8 D.﹣8试题2:计算tan60°的值等于()A. B. C.1 D.试题3:甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.试题4:在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为()A.451×105 B.45.1×106 C.4.51×107 D.0.451×108试题5:如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A. B. C. D.试题6:如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A. B. C.D.试题7:化简+,其结果为()A. B. C. D.试题8:半径为a的正六边形的面积等于()A. B. C.a2 D.试题9:已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,则有()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<0试题10:如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A.8S B.9S C.10S D.11S试题11:如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A.2 B.2 C. D.4试题12:如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4 B.﹣2 C.1 D.3试题13:计算(﹣2a)3的结果是.试题14:计算(﹣)2的结果等于.试题15:将正比例函数y=2x的图象向下平移,则平移后所得图象对应的函数解析式可以是.(写出一个即可)试题16:赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是.试题17:如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是.试题18:如图,是大小相等的边长为1的正方形构成的网格,A,B,C,D均为格点.(Ⅰ)△ACD的面积为;(Ⅱ)现只有无刻度的直尺,请在线段AD上找一点P,并连结BP,使得直线BP将四边形ABCD的面积分为1:2两部分,在图中画出线段BP,并在横线上简要说明你的作图方法..试题19:解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.试题20:某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元)20 50 100 150 200人数(人) 4 12 9 3 2求:(Ⅰ)m= ,n= ;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?试题21:在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.试题22:如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.试题23:某旅行团计划今年暑假组织老年人团到台湾旅游,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆可供选择,其收费标准为某人每天120元,并且推出各自不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年人团的人数为x(1)根据题意,用含x的式子填写下表:x≤35 35<x<45 x=45 x>45甲宾馆收费/元120x 5280乙宾馆收费/元120x 120x 5400(2)当x取何值时,旅行团在甲、乙两家宾馆的实际花费相同?试题24:如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)请用含t的代数式表示出点D的坐标;(2)求t为何值时,△DPA的面积最大,最大为多少?(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;(4)请直接写出随着点P的运动,点D运动路线的长.试题25:已知二次函数y=ax2﹣4ax+3a(Ⅰ)求该二次函数的对称轴;(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.试题1答案:A【解答】解:(﹣2)×(﹣6)=+(2×6)=12,试题2答案:D【解答】解:原式=,试题3答案:D【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.试题4答案:C【解答】解:45 100 000=4.51×107,试题5答案:B【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.试题6答案:C【解答】解:由被开方数越大算术平方根越大,得<<,得3<a<3.5,试题7答案:A【解答】解:原式=+==.试题8答案:B【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是a,因而面积是,因而正六边形的面积.试题9答案:A【解答】解:∵反比例函数y=,a2+1≥1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,在第一象限内的函数值都大于0,在第三象限内的函数值都小于0,∵点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,x1<0<x2,∴y1<0<y2,试题10答案:B【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴S△DEF:S△BCF=()2,又∵E是AD中点,∴DE=AD=BC,∴DE:BC=DF:BF=1:2,∴S△DEF:S△BCF=1:4,∴S△BCF=4S,又∵DF:BF=1:2,∴S△DCF=2S,∴S▱ABCD=2(S△DCF+S△BCF)=12S.∴四边形ABCE的面积=9S,试题11答案:C【解答】解:如图所示:连接BD、AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(2)=,试题12答案:B【解答】解∵关于x的方程ax2+bx﹣8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(﹣2,0),∴方程的另一个根为x=﹣2.故选:B.试题13答案:﹣8a3.【解答】解:(﹣2a)3=﹣8a3.故答案是:﹣8a3.试题14答案:8﹣2.【解答】解:原式=5﹣2+3=8﹣2.试题15答案:y=2x﹣2 .(写出一个即可)【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.试题16答案:.【解答】解:大正方形的边长为: =,总面积为20,∵阴影区域的边长为2,∴面积为2×2=4;故飞镖落在阴影区域的概率为: =.故答案为:.试题17答案:4 .【解答】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积﹣△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是2S△BOP=OP•OC=4.[来源:]试题18答案:【解答】解:(Ⅰ)由图可得,△ACD的面积=×5×1=;故答案为:;(Ⅱ)如图,连接BD,则△ABD的面积=△ADF的面积+△BDF的面积=×2×(2+2)=4,四边形ABCD的面积=△ACD的面积+△A CB的面积=+×5×2=,∵直线BP将四边形ABCD的面积分为1:2两部分,∴△ABP的面积=×=,即S△ABD=S△ABD,∴AP:PD=5:3,如图,连接CE,交AD于点P,连接BP,则,∴线段BP即为所求.故答案为:在线段AP上确定点P,使得AP:PD=5:3,连接BP,则BP即为所求.试题19答案:【解答】解:(Ⅰ)解不等式①,得 x≤2;(Ⅱ)解不等式②,得 x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.故答案为:x≤2; x>﹣1;﹣1<x≤2.试题20答案:【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.12÷30=40%,9÷30=30%,所以扇形统计图中的m=40,n=30;故答案为:40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50,∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).(Ⅲ)根据题意得:2500×81=202500元答:估计该校学生共捐款202500元.试题21答案:【解答】解:(1)当点O在AC上时,OC为⊙O的半径,∵BC⊥OC,且点C在⊙O上,∴BC与⊙O相切.∵⊙O与AB边相切于点P,∴BC=BP,[来源:学科网]∴∠BCP=∠BPC=,∵∠ACP+∠BCP=90°,∴∠ACP=90°﹣∠BCP=90°﹣=∠B.′即2∠ACP=∠B;(2)在△ABC中,∠ACB=90°,AB==10,如图,当点O在CB上时,OC为⊙O的半径,∵AC⊥OC,且点C在⊙O上,∴AC与⊙O相切,连接OP、AO,∵⊙O与AB边相切于点P,∴OP⊥AB,设OC=x,则OP=x,OB=BC﹣OC=6﹣x,∵AC=AP,∴BP=AB﹣AP=10﹣8=2,在△OPA中,∠OPA=90°,根据勾股定理得:OP2+BP2=OB2,即x2+22=(6﹣x)2,解得:x=,在△ACO中,∠ACO=90°,AC2+OC2=AO2,∴AO==.∵AC=AP,OC=OP,∴AO垂直平分CP,∴根据面积法得:CP=2×=,则符合条件的CP长大于.由题意可知,当点P与点A重合时,CP最长,综上,当点O在△ABC外时,<CP≤8.试题22答案:【解答】解:(1)如图,由题意得,∠EAD=45°,∠FBD=30°,∴∠EAC=∠EAD+∠DAC=45°+15°=60°.∵AE∥BF∥CD,∴∠FBC=∠EAC=60°.∵∠FBD=30°∴∠DBC=∠FBC﹣∠FBD=30°.(2分)又∵∠DBC=∠DAB+∠ADB,∴∠ADB=15°.∴∠DAB=∠ADB.∴△ABD为等腰三角形,∴BD=AB=2.即BD之间的距离为2km.(4分)(2)过B作BO⊥DC,交其延长线于点O,在Rt△DBO中,BD=2,∠DBO=60°,∴DO=2×sin60°=,BO=2×cos60°=1.(6分)在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,∴CD=DO﹣CO=(km).即C,D之间的距离km.(8分)试题23答案:【解答】解:(1)108x+420,108x+420,96x+1080;(2)当x≤35时,旅行团在甲、乙两家宾馆的实际花费相同,当35<x≤45时,选择甲宾馆便宜,当x>45时,甲宾馆的收费是:y甲=35×120+0.9×120(x﹣35),即y甲=108x+420,乙宾馆的收费是:y乙=45×120+0.8×120(x﹣45)=96x+1080,当y甲=y乙时,108x+420=96x+1080,解得x=55.总之,当x≤35或x=55时,旅行团在甲、乙两家宾馆的实际花费相同.试题24答案:【解答】解:(1)∵点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,∴OP=t,而OC=2,∴P(t,0),设CP的中点为F,过D点作DE⊥OA,垂足为E,则F点的坐标为(,1),∵F点绕点P按顺时针方向旋转90°得点D,∴∠CPD=90°,∴∠DPE+∠OPC=90°,又∵∠POC=90°,∠OCP+∠OPC=90°,∴∠OCP=∠EPD,∴△OCP∽△EPD,∵PD:CP=1:2,∴DE:PO=PE:CO=PD:CP=1:2,∴DE=PO=,PE=CO=1,∴D点坐标为(t+1,);(2)∵D点坐标为(t+1,),OA=4,∴S△DPA=AP×=(4﹣t)×=(4t﹣t2)=﹣(t﹣2)2+1,∴当t=2时,S最大=1;(3)能构成直角三角形.①当∠PDA=90°时,PC∥AD,由勾股定理得,PD2+AD2=AP2,PD2=DE2+PE2,AD2=DE2+AE2,即()2+1+(4﹣t﹣1)2+()2=(4﹣t)2,解得,t=2或t=﹣6(舍去).∴t=2秒.②当∠PAD=90°时,此时点D在AB上,可知,△COP∽△P AD,∴==,∴2=,PA=1,即t+1=4,t=3秒.综上,可知当t为2秒或3秒时,△DPA能成为直角三角形.(4)当点P在原点O处时,即t=0,对应的D0点为(1,0),当点D运动时,直线DD0的斜率k==,即无论点D如何运动,直线DD0的斜率为固定值,即点D的运动轨迹时始终在直线DD0上;∵k OB==,∴点D的运动路线与OB平行,当P运动到点A时,t=4,此时D4点坐标为(5,2),即点D的运动轨迹为线段D0D4∵点D4与点B、C共线,∴BD4∥x轴易得四边形OD0D4B为平行四边形,∵根据点D的运动路线与OB平行且相等,OB=2,∴点D运动路线的长为2.试题25答案:【解答】解:(Ⅰ)对称轴x=﹣=2.(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,∴a=﹣2,∴y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(Ⅲ)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.。
天津市南开区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,▱ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为( )A .23B .34C .56D .12.如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知AB =100米,BC =200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间3.下列各数中,无理数是( ) A .0B .227C .4D .π4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .225.若正六边形的半径长为4,则它的边长等于( ) A .4B .2C .23D .436.河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为1:3,则AB 的长为A .12米B .43米 C .53米 D .63米7.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为A .1B .22C .2D .31-8.如图,两个转盘A ,B 都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A ,B ,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数1020305010150180240330 450 “和为7”出现频数 2710163046 59 8111150 “和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( ) A .0.33 B .0.34C .0.20D .0.359.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是 A .B .C .D .10.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限11.计算6m 6÷(-2m 2)3的结果为( ) A .m -B .1-C .34D .34-12.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个凸多边形的内角和与外角和相等,它是______边形. 14.如果x +y =5,那么代数式221y xx y x y⎛⎫+÷ ⎪--⎝⎭的值是______.15.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为____.16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.17.如图, ⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.18.已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、三、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 20.(6分) (1)计算:(a -b)2-a(a -2b);(2)解方程:23x -=3x. 21.(6分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =.22.(8分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.24.(10分)解分式方程:33x-1=13-x25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.27.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=12AD=12×3=32,∴△EFB∽△EOM,∴BF BE OM EM,∵AB=5,BE=25 AB,∴BE=2,BM=52,∴EM=52+2=92,∴2 39 22 BF=,∴BF=23,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2.A【解析】【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.3.D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.4.B【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∵B60o∠=,∴△ABC是等边三角形,∴AC=AB=1.故选:B.【点睛】本题考点:菱形的性质.5.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.6.A【解析】【分析】试题分析:在Rt△ABC中,BC=6米,BCAC3=,∴AC=BC×33(米).∴()2222AB AC BC 63612=+=+=(米).故选A.【详解】请在此输入详解! 7.C 【解析】作点A 关于MN 的对称点A′,连接A′B ,交MN 于点P ,则PA+PB 最小,连接OA′,AA′.∵点A 与A′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′, ∵点B 是弧AN ∧的中点, ∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°, 又∵OA=OA′=1, ∴2∴2 故选:C. 8.A 【解析】 【分析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可. 【详解】由表中数据可知,出现“和为7”的概率为0.33. 故选A. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 9.D【解析】 【分析】本题主要考查二次函数的解析式 【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D. 【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式. 10.B 【解析】 【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限 【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴, ∴函数经过一、三、四象限,不经过第二象限 故选B 【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响 11.D 【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案. 详解:原式=()663684m m÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 12.B 【解析】 【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答 【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30° ∵BO ∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.四 【解析】 【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【详解】解:设边数为n ,根据题意,得 (n-2)•180=360, 解得n=4,则它是四边形. 故填:四. 【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决. 14.1 【解析】 【分析】先将分式化简,然后将x+y=1代入即可求出答案 【详解】 当x +y =1时,原式()()x y y xx y x y x y x y ⎛⎫-=+÷ ⎪--+-⎝⎭()()x y x y x x y x+-=⋅- =x +y =1, 故答案为:1. 【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.15.5. 【解析】 【详解】 解:连接CE ,∵根据图形可知DC=1,AD=3,AC=223110+=,BE=CE=22112+=,∠EBC=∠ECB=45°, ∴CE ⊥AB ,∴sinA=25510CE AC ==, 故答案为5.考点:勾股定理;三角形的面积;锐角三角函数的定义.16.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴()()2234x x +,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 17.35°【解析】试题分析:∵∠AOB=70°,∴∠C=12∠AOB=35°.∵AB=AC ,∴∠ABC=∠C=35°.故答案为35°. 考点:圆周角定理.18.y 1<y 1【解析】【分析】直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y 随x 的增大而增大,∵x 1<x 1,∴y 1与y 1的大小关系为:y 1<y 1.故答案为:y 1<y 1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)19;(3)第一题. 【解析】【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13; 故答案为13; (2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19; (3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18, 因为18>19, 所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.20. (1) b 2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.详解:(1) 解:原式=a 2-2ab +b 2-a 2+2ab =b 2 ;(2) 解:()233x x =-, 解得:x =1,经检验 x =1为原方程的根, 所以原方程的解为x =1.点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.21.1a-12【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1=2,故答. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.22. (1)y B =-0.2x 2+1.6x (2)一次函数,y A =0.4x (3)该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元【解析】【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B =ax 2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A 产品所获利润+投资B 产品所获利润”列出函数关系式求得最大值【详解】解:(1)y B =-0.2x 2+1.6x,(2)一次函数,y A =0.4x,(3)设投资B 产品x 万元,投资A 产品(15-x )万元,投资两种产品共获利W 万元, 则W=(-0.2x 2+1.6x )+0.4(15-x )=-0.2x 2+1.2x+6=-0.2(x -3)2+7.8,∴当x=3时,W 最大值=7.8,答:该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元.23.(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD =∠DEO =60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO =∠CDO =90°,于是得到结论;(3)先判断出△ABO ≌△CDE 得出AB =CD ,即可判断出四边形ABCD 是平行四边形,最后判断出CD =AD 即可.【详解】(1)如图,连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠2+∠3=∠1+∠COD =90°,∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE ;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°,∴∠2=∠1=30°,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD是平行四边形,∴∠DAE=12∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.24.7【解析】【分析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】33 x--1=13x-3-(x-3)=-13-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.25.(1)13;(2)13.【解析】【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=13;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93 .26.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.27.120【解析】【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.。
天津市南开区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)2.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()A.31°B.32°C.59°D.62°3.在同一平面直角坐标系中,函数y=x+k与kyx=(k为常数,k≠0)的图象大致是()A.B.C.D.4.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=1980 6.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 27.如图,四边形ABCD 中,AC ⊥BC ,AD ∥BC ,BC =3,AC =4,AD =1.M 是BD 的中点,则CM 的长为( )A .32B .2C .52D .38.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180° B .减小(n ﹣2)×180° C .增加(n ﹣1)×180°D .没有改变9.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα10.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( ) A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯11.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x 辆,则根据题意可列方程为( )A .1600x+4000(120%)x +=18B .1600x40001600(120%)x -++=18 C .1600x +4000160020%x -=18D .4000x40001600(120%)x -++=1812.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .14.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为_____.15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A 、B 两题中任选一题作答,我选择__________.A 、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B 、按照小明的要求,小亮所搭几何体的表面积最小为__________.16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC=,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm17.若代数式211x--的值为零,则x=_____.18.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数7 8 9 10人数 3 6 15 6表2:乙调查三个年级各10位同学植树情况每人植树棵数6 7 8 9 10人数 3 6 3 12 6根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
2020年天津市南开区中考数学一模试卷一、选择题(共12小题).1.(﹣9)÷的结果等于()A.3B.﹣3C.27D.﹣272.2cos60°的值等于()A.B.1C.D.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1064.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.45.如图是由7个相同的小立方块搭成的几何体.那么这个几何体的俯视图是()A.B.C.D.6.估计﹣的值在()A.﹣1至﹣2之间B.﹣2至﹣3之间C.﹣3至﹣4之间D.﹣4至﹣5之间7.分式+的计算结果是()A.B.C.D.8.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.9.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y3<y2D.y1<y2<y3 10.如图,矩形ABCD中,AB=3,AD=1,点A,B在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为()A.﹣1B.C.﹣1D.11.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)12.已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C.给出下列结论:①在a>0的条件下,无论a取何值,点A是一个定点;②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;③y的最小值不大于﹣2;④若AB=AC,则.其中正确的结论有()个.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.化简(﹣x)3(﹣x)2的结果是.14.计算(+)2的结果是.15.在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是.16.将直线y=3x+1向下平移5个单位得到的直线的表达式是.17.在平面直角坐标系中,有一条线段AB.已知点A(﹣3,0)和B(0,4).平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为.18.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD 的最小值等于.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空.完成本题的解答.(Ⅰ)解不等式①,得.(Ⅱ)解不等式②,得.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分,根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(Ⅰ)①中的描述应为“6分m%“,其中m的值为;扇形①的圆心角的大小是;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有360名学生,估计该校理化实验操作得满分的学生有多少人.21.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.22.如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C 处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)23.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印刷的数量为x份(x>0)(Ⅰ)根据题意填表:一次印刷数量(份)3005001500…甲印刷厂花费(元)2000…乙印刷厂花费(元)1250…(Ⅱ)设在甲印刷厂花费y1元,在乙印刷厂花费为y2元.分别求y1,y2为关于x的函数解析式;(Ⅲ)根据题意填空:①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为份;②印制800份宣传材料时,选择印刷厂比较合算;③电视机厂拟拿出3000元用于印制宣传材料,在印刷广印制宣传材料可以多一些.24.如图,四边形AOBC是正方形,点C的坐标是(8,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A',B',C'.求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折钱OACB力向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动.运动时间为t秒,当它们相遇时同时停止运动.当△OPQ为等腰三角形时.求出t的值(直接写出结果即可)25.已知抛物线y=ax2+bx+c过点A(﹣6,0),B(2,0),C(0,﹣3).(Ⅰ)求此抛物线的解析式;(Ⅱ)若点H是该抛物线第三象限的任意一点,求四边形OCHA的最大面积;(Ⅲ)若点Q在y轴上,点G为该抛物线的顶点,且∠GQA=45°.求点Q的坐标.参考答案一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(﹣9)÷的结果等于()A.3B.﹣3C.27D.﹣27【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,解:(﹣9)÷=(﹣9)×3=﹣27,故选:D.2.2cos60°的值等于()A.B.1C.D.【分析】直接利用特殊角的三角函数值代入得出答案.解:2cos60°=2×=1.故选:B.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.解:204000米/分,这个数用科学记数法表示2.04×105,故选:C.4.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.4【分析】根据轴对称图形与中心对称图形的概念进行判断即可.解:等边三角形是轴对称图形不是中心对称图形,平行四边形不是轴对称图形是中心对称图形,菱形既是轴对称图形又是中心对称图形,矩形既是轴对称图形又是中心对称图形,圆既是轴对称图形又是中心对称图形,故选:C.5.如图是由7个相同的小立方块搭成的几何体.那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:从上面可看到从左往右3列小正方形的个数为:2,2,1,故选:C.6.估计﹣的值在()A.﹣1至﹣2之间B.﹣2至﹣3之间C.﹣3至﹣4之间D.﹣4至﹣5之间【分析】根据不等式的性质估算出﹣的取值范围即可.解:∵9<10<16,∴3<<4,∴﹣4<﹣<﹣3.故选:C.7.分式+的计算结果是()A.B.C.D.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.解:==.故选:C.8.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.解:由题意可知:解得:故选:D.9.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y3<y2D.y1<y2<y3【分析】把各点分别代入反比例函数y=求出y1、y2、y3的值,再比较出其大小即可.解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,∴y1=﹣;y2=﹣;y3=,∴y2<y1<y3.故选:A.10.如图,矩形ABCD中,AB=3,AD=1,点A,B在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为()A.﹣1B.C.﹣1D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.解:AC=,则AM=,∵A点表示﹣1,∴M点表示﹣1,故选:A.11.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.12.已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C.给出下列结论:①在a>0的条件下,无论a取何值,点A是一个定点;②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;③y的最小值不大于﹣2;④若AB=AC,则.其中正确的结论有()个.A.1个B.2个C.3个D.4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.解:①y=ax2+(2﹣a)x﹣2=(x﹣1)(ax+2).则该抛物线恒过点A(1,0).故①正确;②∵y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴有2个交点,∴△=(2﹣a)2+8a=(a+2)2>0,∴a≠﹣2.∴该抛物线的对称轴为:x==﹣.无法判定的正负.故②不一定正确;③根据抛物线与y轴交于(0,﹣2)可知,y的最小值不大于﹣2,故③正确;④∵A(1,0),B(﹣,0),C(0,﹣2),∴当AB=AC时,=,解得.故④正确.综上所述,正确的结论有3个.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.化简(﹣x)3(﹣x)2的结果是﹣x5.【分析】根据同底数幂乘法法则即可计算.解:原式=(﹣x)3+2=﹣x5.故答案为﹣x514.计算(+)2的结果是7+2.【分析】利用完全平方公式计算.解:原式=()2+2+()2=5+2+2=7+2.故答案为7+2.15.在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是.【分析】画树状图列出所有等可能结果,从中找到两数之积为6的结果数,再利用概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中所得卡片上的两数之积是6的有2种结果,∴所得卡片上的两数之积是6的概率为=,故答案为:.16.将直线y=3x+1向下平移5个单位得到的直线的表达式是y=3x﹣4.【分析】根据“上加下减”的原则进行解答即可.解:由“上加下减”的原则可知,直线y=3x+1向下平移5个单位后得到直线的表达式是:y=3x+1﹣5,即y=3x﹣4.故答案为:y=3x﹣4.17.在平面直角坐标系中,有一条线段AB.已知点A(﹣3,0)和B(0,4).平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为15.【分析】首先根据A点和A1的坐标可得点A向右平移了3个单位,又向下平移了1个单位,进而利用面积公式解答即可.解:∵点A(﹣3,0),点A的对应点A1的坐标为(0,﹣1),∴点A向右平移了3个单位,又向下平移了1个单位,∴B的平移方式也是向右平移了3个单位,又向下平移了1个单位,∵B(0,4),∴B1的点(3,3),线段AB平移经过的区域(四边形ABB1A1)的面积为,故答案为:15.18.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD 的最小值等于3.【分析】过点P作PE⊥AD,交AD的延长线于点E,有锐角三角函数可得EP=PD,即PB+PD=PB+PE,则当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE.解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP=∴EP=PD∴PB+PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A==∴BE=3故答案为3三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空.完成本题的解答.(Ⅰ)解不等式①,得x≥﹣1.(Ⅱ)解不等式②,得x>﹣2.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x≥﹣1.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;解:,解不等式①,得x≥﹣1;解不等式②,得x>﹣2;原不等式组的解集为x≥﹣1,不等式组的解集在数轴上表示出来为:故答案为:x≥﹣1;x>﹣2;x≥﹣1.20.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分,根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(Ⅰ)①中的描述应为“6分m%“,其中m的值为10;扇形①的圆心角的大小是36°;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有360名学生,估计该校理化实验操作得满分的学生有多少人.【分析】(Ⅰ)利用6分的人数除以总数可得m%的值,进而可得m的值,用360°乘以①所占的百分比可得圆心角的度数;(Ⅱ)根据平均数、众数、中位数的定义分别解答;(Ⅲ)用九年级总人数乘以满分的人数所占的份数计算即可得解.解:(Ⅰ)m%=×100%=10%,则m=10,360°×10%=36°,故答案为:10;36°;(Ⅱ)平均数:(4×6+6×7+11×8+12×9+7×10)÷40=8.3(分),众数是9分,中位数是8分;(Ⅲ)360×=63(人),答:该校理化实验操作得满分的学生有63人.21.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.【分析】(1)根据圆内接四边形的性质得到∠EDA=∠ACB,根据圆周角定理得到∠CDA=∠ABC,根据等腰三角形的判定定理证明;(2)连接AO并延长交BC于H,AM⊥CD于M,根据角平分线的性质得到DM=DE =1,AE=AM=2,证明Rt△ABE≌Rt△ACM,得到CM=BE,根据勾股定理列式计算得到答案.【解答】(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.22.如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C 处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)【分析】由已知可得△ABC中∠C=67°,∠B=37°且AB=20海里.要求BC的长,可以过A作AD⊥BC于D,先求出CD和BD的长,就可转化为运用三角函数解直角三角形.解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B=,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B=,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH=,∴CH=≈5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.23.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印刷的数量为x份(x>0)(Ⅰ)根据题意填表:一次印刷数量(份)3005001500…甲印刷厂花费(元)180020003000…乙印刷厂花费(元)75012503750…(Ⅱ)设在甲印刷厂花费y1元,在乙印刷厂花费为y2元.分别求y1,y2为关于x的函数解析式;(Ⅲ)根据题意填空:①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为1000份;②印制800份宣传材料时,选择乙印刷厂比较合算;③电视机厂拟拿出3000元用于印制宣传材料,在甲印刷广印制宣传材料可以多一些.【分析】(Ⅰ)根据题意,可以分别计算出当印刷300份和印刷1500份材料时,在两家印刷厂的花费情况;(Ⅱ)根据题意,可以分别写出y1,y2为关于x的函数解析式;(Ⅲ)①根据题意,可以令y1=y2,即可得到相应的x的值,本题得以解决;②将x=800代入(Ⅱ)中的函数关系式,求出y的值,然后比较大小即可解答本题;③将y=3000代入(Ⅱ)中的函数关系式,求出x的值,然后比较大小即可解答本题.解:(Ⅰ)由题意可得,当印制300份材料时,甲印刷厂的花费为:300×1+1500=1800(元),乙印刷厂的花费为:300×2.5=750(元),当印制1500份材料时,甲印刷厂的花费为:1500×1+1500=3000(元),乙印刷厂的花费为:1500×2.5=3750(元),故答案为:1800,3000;750,3750;(Ⅱ)由题意可得,y1=x+1500,y2=2.5x;(Ⅲ)①由题意得,x+1500=2.5x,解得,x=1000,故答案为:1000;②当x=800时,y1=1500+800=2300,y2=2.5×800=2000,∵2300>2000,∴选择乙家印刷厂,故答案为:乙;③当y=3000时,选择甲印刷厂时,3000=x+1500,得x=1500,选择乙印刷厂时,3000=2.5x,得x=1200,∵1500>1200,∴视机厂拟拿出3000元用于印制宣传材料,在甲印刷广印制宣传材料可以多一些,故答案为:甲.24.如图,四边形AOBC是正方形,点C的坐标是(8,0).(Ⅰ)正方形AOBC的边长为8,点A的坐标是(4,4).(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A',B',C'.求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折钱OACB力向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动.运动时间为t秒,当它们相遇时同时停止运动.当△OPQ为等腰三角形时.求出t的值(直接写出结果即可)【分析】(Ⅰ)由正方形性质可得AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,由勾股定理可求AO,AE的长,即可求解;(Ⅱ)由旋转的性质可得OA=OA'=4,∠OA'B'=∠A=90°,可求A'C的长,由S重叠=S△OBC﹣S△A'PC可求重叠部分的面积;部分(Ⅲ)利用分类讨论思想和等腰三角形的性质可求t的值.解:(Ⅰ)如图,连接AB,交OC于点E,∵四边形AOBC是正方形∴AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,∵点C的坐标是(8,0).∴OC=8,∴OE=EC=4,∵OA2+AC2=OC2=128,∴OA=8∴AE==4,∴正方形边长为8,点A坐标为(4,4)故答案为:8,(4,4)(Ⅱ)如图,∵旋转45°,∠AOC=45°∴点A'落在OC上,∴OA=OA'=8,∠OA'B'=∠A=90°∴点A'(8,0),A'C=OC﹣OA'=8﹣8,∵∠ACB=45°,∴∠A'PC=∠A'CP=45°∴A'C=A'P=8﹣8,∴S重叠部分=S△OBC﹣S△A'PC=32﹣×(8﹣8)2=64﹣64.(Ⅲ)∵t=8时,点P与A重合,点Q与C重合,且△OAC是等腰三角形∴当t=8时,△OPQ为等腰三角形当点P在OA上,点Q在OB上时,OP=t,OQ=2t,则直角三角形OPQ不是等腰三角形;当点P在OA上,点Q在BC上时,∵△OPQ是等腰三角形∴点Q在OP的垂直平分线上,∴2t﹣8=t,∴t=当点P在AC上时,点Q在AC上时,OP≠OQ≠PQ∴△OPQ不是等腰三角形.∴当t=8或时,△OPQ为等腰三角形.25.已知抛物线y=ax2+bx+c过点A(﹣6,0),B(2,0),C(0,﹣3).(Ⅰ)求此抛物线的解析式;(Ⅱ)若点H是该抛物线第三象限的任意一点,求四边形OCHA的最大面积;(Ⅲ)若点Q在y轴上,点G为该抛物线的顶点,且∠GQA=45°.求点Q的坐标.【分析】(Ⅰ)将点A、B、C的坐标代入抛物线表达式,即可求解;(Ⅱ)S四边形OCHA=S△AMH+S梯形形OMHC,即可求解;(Ⅲ)证明△AMR≌△RNG(AAS),求出点R(﹣2,0),利用RQ=4,即可求解.解:(Ⅰ)将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+x﹣3;(Ⅱ)如图1,过点H作HM⊥AB于M,设点H的坐标为:(m,m2+m﹣3),则HM=﹣m2﹣m+3,OM=﹣m,∵点C的坐标为(0,﹣3),点A的坐标为(﹣6,0),∴OA=6,OC=3,∴AM=6﹣m,∴S四边形OCHA=S△AMH+S梯形形OMHC=AM•HM+(OC+MH)•OM=×(6﹣m)×(﹣m2﹣m+3)+×(3﹣m2﹣m+3)×(﹣m)=﹣m2﹣m+9,∵<0,故S四边形OCHA有最大值,当m=﹣3时,四边形OCHA的最大面积为;(Ⅲ)设△GAQ的外接圆圆心为R,如图3,∵∠GQA=45°,∴∠ARG=2∠GQA=90°,过点R作x轴的垂线交x轴于点M,交过点G与x轴的平行线于点N,设点R(x,y),则AM=x+6,RM=﹣y,RN=y+4,GN=x+2,∵∠MRA+∠GRN=90°,∠GRN+∠RNG=90°,∴∠RGN=∠ARM,又∵∠AMR=∠RNG=90°,RA=RG,∴△AMR≌△RNG(AAS),∴AM=RN,MR=GN,即x=2=﹣y,x+6=y+4,解得:,故点R(﹣2,0),则RM=﹣2﹣(﹣6)=4,设点Q(0,m),则RQ=4,即m2+4=16,解得:m=,故Q的坐标为:(0,2)或(0,﹣2).。
2019~2020 学年度第二学期南开区九年级阶段性练习数学参考答案一、选择题(本大题共12 小题,每小题 3 分,共36 分)(1)D (2)B (3)C (4)B (5)C (6)B (7)A (8)D (9)A (10)A (11)C (12)C二、填空题(本大题共 6 小题,每小题 3 分,共18 分)(13)-x5(14)7 + 21 (15)6(16)y = 3x - 4 (17)15 (18)3三、解答题:本大题共7 小题,共66 分.解答应写出文字说明、演算步骤或证明过程.19.(本小题 8 分)解:(Ⅰ)x ≥-1; 2 分(Ⅱ)x>- 2 ; 4 分(Ⅲ)6 分(Ⅳ)x ≥-1.8 分20.(本小题 8 分)解:(Ⅰ)10,36°; 2 分4 ⨯ 6 + 6 ⨯ 7 +11⨯ 8 +12 ⨯ 9 + 7 ⨯10(Ⅱ)观察条形统计图,∵ x =40= 8.34 分∴ 这40 个样本数据的平均数是8.3 .∵在这组样本数据中,9 出现了12 次,出现的次数最多,∴这组样本数据的众数是9 . 5 分8 + 8 2将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是8,有= 8,103∴这组样本数据的中位数是8. 6 分(Ⅲ)∵在40 名学生中,理化实验操作得满分的学生比例为17.5%∴ 360×17.5%=63.答:该校理化实验操作得满分的学生约有63 人.8 分21.(本小题 10 分)(I)证明:∵四边形 ADBC 内接于⊙O,∴∠EDA=∠ACB, 1 分由圆周角定理得:∠ADC=∠ABC, 2 分∵AD 平分∠EDC,∴∠EDA=∠ADC, 3 分∴∠ABC=∠ACB∴ AB=AC 4 分(II)解:连接AO 并延长交BC 于点H,作AM⊥CD,垂足为M. 5 分∵AE 是⊙O 的切线,∴AH⊥AE,∠EAH=90°∵AB=AC∴AH⊥BC,∠AHB=90°,BH=CH∴AE∥BC∵CD 为⊙O 的直径∴∠DBC=90°∴∠EAH=∠AHB=∠DBC=90°∴四边形 AEBH 是矩形∴BH=AE=2,AE⊥DEBC=2BH=4∵AD 平分∠EDC,AE⊥DE,AM⊥CD∴AM=AE=2,DM=DE=1在Rt∆ABE 和Rt∆ACM 中⎧AB =AC⎨AE =AM⎩∴ Rt∆ABE ≌ Rt∆ACM 中(HL)∴BE=CM 8 分设BD =x ,则CM =BE =BD +DE =x +1,∴ CD =CM +DM =x + 2在Rt∆BDC 中,有BD2 +BC 2 =CD 2即:x2 + 42 = (x + 2)2解得:x = 3 9 分∴CD =x + 2 = 5∴⊙O 的半径为2.5 10 分22.(本小题 10 分)解:过点A 作AH T Bt,垂足为点H. 1 分由题意,得²AtH = 6t o,²B = 3t o,AB = ⺁0. 2 分在Rt∆ABH 中,∵sin B =AH,cos B =BH AB AB∴AH =AB ⋅s in 37︒,BH =AB ⋅cos 37︒ 4 分在Rt∆ACH 中,∵ tan ∠ACH =AH,CH∴CH =AHtan 67︒, 6 分又∵ BC =BH +CH∴BC =AB ⋅cos 37︒+AH7 分=AB ⋅ cos 37︒+AB ⋅ sin 37︒≈ 20 ⨯ 0.8 +20 ⨯ 0.6 tan 67︒ tan 67︒ 125=16 + 5 = 21(海里)9 分21∴巡逻艇到达渔船C 处所需时间为小时2521∵<125巡逻艇能在1 小时内到达渔船t 处.10 分2 (23)(本小题 10 分) (Ⅰ)一次印制数量(份) 300 1500 … 甲印刷厂花费(元) 1800 3000 … 乙印刷厂花费(元)7503750…4 分(II )∵甲印刷厂提出,每份材料收 1 元印制费,另收 1500 元制版费;∴甲厂的收费函数表达式为: y = x +1500(x >0,且 x 为整数),∵乙厂提出,每份材料收 2.5 元印制费,不收制版费.∴乙厂的收费函数表达式为: y = 2.5x (x >0,且 x 为整数);7 分 (III ) ①1000 份;②乙;③甲.10 分24.(本小题 10 分)解:(Ⅰ)8;(4 2,4 2 ) 4 分(Ⅱ) 如图,∵ 四边形 AtBt 是正方形, ∴∠A O B =90°,∠A t t = 4ᦙo ,将正方形 AtBt 绕点 t 顺时针旋转 4ᦙo , 点 A ʹ 落在 x 轴上, 又∵正方形的边长为 8 O A ’=O A =8,点 A ʹ 的坐标为 (8,0)OC = 8 2 ,∴ A 'C = OC - OA ' = 8 - 8四边形 tAtB ,tA ʹt ʹB ʹ 是正方形, ∠t A ʹt ʹ = 90o ,∠A t B = 90o , ∠t A ʹE = 90o ,∠t t B = 4ᦙo , ∠A ʹE t = ∠t t B = 4ᦙo ,2 , ∴ A ' E = A 'C = 8 - 8∴ S = S - S= 1 OB 2 - 1A ' E 2 OBEA ' ∆OBC∆A 'CE 2 2= 1 ⨯ 82 - 1(8 - 8)2 = 64 2-64 2 2旋转后的正方形与原正方形的重叠部分的面积为64 2-64 .8 分 (III ) t = 8 t = 16或 3 10 分25.(本小题 10 分)解:(I )∵已知抛物线 y = ax 2+ bx + c过点 A (-6,0) , B (2,0) ,.∴设抛物线解析式为 y = a (x + 6)(x - 2)又∵抛物线过点C (0,-3)1∴有-3 = -12a ,则 a = ,4∴ y = 1 (x + 6)(x - 2) = 1x 2 + x - 33 分(II )设 H (t 4 4 1 t 2+ t - 3)4∵点 H 在第三象限的抛物线上 ∴ - 6<t <0则 S OCHA = S ∆OAH + S ∆OCH= 1 OA ⋅ y 2 H+ 1OC ⋅ x2 H= 1 ⨯ 6 ⋅ (- 1 t 2 - t + 3) + 1⨯ 3⨯ (-t ) 2 4 2 = - 3 t 2 - 9t + 94 2 = - 3 (t + 3)2 + 634 4∴当t = 3 时,四边形 OCHA 的面积有最大值63 7 分4(III )∵ y = 1 x 2 + x - 3 = 1(x + 2)2 - 44 4∴顶点 G 的坐标为(2,-4) 设抛物线的对称轴与 x 轴的交点为 M242 - 22 则GM = 4 , AM = 1 AB = 1[2 - (-6)] = 42 2∴ GM = AM ,且∠AMG=90°以点 M 为圆心,MG 为半径的圆过点 A 、B ,与 y 轴交于点 Q 和点 Q’, 连接 QA 、QG由同弧所对的圆周角等于圆心角的一半可知:∠AQG = 1 ∠AMG = 1⨯ 90︒ = 45︒2 2连接 QM ,在 Rt ∆QMO 中,OM =2,QM =4∴ OQ = = 2∴ Q (0,2 3)由对称性可知, Q ' (0,- 2 3)当点 Q 在线段 QQ’之间或线段 QQ’之外时,均不能保证使∠GQA =45°综上,满足条件的点 Q 的坐标为(0,2 3) 或(0,- 2 3) .10 分3。
2020年天津市部分区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算﹣2﹣7的结果等于()A.5B.﹣5C.﹣9D.92.(3分)计算tan60°的值等于()A.B.C.1D.3.(3分)下列图形中是轴对称图形的是()A.B.C.D.4.(3分)一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为()A.7.5×104B.7.5×105C.7.5×108D.7.5×1095.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算﹣的结果为()A.1B.x C.D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.(3分)若点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 11.(3分)如图,△ABC是等边三角形,AB=2,AD是BC边上的高,E是AC的中点,P 是AD上的一个动点,则PE+PC的最小值为()A.1B.2C.D.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,且a≠0)与x轴相交于点A,B(点A在点B左侧),点A(﹣1,0),与y轴交于点C(0,c),其中2≤c≤3,对称轴为x =l,现有如下结论:①2a+b=0;②当x>3时,y>0;③﹣1≤a≤.其中正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x5•x3的结果等于.14.(3分)计算(+2)2的结果等于.15.(3分)不透明袋子中装有7个球,其中有4个红球.3个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)已知一次函数y=mx+3的图象经过第一、二、四象限,则m的值可以是.(写出一个即可)17.(3分)如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为S1,平行四边形的面积记为S2,则的值为.18.(3分)如图,在每个小正力形的边长为1的网格中,点A,B,C均在格点上,D为小正方形边中点.(Ⅰ)AD的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个点P,使其满足S△P AD=S四边,并简要说明点P的位置是如何找到的(不要求证明).形ABCD三、解答题(共7小题,满分66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m的值为;(Ⅱ)求统计的这组学生年龄数据的平均数、众数和中位数.21.(10分)已知AB是⊙O的直径,CD是⊙O的弦,(Ⅰ)如图①,连接AC,AD,若∠ADC=55°,求∠CAB的大小;(Ⅱ)如图②,C是半圆弧AB的中点,AD的延长线与过点B的切线相交于点P,若CD=,求∠APB的大小.22.(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路AC的长(结果保留整数).参考数据:sin67°≈0.92;cos67°≈0.38;≈1.732.23.(10分)某儿童游乐园推出两种门票收费方式:方式一:购买会员卡,每张会员卡费用是200元,凭会员卡可免费进园5次,免费次数用完以后,每次进园凭会员卡只需10元;方式二:不购买会员卡,每次进园是20元(两种方式每次进园均指单人)设进园次数为x(x为非负整数)(Ⅰ)根据题意,填写下表:进园次数(次)51020……方式一收费(元)200350……方式二收费(元)200……(Ⅱ)设方式一收费y1元,方式二收费为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)当x>30时,哪种进园方式花费少?请说明理由.24.(10分)在直角坐标系中,O为坐标原点,点A(4,0),点B(0,4),C是AB中点,连接OC,将△AOC绕点A顺时针旋转,得到△AMN,记旋转角为α,点O,C的对应点分别是M,N.连接BM,P是BM中点,连接OP,PN.(Ⅰ)如图①.当α=45°时,求点M的坐标;(Ⅱ)如图②,当α=180°时,求证:OP=PN且OP⊥PN;(Ⅲ)当△AOC旋转至点B,M,N共线时,求点M的坐标(直接写出结果即可).25.(10分)已知抛物线C的解析式为y=x2+2x﹣3,C与x轴交于点A,B(点A在点B 左侧),与y轴交于点D,顶点为P.(Ⅰ)求点A,B,D,P的坐标;(Ⅱ)若将抛物线C沿着直线PD的方向平移得到抛物线C′;①当抛物线C′与直线y=2x﹣5只有一个公共点时,求抛物线C′的解析式;②点M(x m,y m)是①中抛物线C′上一点,若﹣6≤x m≤2且y m为整数,求满足条件的点M的个数.2020年天津市部分区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算﹣2﹣7的结果等于()A.5B.﹣5C.﹣9D.9【分析】根据有理数的减法法则计算即可.【解答】解:﹣2﹣7=﹣2+(﹣7)=﹣9.故选:C.2.(3分)计算tan60°的值等于()A.B.C.1D.【分析】根据特殊角的三角函数值进行计算即可.【解答】解:原式=,故选:D.3.(3分)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.4.(3分)一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为()A.7.5×104B.7.5×105C.7.5×108D.7.5×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:75000万=750000000=7.5×108吨.故选:C.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层左边一个小正方形.故选:A.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】根据二次根式的性质确定2的范围,即可得出答案.【解答】解:∵2=,<<,∴估计的值在3和4之间,故选:B.7.(3分)计算﹣的结果为()A.1B.x C.D.【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:﹣==1.故选:A.8.(3分)方程组的解是()A.B.C.D.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x+2(2x﹣3)=8,整理得:7x=14,解得:x=2,把x=2代入①得:y=1,则方程组的解为.故选:C.9.(3分)如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°【分析】连接BD,依据矩形的性质,即可得到∠ABD=40°,∠DBE=50°,再根据AC=BD,AC=BE,即可得出BD=BE,进而得到∠E的度数.【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=(180°﹣∠DBE)=(180°﹣50°)=65°,故选:A.10.(3分)若点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】根据反比例函数的性质和反比例函数增减性,结合函数的纵坐标,即可得到答案.【解答】解:∵反比例函数y=的k=﹣1<0,∴x>0时,y<0,y随着x的增大而增大,x<0时,y>0,y随着x的增大而增大,∵﹣3<﹣2<0,∴0<y1<y2,∵3>0,∴y3<0,∴y3<0<y1<y2,故选:B.11.(3分)如图,△ABC是等边三角形,AB=2,AD是BC边上的高,E是AC的中点,P 是AD上的一个动点,则PE+PC的最小值为()A.1B.2C.D.【分析】根据等边三角形的三线合一的性质,连接BE交AD于点P,此时PB=PC,即可得到PE+PC的最小值即为BE的长.【解答】解:如图,连接BE交AD于点P′,∵,△ABC是等边三角形,AB=2,AD是BC边上的高,E是AC的中点,∴AD、BE分别是等边三角形ABC边BC、AC的垂直平分线,∴P′B=P′C,P′E+P′C=P′E+P′B=BE,根据两点之间线段最短,点P在点P′时,PE+PC有最小值,最小值即为BE的长.BE==,所以P′E+P′C的最小值为.故选:C.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,且a≠0)与x轴相交于点A,B(点A在点B左侧),点A(﹣1,0),与y轴交于点C(0,c),其中2≤c≤3,对称轴为x =l,现有如下结论:①2a+b=0;②当x>3时,y>0;③﹣1≤a≤.其中正确结论的个数是()A.0B.1C.2D.3【分析】根据二次函数的图象与性质逐项分析即可求出答案.【解答】解:∵(﹣1,0)关于直线的x=1的对称点是(3,0),由于与y轴的交点C在(0,2)和(0,3)之间(包括这两点),∴抛物线的开口向下,∴x>3时,y<0,故②错误;∵抛物线经过A(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∵2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,故③正确;③由对称轴可知:﹣=1,∴b=﹣2a,∴2a+b=0,故①正确;故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x5•x3的结果等于x8.【分析】同底数幂乘法运算的法则是:底数不变,指数相加,据此可解.【解答】解:x5•x3=x5+3=x8故答案为:x8.14.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.15.(3分)不透明袋子中装有7个球,其中有4个红球.3个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.【分析】用绿球的个数除以球的总个数即可得.【解答】解:从袋子中随机取出1个球有7种等可能结果,其中它是绿球的有3种可能,∴它是绿球的概率为,故答案为:.16.(3分)已知一次函数y=mx+3的图象经过第一、二、四象限,则m的值可以是﹣2(答案不唯一).(写出一个即可)【分析】根据一次函数y=mx+3的图象经过第一、二、四象限判断出m的取值范围,从中任意找一个m的值即可.【解答】解:∵一次函数y=mx+3的图象经过第一、二、四象限,∴m<0,∴m=﹣2.故答案为:﹣2(答案不唯一).17.(3分)如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为S1,平行四边形的面积记为S2,则的值为.【分析】由题中条件可得平行四边形中两边的阴影面积相等,则求解一个阴影的面积及平行四边形的面积即可得出两者之间的关系.【解答】解:如图,则S阴影=2(S△BEF+S四边形FGMN),设正六边形的边长为a,由于正六边形的存在,所以∠BEF=60°,则可得BE=EF=2a,BC=4a,AB=3a,则在Rt△BEF中可得其高EP=a,同理可得FQ=a,∴S1=2(S△BEF+S FGMN)=2(•BF•EP+FG•FQ)=2(•2a•a+a•a)=3a2,而S2=BC•h=4a•a=6a2,∴=,故答案为:.18.(3分)如图,在每个小正力形的边长为1的网格中,点A,B,C均在格点上,D为小正方形边中点.(Ⅰ)AD的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个点P,使其满足S△P AD=S四边,并简要说明点P的位置是如何找到的(不要求证明)取格点E,连接BE,延形ABCD长DC,与BE交于点P,点P即为所求.【分析】(Ⅰ)利用网格根据勾股定理即可求出AD的长;(Ⅱ)在如图所示的网格中,取格点E,连接BE,延长DC,与BE交于点P,使其满足S△P AD=S四边形ABCD即可.【解答】解:(Ⅰ)AD的长等于=;故答案为:;(Ⅱ)如图,取格点E,连接BE,延长DC,与BE交于点P,点P即为所求.故答案为:取格点E,连接BE,延长DC,与BE交于点P,点P即为所求.三、解答题(共7小题,满分66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥0;(Ⅱ)解不等式②,得x≤4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为0≤x≤4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥0;(Ⅱ)解不等式②,得x≤4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为0≤x≤4.故答案为:x≥0,x≤4,0≤x≤4.20.(8分)某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为50,图①中m的值为12;(Ⅱ)求统计的这组学生年龄数据的平均数、众数和中位数.【分析】(Ⅰ)根据14岁的人数和所占的百分比求出总人数,用12岁的人数除以总人数即可求出m;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可.【解答】解:(Ⅰ)本次接受调查的学生人数为:14÷28%=50(人),m%=×100%=12%,则m=12;故答案为:50,12;(Ⅱ)这组学生年龄数据的平均数是:=14(岁),∵15岁出现的次数最多,出现了18次,∴众数是15岁;将这组数据按从小到大排列,处于中间的两个数都是14,则这组数据的中位数是=14岁.21.(10分)已知AB是⊙O的直径,CD是⊙O的弦,(Ⅰ)如图①,连接AC,AD,若∠ADC=55°,求∠CAB的大小;(Ⅱ)如图②,C是半圆弧AB的中点,AD的延长线与过点B的切线相交于点P,若CD=,求∠APB的大小.【分析】(I)连接CB,由圆周角定理和已知数据即可求出∠CAB的大小;(II)连接AC,OC,DO,易证△COD为等边三角形,再由切线的性质即可求出∠APB 的大小【解答】解:(I)连接CB,∵AB是⊙O的直径,∴∠AB=90°,∴∠CAB+∠ABC=90°,∵∠ADC=55°,∴∠ABC=∠ADC=55°,∴∠CAB=90°﹣∠ABC=35°;(II)连接AC,OC,DO,∵CD=AB=OC=OD,∴△COD为等边三角形,∴∠COD=60°,∴∠CAD=∠COD=30°,∵C是半圆弧AB的中点,∴=,∴∠AOC=∠BOC=90°,∵AO=CO,∴∠CAO=∠ACO=45°,∴∠BAD=∠BAC﹣∠DAC=15°,∵AD的延长线与过点B的切线相交于点P,∴BP⊥AB,∴∠ABP=90°,∴∠APB=90°﹣∠BAP=75°.22.(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路AC的长(结果保留整数).参考数据:sin67°≈0.92;cos67°≈0.38;≈1.732.【分析】过点B作BD⊥AC于点D,根据题意,得∠ABD=67°,AB=520,∠CBD=30°,再根据锐角三角函数即可求出A地到C地之间高铁线路AC的长.【解答】解:如图,过点B作BD⊥AC于点D,根据题意,得∠ABD=67°,AB=520,∠CBD=30°,在Rt△ABD中,AD=AB•sin67°,BD=AB•cos67°,在Rt△CBD中,CD=BD•tan30°,∴AC=AD+CD=AB•sin67°+AB•cos67°•tan30°≈520×0.92+520×0.38×≈592(km).答:A地到C地之间高铁线路AC的长592km.23.(10分)某儿童游乐园推出两种门票收费方式:方式一:购买会员卡,每张会员卡费用是200元,凭会员卡可免费进园5次,免费次数用完以后,每次进园凭会员卡只需10元;方式二:不购买会员卡,每次进园是20元(两种方式每次进园均指单人)设进园次数为x(x为非负整数)(Ⅰ)根据题意,填写下表:进园次数(次)51020……方式一收费(元)200250350……方式二收费(元)100200400……(Ⅱ)设方式一收费y1元,方式二收费为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)当x>30时,哪种进园方式花费少?请说明理由.【分析】(I)根据两种门票收费方式填空即可;(II)根据题意可以写出y1,y2与x之间的函数表达式;(Ⅲ)先写出选择哪种进园方式,然后根据题意,求出两种方式下,x为多少时,收费一样,然后即可得到当x>30时,哪种进园方式花费少.【解答】解:(Ⅰ)进园次数为5时,方式二收费为5×20=100(元),进园次数10时,方式一收费为200+10×(10﹣5)=250(元),进园次数为20时,方式二收费为20×20=400(元),故答案为:250;100;400.(Ⅱ)由题意可得,当0<x≤5时,y1=200,当x>5时,y1=200+10(x﹣5)=10x+150,由上可得,y1=,y2=20x;(Ⅲ)当x>30时,方式一进园方式花费少,理由:令10x+150=20x,解得,x=15,∵x>30,∴方式一进园方式花费少,即当x>30时,方式一进园方式花费少.24.(10分)在直角坐标系中,O为坐标原点,点A(4,0),点B(0,4),C是AB中点,连接OC,将△AOC绕点A顺时针旋转,得到△AMN,记旋转角为α,点O,C的对应点分别是M,N.连接BM,P是BM中点,连接OP,PN.(Ⅰ)如图①.当α=45°时,求点M的坐标;(Ⅱ)如图②,当α=180°时,求证:OP=PN且OP⊥PN;(Ⅲ)当△AOC旋转至点B,M,N共线时,求点M的坐标(直接写出结果即可).【分析】(Ⅰ)如图①中,过点M作MD⊥OA于D.解直角三角形求出OD,OM即可解决问题.(Ⅱ)如图②,当α=180°时,点B,A,N共线,O,A,M共线,利用直角三角形斜边中线定理即可解决问题.(Ⅲ)分两种情形:①如图③﹣1中,当点M在线段BN上时,②如图③﹣2中,当点N在线段BM上时,分别求解即可解决问题.【解答】解:(Ⅰ)如图①中,过点M作MD⊥OA于D.∵A(4,0),B(0,4),∴OA=OB=4,∵C是AB的中点,∴OC=CB=CA=AB,且OC⊥AB,∴△AOC是等腰直角三角形,∴当α=45°时,点M在AB上,由旋转可知:△AOC≌△AMN,∴AM=OA=4.MD=AD=AM=2,∴OD=OA=AD=4﹣2,∴M(4﹣2,2).(Ⅱ)如图②,当α=180°时,点B,A,N共线,O,A,M共线,∵∠BNM=∠BOM=90°,P是BM的中点,∴OP=PN=PB=PM,∴∠PMN=∠PNM,∠POB=∠PBO,∵∠NPM=180°﹣2∠PMN,∠BPO=180°﹣2∠PBO,∴∠MPN+∠BPO=360°﹣2(∠PMN+∠PBO)∴∠MPN+∠BPO=360°﹣2(45°+∠PMO+∠PBO),∵∠PMO+∠PBO=90°,∴∠MPN+∠BPO=90°,∴∠OPN=180°﹣(∠MPN+∠BPO)=90°,∴OP⊥PN.(Ⅲ)①如图③﹣1中,当点M在线段BN上时,在Rt△ABN中,∵AB=4,AN=2,∴AB=2AN,∴∠ABN=30°,∴BN=AN=2,BM=BN=MN=2﹣2,过点M作MK⊥OB于K,在MK上截取一点J,使得BJ=MJ,设BK=a,∵∠ABO=45°,∴∠MBK=75°,∠KMB=15°,∵JB=JM,∴∠JBM=∠JMB=15°,∴∠BJK=∠JBM+∠JMB=30°,∴BJ=JM=2a,KJ=a,∵BM2=BK2+KM2,∴(2﹣2)2=a2+(2a+a)2,解得a=4﹣2(负根已经舍弃),∴KM=2a+a=2,OK=2,∴M(2,2),②如图③﹣2中,当点N在线段BM上时,同法可得M(2,﹣2),综上所述,满足条件的点M的坐标为(2,2)或(2,﹣2).25.(10分)已知抛物线C的解析式为y=x2+2x﹣3,C与x轴交于点A,B(点A在点B 左侧),与y轴交于点D,顶点为P.(Ⅰ)求点A,B,D,P的坐标;(Ⅱ)若将抛物线C沿着直线PD的方向平移得到抛物线C′;①当抛物线C′与直线y=2x﹣5只有一个公共点时,求抛物线C′的解析式;②点M(x m,y m)是①中抛物线C′上一点,若﹣6≤x m≤2且y m为整数,求满足条件的点M的个数.【分析】(I)对于y=x2+2x﹣3,令x=0,则y=﹣3,令y=0,则x=﹣3或1,即可求解;(II)①求得直线PD的表达式为:y=x﹣3,则平移后抛物线的表达式为:y=(x﹣m)2+m﹣3,由△=0,即可求解;②当﹣6≤x m≤1时,﹣2≤y m≤47,此时y m有50个整数;当1<x m≤2时,此时y m有1个整数,即可求解.【解答】解:(I)对于y=x2+2x﹣3,令x=0,则y=﹣3,令y=0,则x=﹣3或1,故点A、B、D的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),函数的对称轴为x=﹣1,故点P(﹣1,﹣4);(II)①设直线PD的表达式为:y=kx+b,则,解得:,故直线PD的表达式为:y=x﹣3,则设平移后抛物线的顶点坐标为:(m,m﹣3),故平移后抛物线的表达式为:y=(x﹣m)2+m﹣3,又抛物线C′与直线y=2x﹣5只有一个公共点,则y=(x﹣m)2+m﹣3=2x﹣5,△=0,解得:m=1,∴平移后抛物线的表达式为:y=(x﹣1)2﹣2=x2﹣2x﹣1;②由①知平移后抛物线的顶点为(1,﹣2),当x=﹣6时,y=x2﹣2x﹣1=47,当x=2时,y=﹣1,故当﹣6≤x m≤1时,﹣2≤y m≤47,此时y m有50个整数;当1<x m≤2时,此时y m有1个整数;∵抛物线是连续的,故满足条件的点M的个数为51个.。
2019~2020 学年度第二学期南开区九年级阶段性练习数学参考答案一、选择题(本大题共12 小题,每小题 3 分,共36 分)(1)D (2)B (3)C (4)B (5)C (6)B (7)A (8)D (9)A (10)A (11)C (12)C二、填空题(本大题共 6 小题,每小题 3 分,共18 分)(13)-x5(14)7 + 21 (15)6(16)y = 3x - 4 (17)15 (18)3三、解答题:本大题共7 小题,共66 分.解答应写出文字说明、演算步骤或证明过程.19.(本小题 8 分)解:(Ⅰ)x ≥-1; 2 分(Ⅱ)x>- 2 ; 4 分(Ⅲ)6 分(Ⅳ)x ≥-1.8 分20.(本小题 8 分)解:(Ⅰ)10,36°; 2 分4 ⨯ 6 + 6 ⨯ 7 +11⨯ 8 +12 ⨯ 9 + 7 ⨯10(Ⅱ)观察条形统计图,∵ x =40= 8.34 分∴ 这40 个样本数据的平均数是8.3 .∵在这组样本数据中,9 出现了12 次,出现的次数最多,∴这组样本数据的众数是9 . 5 分8 + 8 2将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是8,有= 8,103∴这组样本数据的中位数是8. 6 分(Ⅲ)∵在40 名学生中,理化实验操作得满分的学生比例为17.5%∴ 360×17.5%=63.答:该校理化实验操作得满分的学生约有63 人.8 分21.(本小题 10 分)(I)证明:∵四边形 ADBC 内接于⊙O,∴∠EDA=∠ACB, 1 分由圆周角定理得:∠ADC=∠ABC, 2 分∵AD 平分∠EDC,∴∠EDA=∠ADC, 3 分∴∠ABC=∠ACB∴ AB=AC 4 分(II)解:连接AO 并延长交BC 于点H,作AM⊥CD,垂足为M. 5 分∵AE 是⊙O 的切线,∴AH⊥AE,∠EAH=90°∵AB=AC∴AH⊥BC,∠AHB=90°,BH=CH∴AE∥BC∵CD 为⊙O 的直径∴∠DBC=90°∴∠EAH=∠AHB=∠DBC=90°∴四边形 AEBH 是矩形∴BH=AE=2,AE⊥DEBC=2BH=4∵AD 平分∠EDC,AE⊥DE,AM⊥CD∴AM=AE=2,DM=DE=1在Rt∆ABE 和Rt∆ACM 中⎧AB =AC⎨AE =AM⎩∴ Rt∆ABE ≌ Rt∆ACM 中(HL)∴BE=CM 8 分设BD =x ,则CM =BE =BD +DE =x +1,∴ CD =CM +DM =x + 2在Rt∆BDC 中,有BD2 +BC 2 =CD 2即:x2 + 42 = (x + 2)2解得:x = 3 9 分∴CD =x + 2 = 5∴⊙O 的半径为2.5 10 分22.(本小题 10 分)解:过点A 作AH T Bt,垂足为点H. 1 分由题意,得²AtH = 6t o,²B = 3t o,AB = ⺁0. 2 分在Rt∆ABH 中,∵sin B =AH,cos B =BH AB AB∴AH =AB ⋅s in 37︒,BH =AB ⋅cos 37︒ 4 分在Rt∆ACH 中,∵ tan ∠ACH =AH,CH∴CH =AHtan 67︒, 6 分又∵ BC =BH +CH∴BC =AB ⋅cos 37︒+AH7 分=AB ⋅ cos 37︒+AB ⋅ sin 37︒≈ 20 ⨯ 0.8 +20 ⨯ 0.6 tan 67︒ tan 67︒ 125=16 + 5 = 21(海里)9 分21∴巡逻艇到达渔船C 处所需时间为小时2521∵<125巡逻艇能在1 小时内到达渔船t 处.10 分2 (23)(本小题 10 分) (Ⅰ)一次印制数量(份) 300 1500 … 甲印刷厂花费(元) 1800 3000 … 乙印刷厂花费(元)7503750…4 分(II )∵甲印刷厂提出,每份材料收 1 元印制费,另收 1500 元制版费;∴甲厂的收费函数表达式为: y = x +1500(x >0,且 x 为整数),∵乙厂提出,每份材料收 2.5 元印制费,不收制版费.∴乙厂的收费函数表达式为: y = 2.5x (x >0,且 x 为整数);7 分 (III ) ①1000 份;②乙;③甲.10 分24.(本小题 10 分)解:(Ⅰ)8;(4 2,4 2 ) 4 分(Ⅱ) 如图,∵ 四边形 AtBt 是正方形, ∴∠A O B =90°,∠A t t = 4ᦙo ,将正方形 AtBt 绕点 t 顺时针旋转 4ᦙo , 点 A ʹ 落在 x 轴上, 又∵正方形的边长为 8 O A ’=O A =8,点 A ʹ 的坐标为 (8,0)OC = 8 2 ,∴ A 'C = OC - OA ' = 8 - 8四边形 tAtB ,tA ʹt ʹB ʹ 是正方形, ∠t A ʹt ʹ = 90o ,∠A t B = 90o , ∠t A ʹE = 90o ,∠t t B = 4ᦙo , ∠A ʹE t = ∠t t B = 4ᦙo ,2 , ∴ A ' E = A 'C = 8 - 8∴ S = S - S= 1 OB 2 - 1A ' E 2 OBEA ' ∆OBC∆A 'CE 2 2= 1 ⨯ 82 - 1(8 - 8)2 = 64 2-64 2 2旋转后的正方形与原正方形的重叠部分的面积为64 2-64 .8 分 (III ) t = 8 t = 16或 3 10 分25.(本小题 10 分)解:(I )∵已知抛物线 y = ax 2+ bx + c过点 A (-6,0) , B (2,0) ,.∴设抛物线解析式为 y = a (x + 6)(x - 2)又∵抛物线过点C (0,-3)1∴有-3 = -12a ,则 a = ,4∴ y = 1 (x + 6)(x - 2) = 1x 2 + x - 33 分(II )设 H (t 4 4 1 t 2+ t - 3)4∵点 H 在第三象限的抛物线上 ∴ - 6<t <0则 S OCHA = S ∆OAH + S ∆OCH= 1 OA ⋅ y 2 H+ 1OC ⋅ x2 H= 1 ⨯ 6 ⋅ (- 1 t 2 - t + 3) + 1⨯ 3⨯ (-t ) 2 4 2 = - 3 t 2 - 9t + 94 2 = - 3 (t + 3)2 + 634 4∴当t = 3 时,四边形 OCHA 的面积有最大值63 7 分4(III )∵ y = 1 x 2 + x - 3 = 1(x + 2)2 - 44 4∴顶点 G 的坐标为(2,-4) 设抛物线的对称轴与 x 轴的交点为 M242 - 22 则GM = 4 , AM = 1 AB = 1[2 - (-6)] = 42 2∴ GM = AM ,且∠AMG=90°以点 M 为圆心,MG 为半径的圆过点 A 、B ,与 y 轴交于点 Q 和点 Q’, 连接 QA 、QG由同弧所对的圆周角等于圆心角的一半可知:∠AQG = 1 ∠AMG = 1⨯ 90︒ = 45︒2 2连接 QM ,在 Rt ∆QMO 中,OM =2,QM =4∴ OQ = = 2∴ Q (0,2 3)由对称性可知, Q ' (0,- 2 3)当点 Q 在线段 QQ’之间或线段 QQ’之外时,均不能保证使∠GQA =45°综上,满足条件的点 Q 的坐标为(0,2 3) 或(0,- 2 3) .10 分3。
2020年天津市南开区中考数学一模试卷一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(﹣9)÷的结果等于()A.3B.﹣3C.27D.﹣272.(3分)2cos60°的值等于()A.B.1C.D.3.(3分)据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1064.(3分)下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.45.(3分)如图是由7个相同的小立方块搭成的几何体.那么这个几何体的俯视图是()A.B.C.D.6.(3分)估计﹣的值在()A.﹣1至﹣2之间B.﹣2至﹣3之间C.﹣3至﹣4之间D.﹣4至﹣5之间7.(3分)分式+的计算结果是()A.B.C.D.8.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.9.(3分)若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y3<y2D.y1<y2<y310.(3分)如图,矩形ABCD中,AB=3,AD=1,点A,B在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为()A.﹣1B.C.﹣1D.11.(3分)如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB =60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)12.(3分)已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.给出下列结论:①在a>0的条件下,无论a取何值,点A是一个定点;②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;③y的最小值不大于﹣2;④若AB=AC,则.其中正确的结论有()个.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简(﹣x)3(﹣x)2的结果是.14.(3分)计算(+)2的结果是.15.(3分)在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是.16.(3分)将直线y=3x+1向下平移5个单位得到的直线的表达式是.17.(3分)在平面直角坐标系中,有一条线段AB.已知点A(﹣3,0)和B(0,4).平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为.18.(3分)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD的最小值等于.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空.完成本题的解答.(Ⅰ)解不等式①,得.(Ⅱ)解不等式②,得.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分,根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(Ⅰ)①中的描述应为“6分m%“,其中m的值为;扇形①的圆心角的大小是;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有360名学生,估计该校理化实验操作得满分的学生有多少人.21.(10分)如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.22.(10分)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)23.(10分)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印刷的数量为x份(x>0)(Ⅰ)根据题意填表:一次印刷数量(份)3005001500…甲印刷厂花费(元)2000…乙印刷厂花费(元)1250…(Ⅱ)设在甲印刷厂花费y1元,在乙印刷厂花费为y2元.分别求y1,y2为关于x的函数解析式;(Ⅲ)根据题意填空:①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为份;②印制800份宣传材料时,选择印刷厂比较合算;③电视机厂拟拿出3000元用于印制宣传材料,在印刷广印制宣传材料可以多一些.24.(10分)如图,四边形AOBC是正方形,点C的坐标是(8,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A',B',C'.求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折钱OACB力向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动.运动时间为t秒,当它们相遇时同时停止运动.当△OPQ为等腰三角形时.求出t的值(直接写出结果即可)25.(10分)已知抛物线y=ax2+bx+c过点A(﹣6,0),B(2,0),C(0,﹣3).(Ⅰ)求此抛物线的解析式;(Ⅱ)若点H是该抛物线第三象限的任意一点,求四边形OCHA的最大面积;(Ⅲ)若点Q在y轴上,点G为该抛物线的顶点,且∠GQA=45°.求点Q的坐标.2020年天津市南开区中考数学一模试卷参考答案一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解:(﹣9)÷=(﹣9)×3=﹣27,故选:D.2.解:2cos60°=2×=1.故选:B.3.解:204000米/分,这个数用科学记数法表示2.04×105,故选:C.4.解:等边三角形是轴对称图形不是中心对称图形,平行四边形不是轴对称图形是中心对称图形,菱形既是轴对称图形又是中心对称图形,矩形既是轴对称图形又是中心对称图形,圆既是轴对称图形又是中心对称图形,故选:C.5.解:从上面可看到从左往右3列小正方形的个数为:2,2,1,故选:C.6.解:∵9<10<16,∴3<<4,∴﹣4<﹣<﹣3.故选:C.7.解:==.故选:C.8.解:由题意可知:解得:故选:D.9.解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,∴y1=﹣;y2=﹣;y3=,∴y2<y1<y3.故选:A.10.解:AC=,则AM=,∵A点表示﹣1,∴M点表示﹣1,故选:A.11.解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.12.解:①y=ax2+(2﹣a)x﹣2=(x﹣1)(ax+2).则该抛物线恒过点A(1,0).故①正确;②∵y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴有2个交点,∴△=(2﹣a)2+8a=(a+2)2>0,∴a≠﹣2.∴该抛物线的对称轴为:x==﹣.无法判定的正负.故②不一定正确;③根据抛物线与y轴交于(0,﹣2)可知,y的最小值不大于﹣2,故③正确;④∵A(1,0),B(﹣,0),C(0,﹣2),∴当AB=AC时,=,解得.故④正确.综上所述,正确的结论有3个.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.解:原式=(﹣x)3+2=﹣x5.故答案为﹣x514.解:原式=()2+2+()2=5+2+2=7+2.故答案为7+2.15.解:画树状图如下:由树状图知,共有12种等可能结果,其中所得卡片上的两数之积是6的有2种结果,∴所得卡片上的两数之积是6的概率为=,故答案为:.16.解:由“上加下减”的原则可知,直线y=3x+1向下平移5个单位后得到直线的表达式是:y=3x+1﹣5,即y =3x﹣4.故答案为:y=3x﹣4.17.解:∵点A(﹣3,0),点A的对应点A1的坐标为(0,﹣1),∴点A向右平移了3个单位,又向下平移了1个单位,∴B的平移方式也是向右平移了3个单位,又向下平移了1个单位,∵B(0,4),∴B1的点(3,3),线段AB平移经过的区域(四边形ABB1A1)的面积为,故答案为:15.18.解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP=∴EP=PD∴PB+PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A==∴BE=3故答案为3三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解:,解不等式①,得x≥﹣1;解不等式②,得x>﹣2;原不等式组的解集为x≥﹣1,不等式组的解集在数轴上表示出来为:故答案为:x≥﹣1;x>﹣2;x≥﹣1.20.解:(Ⅰ)m%=×100%=10%,则m=10,360°×10%=36°,故答案为:10;36°;(Ⅱ)平均数:(4×6+6×7+11×8+12×9+7×10)÷40=8.3(分),众数是9分,中位数是8分;(Ⅲ)360×=63(人),答:该校理化实验操作得满分的学生有63人.21.(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.22.解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B=,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B=,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH=,∴CH=≈5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.23.解:(Ⅰ)由题意可得,当印制300份材料时,甲印刷厂的花费为:300×1+1500=1800(元),乙印刷厂的花费为:300×2.5=750(元),当印制1500份材料时,甲印刷厂的花费为:1500×1+1500=3000(元),乙印刷厂的花费为:1500×2.5=3750(元),故答案为:1800,3000;750,3750;(Ⅱ)由题意可得,y1=x+1500,y2=2.5x;(Ⅲ)①由题意得,x+1500=2.5x,解得,x=1000,故答案为:1000;②当x=800时,y1=1500+800=2300,y2=2.5×800=2000,∵2300>2000,∴选择乙家印刷厂,故答案为:乙;③当y=3000时,选择甲印刷厂时,3000=x+1500,得x=1500,选择乙印刷厂时,3000=2.5x,得x=1200,∵1500>1200,∴视机厂拟拿出3000元用于印制宣传材料,在甲印刷广印制宣传材料可以多一些,故答案为:甲.24.解:(Ⅰ)如图,连接AB,交OC于点E,∵四边形AOBC是正方形∴AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,∵点C的坐标是(8,0).∴OC=8,∴OE=EC=4,∵OA2+AC2=OC2=128,∴OA=8∴AE==4,∴正方形边长为8,点A坐标为(4,4)故答案为:8,(4,4)(Ⅱ)如图,∵旋转45°,∠AOC=45°∴点A'落在OC上,∴OA=OA'=8,∠OA'B'=∠A=90°∴点A'(8,0),A'C=OC﹣OA'=8﹣8,∵∠ACB=45°,∴∠A'PC=∠A'CP=45°∴A'C=A'P=8﹣8,∴S重叠部分=S△OBC﹣S△A'PC=32﹣×(8﹣8)2=64﹣64.(Ⅲ)∵t=8时,点P与A重合,点Q与C重合,且△OAC是等腰三角形∴当t=8时,△OPQ为等腰三角形当点P在OA上,点Q在OB上时,OP=t,OQ=2t,则直角三角形OPQ不是等腰三角形;当点P在OA上,点Q在BC上时,∵△OPQ是等腰三角形∴点Q在OP的垂直平分线上,∴2t﹣8=t,∴t=当点P在AC上时,点Q在AC上时,OP≠OQ≠PQ∴△OPQ不是等腰三角形.∴当t=8或时,△OPQ为等腰三角形.25.解:(Ⅰ)将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+x﹣3;(Ⅱ)如图1,过点H作HM⊥AB于M,设点H的坐标为:(m,m2+m﹣3),则HM=﹣m2﹣m+3,OM=﹣m,∵点C的坐标为(0,﹣3),点A的坐标为(﹣6,0),∴OA=6,OC=3,∴AM=6﹣m,∴S四边形OCHA=S△AMH+S梯形形OMHC=AM•HM+(OC+MH)•OM=×(6﹣m)×(﹣m2﹣m+3)+×(3﹣m2﹣m+3)×(﹣m)=﹣m2﹣m+9,∵<0,故S四边形OCHA有最大值,当m=﹣3时,四边形OCHA的最大面积为;(Ⅲ)设△GAQ的外接圆圆心为R,如图3,∵∠GQA=45°,∴∠ARG=2∠GQA=90°,过点R作x轴的垂线交x轴于点M,交过点G与x轴的平行线于点N,设点R(x,y),则AM=x+6,RM=﹣y,RN=y+4,GN=x+2,∵∠MRA+∠GRN=90°,∠GRN+∠RNG=90°,∴∠RGN=∠ARM,又∵∠AMR=∠RNG=90°,RA=RG,∴△AMR≌△RNG(AAS),∴AM=RN,MR=GN,即x=2=﹣y,x+6=y+4,解得:,故点R(﹣2,0),则RM=﹣2﹣(﹣6)=4,设点Q(0,m),则RQ=4,即m2+4=16,解得:m=,故Q的坐标为:(0,2)或(0,﹣2).。
2020年天津市部分区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.计算2−3的结果为()A. −1B. −2C. 1D. 22.计算tan30°的值等于()A. √3B. 3√3C. √33D. √323.在下列四个交通标志图中,是轴对称图形的是()A. B. C. D.4.1250000科学记数法表示为()A. 125×104B. 1.25×106C. 12.5×105D. 1.25×1055.如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计√3−2的值应该在()A. −1~0之间B. 0~1之间C. 1~2之间D. 2~3之间7.计算aa+1+1a+1的结果为()A. 1B. aC. a+1D. 1a+18.解方程组{x=3y−2,①2y−5x=10②时,把①代入②,得()A. 2(3y−2)−5x=10B. 2y−(3y−2)=10C. (3y−2)−5x=10D. 2y−5(3y−2)=109.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A. 5B. 10C. 12D. 1310.若点A(1,y1)和点B(2,y2)是反比例函数y=−2图象上的两点,则y1和y2的大小关系是()xA. y1<y2B. y1=y2C. y1>y2D. 无法确定11.如图,AD是等边△ABC的BC边上的中线,F是AD边上的动点,E是AC边上动点,当EF+CF取得最小值时,则∠ECF的度数为()A. 15°B. 22.5°C. 30°D. 45°12.如图,抛物线y=ax2+bx+c的对称轴为直线x=−1,与y轴相交于点(0,−6),则关于x的方程ax2+bx+c+6=0的解为()A. x1=x2=0B. x1=0,x2=−2C. x1=0,x2=−1D. x1=−2,x2=1二、填空题(本大题共6小题,共18.0分)13.计算:x2⋅x5的结果等于______.14.计算(√5−√3)2的结果等于________.15.在一个不透明的口袋中,装有除颜色不同,其它完全相同的18个球,若从袋中摸出绿球的概率,则袋中装有绿球的个数为______.为1316.一次函数y=kx−1(k≠0)的图象经过第二、三、四象限,则k的值可以是______(写出一个即可).17.如图,平行四边形ABCD中,P为边AD的中点,连接PC,若△APC、△PDC、△BAC的面积分别为S、S1、S2,当S=12时,S1+S2=______ .18.如图,在每个小正方形边长为1的网格中,△ABC的顶点A,B,C均在格点上,D为AC边上的一点.(1)线段AC的值为______;(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明).三、计算题(本大题共1小题,共10.0分)19.如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)四、解答题(本大题共6小题,共56.0分)20. 解不等式组{x +11≥2x +3①x+72−1>2x −(3x −2)②并把解集在数轴上表示出来.21. 某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调整,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m 的值为______.(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数.(Ⅲ)根据样本数据,估计该校一周的课外阅读时间大于6h 的学生人数.22.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.23.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.24.如图,△ABC中,AC=BC=4,点D、E分别是AC、BC边上中点,将△DEC绕点C旋转角度α(0°<α<360°)得到△D′E′C,连接AD,BE.(1)如图一,若∠C=60°,在旋转过程中,求证:AD′=BE′;(2)如图二,在(1)的旋转过程中,边D′E′的中点为P,连接AP,求AP最大值.(3)如图三,若∠C=90°,△CDE绕点C顺时针旋转,得到△CD′E′,设旋转角为α(0<α≤180°),直线AD′与BE′的交点为P,连接PC,直接写出△PBC面积的最大值为______.25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点D坐标为(2,−1),且过点B(3,0),与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)连结OD、CD、CB,CD交x轴于点E,求S△CEB:S△ODE.【答案与解析】1.答案:A解析:解:2−3=2+(−3)=−1,故选:A.根据减去一个数等于加上这个数的相反数进行计算即可.本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.2.答案:C解析:解:tan30°=√3,3故选:C.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.答案:B解析:本题主要考查了轴对称图形的定义.根据轴对称图形的定义进行解答即可.解:A.不是轴对称图形,故A错误;B.是轴对称图形,故B正确;C.不是轴对称图形,故C错误;D.不是轴对称图形,故D错误;故选B.4.答案:B解析:解:1250000科学记数法表示为1.25×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:B解析:解:从正面看,上面一层最左边有1个正方形,下边一层有2个正方形.故选:B.根据三视图的定义求解.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.答案:A解析:本题考查了估算无理数的大小的应用,解此题的关键是求出√3的范围.先估算√3的范围,再估算√3−2的范围.解:∵1<√3<2,∴1−2<√3−2<2−2,∴−1<√3−2<0故选A.7.答案:A解析:本题考查分式的加减,掌握运算法则是解题关键.同分母的分式相加减,分母不变,分子相加减,再化简即可.解:aa+1+1a+1=a+1a+1=1.故选A.8.答案:D解析:本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.解:解方程组{x=3y−2,①2y−5x=10②时,把①代入②,得2y−5(3y−2)=10.故选D.9.答案:B解析:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB是等边三角形是解题的关键.10.答案:A解析:解:∵点A(1,y1)和点B(2,y2)是反比例函数y=−2x图象上的两点又∵反比例函数y=−2x在x>0时,y随着x的增大而增大,且1<2,∴y1<y2,故选:A.图象上的点,在x>0时的增减性,结合横坐标的大小关系,即可得到答案.根据反比例函数y=−2x本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质是解题的关键.11.答案:C解析:解:如图:过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE=EC,AF=FC,∴∠FAC=∠FCA,∵AD是等边△ABC的BC边上的中线,∴∠BAD=∠CAD=30°,∴∠ECF=30°.故选:C.根据对称性和等边三角形的性质,作BE⊥AC于点E,交AD于点F,此时BF=CF,EF+CF最小,进而求解.本题考查了最短路线问题、等边三角形的性质,解决本题的关键是准确找到点E和F的位置.12.答案:B解析:本题主要考查了二次函数与一元二次方程的关系,及二次函数图象的对称性,理解二次函数的性质是解答此题的关键.解:∵抛物线y=ax2+bx+c的对称轴为直线x=−1,与y相交于(0,−6),∴x=0时,y=−6,即ax2+bx+c=−6,∴方程ax2+bx+c+6=0的一个解为x=0,则另一个解为−1×2−0=−2,故选B.13.答案:x7解析:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.根据同底数幂的乘法,可得答案.解:x2⋅x5=x2+5=x7,故答案为:x7.14.答案:8−2√15解析:解:原式=5−2√15+3=8−2√15.故答案为8−2√15.利用完全平方公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.答案:6解析:解:设绿球有x个,根据题意得:x18=13,解得:x=6,即绿球的个数为6,故答案为:6.等量关系为:绿球数:总球数=13,把相关数值代入即可求解.此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.答案:−1(答案不唯一)解析:解:因为一次函数y=kx−1(k是常数,k≠0)的图象经过第二、三、四象限,所以k<0,−1<0,所以k可以取−1,故答案为:−1(答案不唯一).由一次函数图象经过第二、三、四象限,可知k<0,−1<0,在范围内确定k的值即可.考查了一次函数的性质.根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.17.答案:36解析:解:∵P为边AD的中点,S△ADC=12,∴S△APC=S△CDP=12∵平行四边形ABCD中,AC是对角线,∴S△ABC=S△ADC=24,∴S1=12,S2=24,∴S1+S2=36.故答案为:36.利用中线的性质得出S△APC=S△CDP,进而得出S1=12,S2=24,即可得出答案.此题主要考查了平行四边形的性质以及三角形中线的性质,得出S△APC=S△CDP是解题关键.18.答案:(1)5;(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.解析:解:(1)AC=√32+42=5,故答案为5.(2)见答案.(1)利用勾股定理即可解决问题.(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.本题考查作图−复杂作图,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.答案:解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=DHtan37∘,在Rt△DBH中,∠DBH=45°,∴BH=DHtan45∘,∵BC=CH−BH,∴DHtan37∘−DHtan45∘=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=DHcos26∘≈20.答:轮船航行的距离AD约为20km.解析:过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.20.答案:解:由①得,x≤8,由②得,x>−13,故此不等式组的解集为:−13<x ≤8.在数轴上表示为:解析:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.21.答案:解:(1)40,25 ;(2)∵这组样本数据中,5出现了12次,出现次数最多,∴这组数据的众数为5;∵将这组数据从小到大排列,其中处于中间的两个数均为6,有6+62=6, ∴这组数据的中位数是6;由条形统计图可得x −=4×6+5×12+6×10+7×8+8×440=5.8,∴这组数据的平均数是5.8.(3)8+440×1200=360(人).答:估计该校一周的课外阅读时间大于6h 的学生人数约为360人.解析:本题考查的是扇形统计图与条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据阅读时间为4h 的人数及所占百分比可得,将时间为6小时人数除以总人数可得;(2)根据众数、中位数、加权平均数的定义计算可得;(3)将样本中课外阅读时间大于6h 的学生人数所占比例乘以总人数1200可得.解:(1)本次接受随机抽样调查的学生人数为:60.15=40(人),图①中m 的值为1040×100=25; 故答案为:40,25.(2)见答案;(3)见答案.22.答案:(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴BCAC =CDBC,∴6AC =46,∴AC=9,∴AB=√AC2−BC2=3√5,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH//BC,∴△AHE∽△ABC,∴AHAB =EHBC=AEAC,∴3√5=EH6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴5=2√5FH,∴FH=√10,∴EF=√10−2.解析:(1)连接BD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠ABC=90°,得到∠C=∠ABD,根据圆周角定理即可得到结论;(2)根据相似三角形的判定和性质以及勾股定理即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,勾股定理,正确的作出辅助线是解题的关键.23.答案:解:(1)当选择方案①时,y=350×8+0.6×240x=144x+2800,当选择方案②时,y=(350×8+240x)×0.85=204x+2380;(2)当方案①费用高于方案②时,144x+2800>204x+2380,解得x<7,当方案①费用等于方案②时,144x+2800=204x+2380,解得x=7,当方案①费用低于方案②时,144x+2800<204x+2380,解得x>7,故当0<x<7时,选择方案②,当x=7时,两种方案费用一样.当x>7时,选择方案①.解析:(1)根据题意分别列出两种方案的收费方案的函数关系式;(2)由(1)得到的函数关系式分类讨论即可.本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.24.答案:(1)如图一中,∵CA=CB,∠ACB=60°,∴△ACB是等边三角形,∵点D、E分别是AC、BC边上中点,∴CE=CE′=CD=CD′,∵∠ACB=∠D′CE′=60°,∴∠BCE′=∠ACD′,∴△BCE′≌△ACD′(SAS),∴AD′=BE′.(2)如图二中,连接PC.∵CE′=CD′,∠E′CD′=60°,∴△E′CD′是等边三角形,∵PD′=PE′,∴PC⊥D′E′,∵CD′=2,PE′=1,∴PC=√22−12=√3,∵AC=4,∴4−√3≤PA≤4+√3,∴PA的最大值为4+√3.(3)4√2解析:解:(1)见答案.(2)见答案.(3)如图三中,设AC交BP于K.∵CB=CA,CE′=CD′,∠BCA=∠E′CD′=90°,∴∠BCE′=∠ACD′,∴△BCE′≌△ACD′,∴∠CBE′=∠CAD′,∵∠CBK+∠CKB=90°,∠CKB=∠AKP,∴∠AKP+∠PAK=90°,∴∠APK=90°∴∠E′CD′+∠E′PD′=180°,∴P,E′,C,D′四点共圆,直径是D′E′=2√2,∴当四边形PE′CD′是正方形时,PC的值最大,PC=D′E′=2√2,此时PC⊥BC,×4×2√2=4√2.∴△PBC的面积的最大值为12故答案为4√2.(1)欲证明AD′=BE′,只要证明△BCE′≌△ACD′(SAS)即可;(2)如图二中,连接PC.求出PC的值,利用三角形的三边关系即可解决问题;(3)如图三中,设AC交BP于K.首先证明∠APK=90°由∠E′CD′+∠E′PD′=180°,推出P,E′,C,D′四点共圆,直径是D′E′=2√2,推出当四边形PE′CD′是正方形时,PC的值最大,PC=D′E′=2√2,此时PC⊥BC,由此即可解决问题;本题考查几何变换综合题、旋转变换、全等三角形的判定和性质、等边三角形的性质、等腰直角三角形的性质、四点共圆等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.25.答案:解:(1)抛物线的表达式为:y=a(x−2)2−1,将点B的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2−4x+3,则点C(0,3);(2)将点C、D的坐标代入一次函数表达式:y=mx+n并解得:直线CD的表达式为:y=−2x+3,则点E(32,0),S△CEB=12×EB×OC=12×32×3=94,S△ODE=12×OE×|y D|=12×32×1=34,故S△CEB:S△ODE=3:1.解析:(1)抛物线的表达式为:y=a(x−2)2−1,将点B的坐标代入上式并解得:a=1,即可求解;(2)直线CD的表达式为:y=−2x+3,则点E(32,0),S△CEB=12×EB×OC=12×32×3=94,S△ODE=1 2×OE×|y D|=12×32×1=34,即可求解.本题考查的是抛物线与x轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.。
2020-2021学年天津市南开区中考数学一模试卷及答案解析天津市南开区中考数学一模试卷一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.22.tan30°的值为()A.B.C.D.3.下列四个图形中,轴对称图形有()A.4个B.3个C.2个D.1个4.第六次全国人口普查数据显示,天津市常驻人口大约有12940000人,将12940000用科学记数法表示应为()A.129.4×105B.12.94×106C.1.294×107D.0.1294×1085.与如图所示的三视图对应的几何体是()A. B. C. D.6.下列命题:①对角线相等的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相垂直平分且相等的四边形是正方形④一组对边相等,另一组对边平行的四边形是平行四边形其中正确的有()A.4个B.3个C.2个D.1个7.正三角形内切圆与外接圆半径之比为()A.B.C.D.8.已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<09.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P 的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD 向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.12.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④二、填空题(本题共6小题,每小题3分,共18分)13.a3÷a﹣2= .14.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a 的解集是.16.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是.17.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.18.如图,在正方形网格中有一个边长为4的平行四边形ABCD (Ⅰ)平行四边形ABCD的面积是;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(2015?南开区一模)已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)如图①,AB=10,AD=2,求AC的长;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O 于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求的值.22.如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海伦所在的B处距离灯塔P 有多远?(sin65°≈0.91,cos65°≈0.42,sin34°≈0.56,cos34°≈0.83)23.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部注满;当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾客需对每个房间每天支出20元的各种费用,当房价定位多少元时,宾客利润最大,最大利润是多少?设每个房间定价增加10x元,宾馆每天的利润为y元.(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表:原价每个房间增加10元每个房间增加20元…每个房间增加10x元每个房价定价180 190 200 …房住房间数量50 49 48 …(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解.24.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.25.已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B (﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC :S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.天津市南开区中考数学一模试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.tan30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据30°角的正切值,可得答案.【解答】解:tan30°=,故选:B.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.下列四个图形中,轴对称图形有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:③不是轴对称图形,①②④是轴对称图形,因此共有3个轴对称图形,故选:B.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.4.第六次全国人口普查数据显示,天津市常驻人口大约有12940000人,将12940000用科学记数法表示应为()A.129.4×105B.12.94×106C.1.294×107D.0.1294×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12 940 000=1.294×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.与如图所示的三视图对应的几何体是()A. B. C. D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.6.下列命题:①对角线相等的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相垂直平分且相等的四边形是正方形④一组对边相等,另一组对边平行的四边形是平行四边形其中正确的有()A.4个B.3个C.2个D.1个【考点】命题与定理.【分析】根据矩形的判定方法对①进行判断;根据菱形的判定方法对②进行判断;根据正方形的判定方法对③进行判断;根据平行四边形的判定方法对④进行判断.【解答】解:对角线相等的平行四边形是矩形,所以①错误;对角线互相垂直的平行四边形是菱形,所以②错误;对角线互相垂直平分且相等的四边形是正方形,所以③正确;一组对边相等,且这组对边平行的四边形是平行四边形,所以④错误.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.7.正三角形内切圆与外接圆半径之比为()A.B.C.D.【考点】正多边形和圆.【分析】先作出图形,根据等边三角形的性质确定它的内切圆和外接圆的圆心;通过特殊角进行计算,用内切圆半径来表示外接圆半径,最后求出比值即可.【解答】解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴OD:OA=1:2.故选A.【点评】本题考查的是正多边形和圆,熟知等边三角形的性质及三角形内切圆与外接圆的定义是解答此题的关键.8.已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得y1=,y2=,然后利用求差法比较y1与y2的大小.【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,>x2>0,∵x1x2>0,x2﹣x1<0,∴x1﹣y2=<0,∴y1即y1<y2.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】常规题型.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P 的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【考点】坐标与图形变化-旋转.【专题】网格型.【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.11.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD 向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断,不要只靠感觉.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x?2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.【点评】本题考查了二次函数及其图象,一次函数及其图象的知识.12.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④【考点】二次函数的性质.【专题】压轴题;新定义.【分析】①当m=﹣3时,根据函数式的对应值,可直接求顶点坐标;②当m>0时,直接求出图象与x轴两交点坐标,再求函数图象截x轴所得的线段长度,进行判断;③当m<0时,根据对称轴公式,进行判断;④当m≠0时,函数图象经过同一个点.【解答】解:根据定义可得函数y=2mx2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴=﹣=,==,∴顶点坐标是(,),正确;②函数y=2mx2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣,0),当m>0时,1﹣(﹣)=+>,正确;。
天津市南开区中考数学一模试卷一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.22.tan30°的值为()A.B.C.D.3.下列四个图形中,轴对称图形有()A.4个B.3个C.2个D.1个4.第六次全国人口普查数据显示,天津市常驻人口大约有12940000人,将12940000用科学记数法表示应为()A.129.4×105B.12.94×106C.1.294×107D.0.1294×1085.与如图所示的三视图对应的几何体是()A. B. C. D.6.下列命题:①对角线相等的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相垂直平分且相等的四边形是正方形④一组对边相等,另一组对边平行的四边形是平行四边形其中正确的有()A.4个B.3个C.2个D.1个7.正三角形内切圆与外接圆半径之比为()A.B.C.D.8.已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<09.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.12.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④二、填空题(本题共6小题,每小题3分,共18分)13.a3÷a﹣2= .14.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.16.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是.17.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.18.如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(2015•南开区一模)已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)如图①,AB=10,AD=2,求AC的长;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求的值.22.如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海伦所在的B处距离灯塔P 有多远?(sin65°≈0.91,cos65°≈0.42,sin34°≈0.56,cos34°≈0.83)23.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部注满;当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾客需对每个房间每天支出20元的各种费用,当房价定位多少元时,宾客利润最大,最大利润是多少?设每个房间定价增加10x元,宾馆每天的利润为y元.(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表:原价每个房间增加10元每个房间增加20元…每个房间增加10x元每个房价定价180 190 200 …房住房间数量50 49 48 …(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解.24.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.25.已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC :S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.天津市南开区中考数学一模试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.tan30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据30°角的正切值,可得答案.【解答】解:tan30°=,故选:B.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.下列四个图形中,轴对称图形有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:③不是轴对称图形,①②④是轴对称图形,因此共有3个轴对称图形,故选:B.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.4.第六次全国人口普查数据显示,天津市常驻人口大约有12940000人,将12940000用科学记数法表示应为()A.129.4×105B.12.94×106C.1.294×107D.0.1294×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12 940 000=1.294×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.与如图所示的三视图对应的几何体是()A. B. C. D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.6.下列命题:①对角线相等的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相垂直平分且相等的四边形是正方形④一组对边相等,另一组对边平行的四边形是平行四边形其中正确的有()A.4个B.3个C.2个D.1个【考点】命题与定理.【分析】根据矩形的判定方法对①进行判断;根据菱形的判定方法对②进行判断;根据正方形的判定方法对③进行判断;根据平行四边形的判定方法对④进行判断.【解答】解:对角线相等的平行四边形是矩形,所以①错误;对角线互相垂直的平行四边形是菱形,所以②错误;对角线互相垂直平分且相等的四边形是正方形,所以③正确;一组对边相等,且这组对边平行的四边形是平行四边形,所以④错误.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.7.正三角形内切圆与外接圆半径之比为()A.B.C.D.【考点】正多边形和圆.【分析】先作出图形,根据等边三角形的性质确定它的内切圆和外接圆的圆心;通过特殊角进行计算,用内切圆半径来表示外接圆半径,最后求出比值即可.【解答】解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴OD:OA=1:2.故选A.【点评】本题考查的是正多边形和圆,熟知等边三角形的性质及三角形内切圆与外接圆的定义是解答此题的关键.8.已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得y1=,y2=,然后利用求差法比较y1与y2的大小.【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,>x2>0,∵x1x2>0,x2﹣x1<0,∴x1﹣y2=<0,∴y1即y1<y2.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】常规题型.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【考点】坐标与图形变化-旋转.【专题】网格型.【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.11.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断,不要只靠感觉.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x•2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.【点评】本题考查了二次函数及其图象,一次函数及其图象的知识.12.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④【考点】二次函数的性质.【专题】压轴题;新定义.【分析】①当m=﹣3时,根据函数式的对应值,可直接求顶点坐标;②当m>0时,直接求出图象与x轴两交点坐标,再求函数图象截x轴所得的线段长度,进行判断;③当m<0时,根据对称轴公式,进行判断;④当m≠0时,函数图象经过同一个点.【解答】解:根据定义可得函数y=2mx2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴=﹣=,==,∴顶点坐标是(,),正确;②函数y=2mx2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣,0),当m>0时,1﹣(﹣)=+>,正确;③当m<0时,函数y=2mx2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴x=﹣>,∴x可能在对称轴左侧也可能在对称轴右侧,错误;④y=2mx2+(1﹣m)x+(﹣1﹣m)=m(2x2﹣x﹣1)+x﹣1,若使函数图象恒经过一点,m≠0时,应使2x2﹣x﹣1=0,可得x1=1,x2=﹣,当x=1时,y=0,当x=﹣时,y=﹣,则函数一定经过点(1,0)和(﹣,﹣),正确.故选B.【点评】公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.二、填空题(本题共6小题,每小题3分,共18分)13.a3÷a﹣2= a5.【考点】同底数幂的除法;负整数指数幂.【分析】根据同底数幂的除法,底数不变指数相减,可得答案.【解答】解:原式=a3﹣(﹣2)=a5,故答案为:a5.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题关键.14.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0 .【考点】根的判别式.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是x<﹣2 .【考点】一次函数与一元一次不等式.【专题】整体思想.【分析】把x=﹣2代入y1=kx+b与y2=x+a,由y1=y2得出=2,再求不等式的解集.【解答】解:把x=﹣2代入y1=kx+b得,y1=﹣2k+b,把x=﹣2代入y2=x+a得,y2=﹣2+a,由y1=y2,得:﹣2k+b=﹣2+a,解得=2,解kx+b>x+a得,(k﹣1)x>a﹣b,∵k<0,∴k﹣1<0,解集为:x<,∴x<﹣2.故答案为:x<﹣2.【点评】本题主要考查一次函数和一元一次不等式,本题的关键是求出=2,把看作整体求解集.16.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为 3 cm.【考点】切线的性质;垂径定理;圆周角定理;弦切角定理.【专题】几何图形问题.【分析】连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边的倍.已知边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.【解答】解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=OC•cos30°=,OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3.故答案为:3.【点评】本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.18.如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是24 ;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法①→1,②→2,③→3 .【考点】图形的剪拼;平行四边形的性质.【分析】(1)根据平行四边形的面积公式:底×高计算即可;(2)根据剪拼前后的图形的面积相等进行剪拼即可.【解答】解:(1)平行四边形ABCD的面积是:4×6=24;(2)如图①→1,②→2,③→3,则矩形EFGC即为所求.故答案为:(1)24;(2)①→1,②→2,③→3.【点评】本题考查的是平行四边形的性质和图形的剪拼的知识,掌握平行四边形的性质和剪拼前后的图形的面积相等是解题的关键.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得x>﹣3(Ⅱ)解不等式②,得x≥0(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为x≥0 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x>﹣3,由②得,x≥0,在数轴上表示为:,故不等式组的解集为:x≥0.故答案为:x>﹣3,x≥0,x≥0.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(2015•南开区一模)已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)如图①,AB=10,AD=2,求AC的长;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求的值.【考点】切线的性质;平移的性质.【分析】(1)先由圆周角定理得出∠ACB=90°=∠ADC,再由弦切角定理得出∠ACD=∠B,证出△ACD∽△ABC,得出对应边成比例,得出AC2=AB•AD,即可求出AC;(2)先根据勾股定理求出AB,再由圆内接四边形的性质得出∠ACD=∠B,证出△ACD∽△ABC,得出比例式即可得出结果.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵直线CD与⊙O相切于点C,∴∠ACD=∠B,又∵AD⊥CD,∴∠CDA=90°=∠ACB,∴△ACD∽△ABC,∴,∴AC2=AB•AD=10×2=20,∴AC=2;(2)∵AB为⊙O的直径,∴∠AGB=90°,∴AB==5,∵AD⊥CD,∴∠CDA=90°=∠AGB,又∵∠ACD=∠B,∴△ACD∽△ABC,∴.【点评】本题考查了切线的性质、弦切角定理、圆周角定理、勾股定理、相似三角形的判定与性质;熟练掌握圆的有关定理,证明三角形相似是解决问题的关键.22.如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海伦所在的B处距离灯塔P 有多远?(sin65°≈0.91,cos65°≈0.42,sin34°≈0.56,cos34°≈0.83)【考点】解直角三角形的应用-方向角问题.【分析】首先根据题意得出∠APC=90°﹣65°=25°,再利用解直角三角形求出即可.【解答】解:如图,在Rt△APC中,∠APC=90°﹣65°=25°,∴PC=PA•cos∠APC≈80×0.91=72.8.在Rt△BPC中,∠B=34°,∴PB===130(海里),答:海轮所在的B处距离灯塔P约有130海里.【点评】此题主要考查了方向角含义,正确记忆三角函数的定义得出相关角度是解决本题的关键.23.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部注满;当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾客需对每个房间每天支出20元的各种费用,当房价定位多少元时,宾客利润最大,最大利润是多少?设每个房间定价增加10x元,宾馆每天的利润为y元.(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表:原价每个房间增加10元每个房间增加20元…每个房间增加10x元每个房价定价180 190 200 …房住房间数量50 49 48 …(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解.【考点】二次函数的应用.【分析】(1)理解每个房间的房价每增加10x元,房间定价(180+10x)元,则减少房间x间,居住房间数量(50﹣x)间;(2)根据(1)中代数式,宾馆每天的利润为y=(房间定价﹣每天支出费用)×居住房间数量.【解答】解:(1)填表如下:原价每个房间增加10元每个房间增加20元…每个房间增加10x元每个房价定价180 190 200 …180+10x房住房间数量50 49 48 …50﹣x(2)y=(180+10x﹣20)×(50﹣x)=﹣10x2+340x+8000=﹣10(x﹣17)2+10890.当x=17时,180+10x=350,50﹣x=33.所以当房价定为350元时,宾馆利润最大,最大利润是10890元.【点评】本题主要考查了二次函数的应用,特别容易出现的错误是在求最值时不考虑x的范围,直接求顶点坐标.24.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90°,根据折叠的性质,∠A′EF=∠AEF=90°,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90°,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.【解答】解:(1)由已知可得∠A′OE=60°,A′E=AE,由A′E∥x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=b,OE=2b,b+2b=2+,所以b=1,A′、E的坐标分别是(0,1)与(,1).(2)因为A′、E在抛物线上,所以,所以,函数关系式为y=﹣x2+x+1,由﹣x2+x+1=0,得x1=﹣,x2=2,与x轴的两个交点坐标分别是(,0)与(,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60°,若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°,利用对称性,则∠AEF=90°,A、E、A三点共线,O与A重合,与已知矛盾;同理若∠A′FE=90°也不可能,所以不能使△A′EF成为直角三角形.【点评】本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.25.已知抛物线C 1:y=a (x+1)2﹣2的顶点为A ,且经过点B (﹣2,﹣1).(1)求A 点的坐标和抛物线C 1的解析式;(2)如图1,将抛物线C 1向下平移2个单位后得到抛物线C 2,且抛物线C 2与直线AB 相交于C ,D 两点,求S △OAC :S △OAD 的值;(3)如图2,若过P (﹣4,0),Q (0,2)的直线为l ,点E 在(2)中抛物线C 2对称轴右侧部分(含顶点)运动,直线m 过点C 和点E .问:是否存在直线m ,使直线l ,m 与x 轴围成的三角形和直线l ,m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,说明理由.【考点】二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相似三角形的判定与性质;锐角三角函数的增减性.【专题】压轴题;存在型.【分析】(1)由抛物线的顶点式易得顶点A 坐标,把点B 的坐标代入抛物线的解析式即可解决问题.(2)根据平移法则求出抛物线C 2的解析式,用待定系数法求出直线AB 的解析式,再通过解方程组求出抛物线C 2与直线AB 的交点C 、D 的坐标,就可以求出S △OAC :S △OAD 的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形状、位置随着点G的变化而变化,故需对点G的位置进行讨论,借助于相似三角形的判定与性质、三角函数的增减性等知识求出符合条件的点G的坐标,从而求出相应的直线m的解析式.【解答】解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∵抛物线C1∴a(﹣2+1)2﹣2=﹣1.解得:a=1.的解析式为:y=(x+1)2﹣2.∴抛物线C1(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.∴抛物线C2设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C (﹣3,0),D (0,﹣3).∴OC=3,OD=3.过点A 作AE ⊥x 轴,垂足为E ,过点A 作AF ⊥y 轴,垂足为F ,∵A (﹣1,﹣2),∴AF=1,AE=2.∴S △OAC :S △OAD=(OC •AE ):(OD •AF )=(×3×2):(×3×1)=2.∴S △OAC :S △OAD 的值为2.(3)设直线m 与y 轴交于点G ,设点G 的坐标为(0,t ).1.当直线m 与直线l 平行时,则有CG ∥PQ .∴△OCG ∽△OPQ .∴=.∵P (﹣4,0),Q (0,2),∴OP=4,OQ=2,∴=.。
天津市南开区名校2020届数学中考模拟试卷一、选择题1.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B ,下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP2.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AE 平分∠CAB ,EF ∥AC ,若AF=4,则CE=( )A.3B. C. D.23.若点A (x 1,﹣3)、B (x 2,﹣2)、C (x 3,1)在反比例函数y =﹣的图象上,则x 1、x 2、x 3的大小关系是( ) A.x 1<x 2<x 3B.x 3<x 1<x 2C.x 2<x 1<x 3D.x 3<x 2<x 14.如图,在Rt △ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ;③连接AP ,交BC 于点E .若CE =3,BE =5,则AC 的长为( )A .4B .5C .6D .7 5.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为( )A .7B .8C .9D .106.如图,正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( )A .22a a π-B .222a a π-C .2212a a π- D .2214a a π-7.把抛物线y=(x-2)2向左平移2个单位长度,再向上平移2个单位长度,所得到的抛物线是( ).A.y=x2+2 B.y=x2-2 C.y=(x+2)2-2 D.y=(x+2)2+28.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c9.2018年10月24日港珠澳大桥正式通车港珠澳大桥是在“一国两制”方针下,粤港澳三地首次合作共建的超大型基础设施项目,大桥全长55000米.将数据55000用科学记数法可表示为()A.5.5×103B.5.5×104C.55×103D.0.55×10510.关于x,y的方程组322x yx y k-=⎧⎨+=+⎩的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.211.下列运算正确的是()A.(y+1)(y﹣1)=y2﹣1 B.x3+x5=x8C.a10÷a2=a5D.(﹣a2b)3=a6b312.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB=;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.如图,在每个小正方形的边长为1的网格中,有V ABC,点,,A B C都在格点上(I)V ABC的面积等于__________;(Ⅱ)求作其内接正方形,使其一边在BC上,另两个顶点各在,AB AC上在如图所示的网格中,请你用无刻度...的直尺画出该正方形,并简要说明画图的方法(不要求证明)14.若a+b =3,a ﹣b =7,则ab =_____.15.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=______.16.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是_____万步.17.如图,在半径为5cm 的⊙O 中,弦AB=6cm ,OC ⊥AB 于点C ,则OC=_____.18.(2017云南省)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD DE AE++三、解答题19.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用.(1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?20.如图,在△ABC 中,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 并延长,交AC 于点F . (1)根据题意补全图形. (2)如果AF =1,求CF 的长.21.如图,已知抛物线y=ax 2+85x+c 与x 轴交于A ,B 两点,与y 轴交于C 点,且A(2,0),C(0,-4),直线l :y=-12x-4与x 轴交于点D ,点P 是抛物线y=ax 2+85x+c 上的一动点,过点P 作PE ⊥x 轴,垂足为E ,交直线l 于F .(1)试求该抛物线表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标; (3)如图(2),连接AC .求证:△ACD 是直角三角形.22.如图:已知矩形ABCD 中,,BC=3cm ,点O 在边AD 上,且AO=1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A′B′C′D′ (1)求证:AC ⊥OB ;(2)如图1, 当B′落在AC 上时,求AA′;(3)如图2,求旋转过程中△CC′D′的面积的最大值.23.为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(2)设租用x辆乙种客车,租车总费用为w元,请写出w与x之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,租用乙种客车不少5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.24.如图,一次函数y=kx+b和反比例函数myx=的图象相交于A(2,4)、B(﹣1,n)两点,一次函数的图象交x轴于点D.(1)直接写出一次函数与反比例函数的解析式.(2)请结合函数图象,直接写出不等式mkx bx+<的解集.(3)过点A作直线AC⊥x轴,垂足为点C,过点B的直线交x轴于点E,交直线AC于点F,若△ECF∽△ACD,求点E的坐标.25.如图,在等腰△ABC中,AB=BC,点D是AC边的中点,延长BD至点E,使得DE=BD,连结CE.(1)求证:△ABD≌△CED.(2)当BC=5,CD=3时,求△BCE的周长.【参考答案】***13.(Ⅰ)10;(Ⅱ)见解析,取格点,,D F E ,连接,DE DF 分别交,AB AC 于点,M N ,再取格点,,,S T G K ,连接,GK ST 交于点Q ,连接MQ 并延长MQ 交BC 于点P ,同理得到点R ,四边形MPRN 即为所求的正方形.14.﹣10. 15.8068 16.3 17.4cm 18.13. 三、解答题19.(1)当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社;(2)820. 【解析】 【分析】(1)设x 人参加旅游,用x 分别表示甲和乙旅行社的费用,两费用相等则列方程求出对应的人数,谁家费用较大列不等式求出对应的人数范围.(2)人数为48人则选甲旅行社花费少,把总费用求出后再减去学校补贴总额200×48元,得到总旅游费用,再除以48记得人均费用. 【详解】解:(1)设参加旅游的人数为x 人(30<x <60),甲旅行社费用为y 1元,乙旅行社费用为y 2元,得: y 1=1200×30+1200×0.6(x-30)=720x+14400 y 2=1200×0.9(x-2)=1080x-2160 当y 1=y 2时,720x+14400=1080x-2160 解得:x=46当y 1>y 2时,720x+14400>1080x-2160 解得:x <46当y 1<y 2时,720x+14400<1080x-2160 解得:x >46答:当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社.(2)由(1)得,人数为48人时选甲旅行社费用更低. ∴(720×48+14400-200×48)÷48=820(元) 答:参加旅游的教师每人至少要花820元. 【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,是选择方案的常考题. 20.(1)如图所示,见解析;(2)CF =2. 【解析】 【分析】(1)根据线段垂直平分线的作法画出图形即可;(2)过点D 作DG ∥BF ,交AC 于点G ,根据三角形中位线定理即可得出结论.(1)如图,(2)作DH∥AC交BF于H,如图,∵DH∥AF,∴∠EDH=∠EAF,∠EHD=∠EFA,∴△EDH≌△EAF,∴DH=AF=1,∵点D为BC的中点,DH∥CF,∴DH为△BCF的中位线,∴CF=2DH=2.【点睛】本题考查的是作图-复杂作图,熟知线段垂直平分线的作法是解答此题的关键.21.(1)y=15x2+85x-4;(2)P点的坐标为(-8,-4),(-2.5,-274);(3)证明见解析.【解析】【分析】(1)利用待定系数法即可求a、c的值,从而求得抛物线的表达式;(2)设P点的坐标是(x,15x2+85x-4),则F(x,-12x-4),由OCPF是平行四边形得OC=FP,OC∥PF,从而-15x2-2110x=4,求解即可得P的横坐标,代入解析式即可得P的坐标.(3)分别求出点A、C、D的坐标,可以根据勾股定理的逆定理即可判断【详解】(1)依题意,抛物线经过A(2,0),C(0,-4),则c=-4将点A代入得0=4a+85×2-4,解得a=15抛物线的解析式是y=15x2+85x-4(2)设P点的坐标是(x,15x2+85x-4),则F(x,-12x-4)∴PF=(-12x-4)-(15x2+85x-4)=-15x2-2110x∵四边形OCPF是平行四边形∴OC=FP,OC∥PF∴-15x2-2110x=4即2x2+21x+40=0解得x1=-8 x2=-2.5∴P 点的坐标为(-8,-4),(-2.5,-274)(3)当y=0时,-12x-4=0,得x=-8,即D(-8,0) 当x=0时,0-4=y ,即C(0,-4) 当y=0时,15x 2+85x-4=0 解得 x 1=-10 x 2=2,即B(-10,0),A(2,0) ∴AD=10 ∵AC 2=22+42=20 CD 2=82+42=80 ∴AD 2=AC 2+CD 2∴∠ACD=90°△ACD 是直角三角形 【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.(1)详见解析;(2)AA '=;(3 【解析】 【分析】(1)由三角函数可求得∠AOB =60°,∠CAD =30°,易证AC ⊥OB ; (2)求出OB 、BB′,利用AOA BOB ∆∆''∽可求得AA ';(3)过C 点作CH ⊥于C′D′点H ,连结OC ,则CH≤OC+OD ′,由此可判断出D′在CO 的延长线上时△CC′D′的面积最大,然后根据三角形面积公式求解即可. 【详解】解:(1)Rt △OAB 中,tan ABAOB OA∠== ∴∠AOB =60°Rt △ACD 中,tan 3CD CAD AD ∠==∴∠CAD =30°∴∠OMA =180°-60°-30°=90° 即AC ⊥OB(2)Rt △OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒=Rt △OAB 中,OB′=OB =60OACOS ︒=2,Rt △O B′M =, BM =OB -OM =32,Rt △BB′M 中,BB ='== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∴12AA OA BB OB '=='',∴2AA '=(3)如图,过C 点作CH ⊥于C′D′点H ,连结OC ,则CH≤OC+OD′只有当D ′在CO 的延长线上时,CH 才最大. 又C′D′长一定,故此时△CC′D′的面积的最大.而OC ==∴△CC′D′的最大面积为12)2=【点睛】本题考查矩形的性质、旋转的性质、三角形相似的判定和性质以及解直角三角形,其中(3)问分析出D′在CO 的延长线上时△CC′D′的面积最大是解题关键,有一定难度.23.(1)老师有16名,学生有284名;租用客车总数为8辆;(2)w =100x+2400;(3)共有3种租车方案:①租用甲种客车3辆,乙种客车5辆,租车费用为2900元;②租用甲种客车2辆,乙种客车6辆,租车费用为3000元;③租用甲种客车1辆,乙种客车7辆,租车费用为3100元;最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆. 【解析】 【分析】(1)设出老师有x 名,学生有y 名,得出二元一次方程组,解出即可;再由每辆客车上至少要有2名老师,且要保证300名师生有车坐,可得租用客车总数;(2)由租用x 辆乙种客车,得甲种客车数为:(8﹣x )辆,由题意得出w =400x+300(8﹣x )即可; (3)由题意得出400x+300(8﹣x )≤3100,且x≥5,得出x 取值范围,分析得出即可.解:(1)设老师有x名,学生有y名.依题意,列方程组1712 184x yx y=-⎧⎨=+⎩,解得:16284 xy=⎧⎨=⎩,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于30050427=(取整为8)辆,综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆.(2)∵租用x辆乙种客车,∴甲种客车数为:(8﹣x)辆,∴w=400x+300(8﹣x)=100x+2400.(3)∵租车总费用不超过3100元,租用乙种客车不少于5辆,∴400x+300(8﹣x)≤3100,x≥5解得:5≤x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7,(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.24.(1)y8x=、y=4x﹣4;(2)x<﹣1或0<x<2;(3)点E坐标为(31,0)或(﹣33,0).【解析】【分析】(1)把点A坐标代入myx=可求出m的值,即可得出反比例函数的解析式,并B(-1,n)代入反比例函数解析式可得n的值,即可得出B点坐标,把A、B两点坐标代入y=kx+b可求出k、b的值,即可得一次函数解析式;(2)根据A、B坐标,结合图象即可得出不等式mkx bx+<的解集;(3)过点B作BM⊥x轴于点M,根据一次函数的解析式可求出D点坐标,根据A、B、D三点坐标可得AC=4,OC=2,OM =1,BM=8,OD=1,CD=1,由AC⊥x轴,BM⊥x轴可得△ECF∽△EMB,即可证明△ACD∽△EMB,根据相似三角形的性质可求出EM的长,即可求出OE的长,进而可得E点坐标.【详解】m∴反比例函数的解析式为:y8x =,∵点B(-1,n)在反比例函数上,∴n=81-=-8.∴点B(﹣1,﹣8),将点A、B的坐标代入一次函数表达式得:428k bk b=+⎧⎨-=-+⎩,解得:44 kb=⎧⎨=-⎩,∴一次函数的解析式为:y=4x﹣4. (2)∵A(2,4),B(-1,-8)∴由图象可以看出不等式mkx bx+<的解集为:x<﹣1或0<x<2;(3)过点B作BM⊥x轴于点M,∵点A(2,4)、B(-1,-8)∴AC=4,OC=2,OM=1,BM=8,∵y=4x﹣4与x轴交于点D,∴当y=0时,x=1,即D(1,0)∴OD=1,CD=1,∵AC⊥x轴,BM⊥x轴,∴△ECF∽△EMB,∵△ECF∽△ACD,∴△ACD∽△EMB,∴EM BMAC CD=,即:841EM=,∴EM=32,∴OE=31或33,点E坐标为(31,0)或(﹣33,0).【点睛】本题考查相似三角形的判定与性质、待定系数法求反比例函数与一次函数的解析式,正确添加辅助线构建相似三角形是解题关键.25.(1)见解析;(2)△BCE的周长为18.【解析】【分析】(1)利用全等三角形的判定定理SAS证得结论;(2)利用勾股定理求得BD=4,然后利用三角形的周长公式解答.【详解】(1)证明:∵AB=BC,点D是AC边的中点,∴AD=CD,∠ADB=∠CDE=90°.又∵DE=BD,∴△ABD≌△CED(SAS);(2)解:∵BD===4,∴BE=2BD=8.又∵CE=AB=BC=5,∴BC+CE+BE=5+5+8=18,即△BCE的周长为18.【点睛】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边、公共角或对顶角,必要时添加适当辅助线构造三角形.。
2020年天津市南开区中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.2.(3分)tan60°的值等于()A.1 B.√2C.√3D.2【分析】根据记忆的特殊角的三角函数值即可得出答案.【解答】解:tan60°=√3.故选C.3.(3分)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.4.(3分)目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为()A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于27500亿有13位,所以可以确定n=13﹣1=12.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:27500亿=2 750 000 000 000=2.75×1012≈2.8×1012.故选B.5.(3分)一个几何体的三视图如图所示,则该几何体可能是()A. B. C. D.【分析】根据三视图判断圆柱上面放着小圆锥,确定具体位置后即可得到答案.【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体, 由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:C .6.(3分)下列说法正确的是( )A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根【分析】根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.【解答】解:A 、非负数0的平方根是0,只有一个,故本选项错误;B .一个正数有两个平方根,它们互为相反数,故本选项错误;C .因0的平方根是0,故本选项错误;D .负数没有平方根,故本选项正确;故选D .7.(3分)下列各式中,计算正确的是( )A .3﹣1=﹣3B .3﹣3=﹣9C .3﹣2=19D .30=0【分析】结合负整数指数幂和零指数幂的概念和运算法则进行求解即可.【解答】解:A 、3﹣1=13≠﹣3,本选项错误; B 、3﹣3=127≠﹣9,本选项错误; C 、3﹣2=19,本选项正确; D 、30=1≠0,本选项错误.故选C .8.(3分)甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是()A.x2+4x﹣15=0 B.x2﹣4x﹣15=0 C.x2+4x+15=0 D.x2﹣4x﹣15=0【分析】根据根与系数的方程,由甲把一次项系数看错可得到常数项c,由乙把常数项看错可得到一次项系数b,于是可确定原一元二次方程.【解答】解:∵甲因把一次项系数看错了,而解得方程两根为﹣3和5,∴﹣3×5=c,即c=﹣15,∵乙把常数项看错了,解得两根为2和2,∴2+2=﹣b,即b=﹣4,∴原方程为x2﹣4x﹣15=0.故选B.9.(3分)若式子√x+3在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣3【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x+3≥0,解得x≥﹣3.故选:D.10.(3分)下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A.两条对角线相等的平行四边形是矩形,故本选项错误;B.两条对角线互相垂直的平行四边形是菱形,故本选项错误;C.两条对角线互相垂直且相等的平行四边形是正方形,故本选项错误;D.两条对角线互相平分的四边形是平行四边形,正确;故选:D.11.(3分)已知反比例函数y=kx的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6) C.(2,﹣3)D.(3,﹣2)【分析】先根据点(2,3),在反比例函数y=kx的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【解答】解:∵反比例函数y=kx的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.12.(3分)已知反比例函数y=kx的图象如图所示,则二次函数y=﹣kx2﹣2x+k24的图象大致为()A.B.C.D.【分析】由点(1,2)在反比例函数图象上,利用待定系数法即可求出k值,将其代入二次函数解析式中,结合二次项系数a和抛物线的对称轴x=﹣b2a,即可得出结论.【解答】解:∵点(1,2)在反比例函数图象上,∴有2=k1,解得:k=2.∴二次函数解析式为y=﹣2x2﹣2x+1.∵a=﹣2<0,∴抛物线开口向下;∵﹣b2a=﹣−22×(−2)=﹣12,∴抛物线的对称轴为x=﹣1 2.故选B.二、填空题:13.(3分)计算:0.5a×(﹣2a3b)2=2a7b2.【分析】直接利用积的乘方运算法则和单项式乘以单项式运算法则,化简求出答案.【解答】解:0.5a×(﹣2a3b)2=0.5a×4a6b2=2a7b2.故答案为:2a7b2.14.(3分)√x+5﹣√3−x二次根式中字母的取值范围﹣5≤x<3.【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+5≥0,3﹣x>0,解得,﹣5≤x<3,故答案为:﹣5≤x<3.15.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为13.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的26=13, ∴刚好落在黑色三角形区域的概率为13; 故答案为:13.16.(3分)己知一次函数y=kx +5和y=k′x +3,假设k >0,k′<0,则这两个一次函数图象的交点在第 二 象限.【分析】根据一次函数的性质作出函数大致图象,然后解答即可.【解答】解:如图所示,这两个一次函数图象的交点在第二象限.故答案为:二.17.(3分)如图,在正方形ABCD 中,点E 是BC 边上一点,且BE :EC=2:1,AE 与BD 交于点F ,则△AFD 与四边形DFEC 的面积之比是 9:11 .【分析】根据题意,先设CE=x ,S △BEF =a ,再求出S △ADF 的表达式,利用四部分的面积和等于正方形的面积,得到x 与a 的关系,那么两部分的面积比就可以求出来.【解答】解:设CE=x ,S △BEF =a ,∵CE=x ,BE :CE=2:1,∴BE=2x ,AD=BC=CD=AD=3x ;∵BC ∥AD ∴∠EBF=∠ADF ,又∵∠BFE=∠DFA ;∴△EBF ∽△ADF∴S △BEF :S △ADF =(BE AD )2=(2x 3x )2=49,那么S △ADF =94a . ∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF ,∴92x 2﹣a=9x 2﹣12×3x•2x ﹣94a , 化简可求出x 2=56a ; ∴S △AFD :S 四边形DFEC =94a :(92x 2−a)=94a :114a =9:11,故答案为9:11.18.(3分)如图,在△ABC 中,∠C=90°,BC=16cm ,AC=12cm ,点P 从点B 出发,沿BC 以2cm/s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t= 4.8或6411 时,△CPQ 与△CBA 相似.【分析】分CP 和CB 是对应边,CP 和CA 是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP 和CB 是对应边时,△CPQ ∽△CBA ,所以,CP CB =CQ CA, 即16−2t 16=t 12, 解得t=4.8;CP 和CA 是对应边时,△CPQ ∽△CAB ,所以,CP CA =CQ CB, 即16−2t 12=t 16, 解得t=6411. 综上所述,当t=4.8或6411时,△CPQ 与△CBA 相似. 故答案为4.8或6411.三、解答题:19.解不等式组:{1−2x−23≤5−3x 23−2x >1−3x ,并在数轴上表示不等式组的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1﹣2x−23≤5−3x 2,得:x ≤1,解不等式3﹣2x >1﹣3x ,得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1,表示在数轴上如下:.20.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.【分析】(1)总人数以及条形统计图求出喜欢“唆螺”的人数,补全条形统计图即可;(2)求出喜欢“臭豆腐”的百分比,乘以2000即可得到结果;(3)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000×1450×100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=116.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为5,BC=6,求CD的长.【分析】(1)连接OC,由等腰三角形的性质和角平分线的定义得出∠DAC=∠OCA,于是可判断OC∥AD,由于AD⊥CD,则OC⊥CD,然后根据切线的判定定理即可得到结论;(2)连接BC,根据圆周角定理得到∠ACB=90°,由于∠DAC=∠OAC,则可判断△ACD∽△ABC,然后利用相似比可计算出CD的长.【解答】(1)证明:连接OC.如图1所示∵AC平分∠DAB,∴∠DAC=∠OAC,∵OA=OC , ∴∠OCA=∠OAC , ∴∠DAC=∠OCA , ∴DA ∥OC , ∵AD ⊥DC , ∴∠ADC=90°, ∴∠OCD=90°, 即OC ⊥DC , ∵OC 为半径, ∴DC 为⊙O 的切线.(2)解:连接BC ,如图2所示: ∵AB 是⊙O 的直径,∴AB=10,∠ACB=90°=∠ADC , ∴AC=√102−62=8, 又∵∠DAC=∠OAC , ∴△ACD ∽△ABC ,∴CD BC =AC AB ,即CD 6=810, 解得:CD=4.8.22.如图,两条互相平行的河岸,在河岸一边测得AB 为20米,在另一边测得CD 为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(√2≈1.4,√3≈1.7,结果保留整数)【分析】分别过点A 、B 作CD 的垂线交CD 于点E 、F ,令两条河岸之间的距离为h .则AE=BF=h ,EF=AB=20.解Rt △ACE ,得出CE=√3h ,解Rt △BDF ,求出DF=BF=h ,根据CD=CE +EF +FD=70列出方程,求解即可.【解答】解:如图,分别过点A 、B 作CD 的垂线交CD 于点E 、F ,令两条河岸之间的距离为h .∵AE ⊥CD ,BF ⊥CD ,AB ∥CD ,AB=20, ∴AE=BF=h ,EF=AB=20.在Rt △ACE 中,∵∠AEC=90°,∠ACE=30°,∴tan ∠ACE=AE CE ,即tan30°=ℎCE,∴CE=√3h .在Rt △BDF 中,∵∠BFD=90°,∠BDF=45°, ∴DF=BF=h . ∵CD=70, ∴CE +EF +FD=70, ∴√3h +20+h=70, ∴h=25(√3﹣1)≈18.答:两条河岸之间的距离约为18米.23.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y (千克)与销售价x (元/千克)存在一次函数关系,如图所示. (1)求y 关于x 的函数关系式(不要求写出x 的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?【分析】(1)由图象过点(20,20)和(30,0),利用待定系数法求直线解析式; (2)每天利润=每千克的利润×销售量.据此列出表达式,运用函数性质解答. 【解答】解:(1)设y=kx +b ,由图象可知,{20k +b =2030k +b =0,解之,得:{k =−2b =60,∴y=﹣2x +60; (2)p=(x ﹣10)y =(x ﹣10)(﹣2x +60) =﹣2x 2+80x ﹣600, ∵a=﹣2<0, ∴p 有最大值, 当x=﹣80−2×2=20时,p 最大值=200.即当销售单价为20元/千克时,每天可获得最大利润200元.24.如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA=1,OC=2,点D 在边OC 上且OD=1.25. (1)求直线AC 的解析式.(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得△DMC 为等腰三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)抛物线y=﹣x 2经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且△ODE 沿DE 折叠后点O 落在边AB 上O′处?【分析】(1)先确定A 点和C 点坐标,然后利用待定系数法求直线AC 的解析式;(2)设M (t ,﹣12t +1),讨论:当DM=DC 时,(t ﹣54)2+(﹣12t +1)2=(34)2,解方程求出t ,再求出MD 的解析式,从而得到P 点坐标;当MD=MC 时,易得M 点的坐标,接着求出MD 的解析式,从而得到P 点坐标;当CM=CD 时,(t ﹣2)2+(﹣12t +1)2=(34)2,解方程求出t ,再确定MD 的解析式,从而得到P 点坐标;(3),如图2,作O′H ⊥x 轴于H ,则O′D=OD=54,设O′(m ,1),利用勾股定理得的(m ﹣54)2+12=(54)2,解得m 1=2,m 2=12,当m=2时,求出AE 长得到E (0,52),利用待定系数法求出抛物线解析式为y=﹣(x +38)2+16964,然后利用抛物线的平移变换求解;当m=12时,同样可得抛物线解析式为y=﹣x 2+34x +58,再利用抛物线的平移变换求解.【解答】解:(1)∵OA=1,OC=2, ∴A (0,1),C (2,0), 设直线AC 的解析式为y=kx +b ,把A (0,1),C (2,0)代入得{2k +b =0b =1,解得{k =−12b =1, ∴直线AC 的解析式为y=﹣12x +1;(2)存在.D (54,0),CD=2﹣54=34,设M (t ,﹣12t +1),当DM=DC 时,(t ﹣54)2+(﹣12t +1)2=(34)2,解得t 1=45,t 2=2(舍去),则M (45,35),此时MD 的解析式为y=﹣43x +53,P 点坐标为(0,53); 当MD=MC 时,则M 点的坐标为(138,316),此时MD 的解析式为y=12x ﹣58,P点坐标为(0,﹣58);当CM=CD 时,(t ﹣2)2+(﹣12t +1)2=(34)2,解得t 1=20+3√510,t 2=20−3√510,则M (20+3√510,﹣3√520)或(20−3√510,3√520),此时MD 的解析式为y=﹣(√5﹣2)x +5(√5−2)4或y=(√5+2)x ﹣5(√5+2)4,P 点坐标为(0,5√5−104)或(0,−5√5−104),综上所述,P 点坐标为(0,53)或(0,﹣58)或(0,5√5−104)或(0,−5√5−104);(3)△ODE 沿DE 折叠后点O 落在边AB 上O′处,如图2,作O′H ⊥x 轴于H ,则O′D=OD=54,设O′(m ,1),在Rt △O′DH 中,(m ﹣54)2+12=(54)2,解得m 1=2,m 2=12,当m=2时,AO′=2,而EO′=EO=EA +1, ∴EA 2+22=(EA +1)2,解得EA=32,∴E (0,52),设平移的抛物线解析式为y=﹣x 2+bx +c ,把E (0,52),D (54,0)代入得{c =52−2516+54b +c =0,解得{b =−34c =52,∴抛物线解析式为y=﹣x 2﹣34x +52, ∵y=﹣(x +38)2+16964,∴抛物线y=﹣x 2先向左38单位,再向上平移16964单位,才能使得平移后的抛物线过点D 和点E ;当m=12时,AO′=12,而EO′=EO=1﹣AE ,∴EA 2+(12)2=(1﹣AE )2,解得EA=38,∴E(0,58),同样可得抛物线解析式为y=﹣x2+34x+58,∵y=﹣(x﹣38)2+4964,∴抛物线y=﹣x2先向右38单位,再向上平移4964单位,才能使得平移后的抛物线过点D和点E.25.在平面直角坐标系中,抛物线y=ax2﹣2ax+a+4(a<0)经过点A(﹣1,0),且与x轴正半轴交于点B,与y轴交于点C,点D是顶点.(1)填空:a=﹣1;顶点D的坐标为(1,4);直线BC的函数表达式为:y=﹣x+3.(2)直线x=t与x轴相交于一点.①当t=3时得到直线BN (如图1),点M 是直线BC 上方抛物线上的一点.若∠COM=∠DBN ,求出此时点M 的坐标.②当1<t <3时(如图2),直线x=t 与抛物线、BD 、BC 及x 轴分别相交于点P 、E 、F 、G ,试证明线段PE 、EF 、FG 总能组成等腰三角形;如果此等腰三角形底角的余弦值为35,求此时t 的值.【分析】(1)将点A 的坐标代入抛物线y=ax 2﹣2ax +a +4中,即可求出a 的值;利用顶点坐标公式求出点D 的坐标;求出点B 、点C 的坐标,再利用待定系数法求出解析式即可;(2)①设点M 的坐标为(m ,﹣m 2+2m +3),利用tan ∠COM=tan ∠DBN ,列出方程,求出m 的值即可求出点M 的坐标;②利用待定系数法求出直线BD 的解析式,利用用含t 的式子表示出EF 、FG 、PE的长度,利用三边关系即可证明;底角的余弦值为35,列出关于t 的方程,解得即可.【解答】解:(1)∵抛物线y=ax 2﹣2ax +a +4(a <0)经过点A (﹣1,0), ∴a +2a +a +4=0,解得:a=﹣1; ∴抛物线解析式为:y=﹣x 2+2x +3,∴−b 2a =−2−2=1,4ac−b 24a =4×(−1)×3−44×(−1)=4,∴顶点D 的坐标为:(1,4);令x=0,得:y=3,即点C 的坐标为(0,3); ∵点A (﹣1,0),对称轴为直线x=1, ∴1×2﹣(﹣1)=3, ∴点B 的坐标为(3,0), 设直线BC 的解析式为:y=kx +b , ∴{3k +b =0b =3,解得:{k =−1b =3,∴直线BC 的解析式为:y=﹣x +3; 故答案为:﹣1,(1,4),y=﹣x +3;(2)①设点M 的坐标为(m ,﹣m 2+2m +3),∵∠COM=∠DBN , ∴tan ∠COM=tan ∠DBN ,∴m −m +2m+3=24,解得:m=±√3, ∵m >0, ∴m=√3,∴点M (√3,2√3);②设直线BD 的解析式为y=kx +b , ∴{3k +b =0k +b =4,解得:{k =−2b =6, ∴直线BD 的解析式为:y=﹣2x +6;∴点P (t ,﹣t 2+2t +3),点E (t ,﹣2t +6),点F (t ,﹣t +3),∴PE=(﹣t 2+2t +3)﹣(﹣2t +6)=﹣t 2+4t ﹣3,EF=(﹣2t +6)﹣(﹣t +3)=﹣t +3,FG=﹣t +3, ∴EF=FG .∵EF +FG ﹣PE=2(﹣t +3)﹣(﹣t 2+4t ﹣3)=(t ﹣3)2>0, ∴EF +FG >PE ,∴当1<t <3时,线段PE ,EF ,FG 总能组成等腰三角形,由题意的:12PE EF =35,即12(−t 2+4t−3)−t+3=35,∴5t 2﹣26t +33=0,解得:t=3或115,∴1<t <3,∴t=115.。
2020年天津市南开区中考数学一模试卷一、选择题(共12小题).1.(﹣9)÷的结果等于()A.3B.﹣3C.27D.﹣272.2cos60°的值等于()A.B.1C.D.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1064.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.45.如图是由7个相同的小立方块搭成的几何体.那么这个几何体的俯视图是()A.B.C.D.6.估计﹣的值在()A.﹣1至﹣2之间B.﹣2至﹣3之间C.﹣3至﹣4之间D.﹣4至﹣5之间7.分式+的计算结果是()A.B.C.D.8.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.9.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y3<y2D.y1<y2<y3 10.如图,矩形ABCD中,AB=3,AD=1,点A,B在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为()A.﹣1B.C.﹣1D.11.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)12.已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C.给出下列结论:①在a>0的条件下,无论a取何值,点A是一个定点;②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;③y的最小值不大于﹣2;④若AB=AC,则.其中正确的结论有()个.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.化简(﹣x)3(﹣x)2的结果是.14.计算(+)2的结果是.15.在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是.16.将直线y=3x+1向下平移5个单位得到的直线的表达式是.17.在平面直角坐标系中,有一条线段AB.已知点A(﹣3,0)和B(0,4).平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为.18.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD 的最小值等于.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空.完成本题的解答.(Ⅰ)解不等式①,得.(Ⅱ)解不等式②,得.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分,根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(Ⅰ)①中的描述应为“6分m%“,其中m的值为;扇形①的圆心角的大小是;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有360名学生,估计该校理化实验操作得满分的学生有多少人.21.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.22.如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C 处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)23.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印刷的数量为x份(x>0)(Ⅰ)根据题意填表:一次印刷数量(份)3005001500…甲印刷厂花费(元)2000…乙印刷厂花费(元)1250…(Ⅱ)设在甲印刷厂花费y1元,在乙印刷厂花费为y2元.分别求y1,y2为关于x的函数解析式;(Ⅲ)根据题意填空:①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为份;②印制800份宣传材料时,选择印刷厂比较合算;③电视机厂拟拿出3000元用于印制宣传材料,在印刷广印制宣传材料可以多一些.24.如图,四边形AOBC是正方形,点C的坐标是(8,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A',B',C'.求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折钱OACB力向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动.运动时间为t秒,当它们相遇时同时停止运动.当△OPQ为等腰三角形时.求出t的值(直接写出结果即可)25.已知抛物线y=ax2+bx+c过点A(﹣6,0),B(2,0),C(0,﹣3).(Ⅰ)求此抛物线的解析式;(Ⅱ)若点H是该抛物线第三象限的任意一点,求四边形OCHA的最大面积;(Ⅲ)若点Q在y轴上,点G为该抛物线的顶点,且∠GQA=45°.求点Q的坐标.参考答案一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(﹣9)÷的结果等于()A.3B.﹣3C.27D.﹣27【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,解:(﹣9)÷=(﹣9)×3=﹣27,故选:D.2.2cos60°的值等于()A.B.1C.D.【分析】直接利用特殊角的三角函数值代入得出答案.解:2cos60°=2×=1.故选:B.3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.解:204000米/分,这个数用科学记数法表示2.04×105,故选:C.4.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.4【分析】根据轴对称图形与中心对称图形的概念进行判断即可.解:等边三角形是轴对称图形不是中心对称图形,平行四边形不是轴对称图形是中心对称图形,菱形既是轴对称图形又是中心对称图形,矩形既是轴对称图形又是中心对称图形,圆既是轴对称图形又是中心对称图形,故选:C.5.如图是由7个相同的小立方块搭成的几何体.那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:从上面可看到从左往右3列小正方形的个数为:2,2,1,故选:C.6.估计﹣的值在()A.﹣1至﹣2之间B.﹣2至﹣3之间C.﹣3至﹣4之间D.﹣4至﹣5之间【分析】根据不等式的性质估算出﹣的取值范围即可.解:∵9<10<16,∴3<<4,∴﹣4<﹣<﹣3.故选:C.7.分式+的计算结果是()A.B.C.D.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.解:==.故选:C.8.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.解:由题意可知:解得:故选:D.9.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y3<y2D.y1<y2<y3【分析】把各点分别代入反比例函数y=求出y1、y2、y3的值,再比较出其大小即可.解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,∴y1=﹣;y2=﹣;y3=,∴y2<y1<y3.故选:A.10.如图,矩形ABCD中,AB=3,AD=1,点A,B在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为()A.﹣1B.C.﹣1D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.解:AC=,则AM=,∵A点表示﹣1,∴M点表示﹣1,故选:A.11.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.12.已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C.给出下列结论:①在a>0的条件下,无论a取何值,点A是一个定点;②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;③y的最小值不大于﹣2;④若AB=AC,则.其中正确的结论有()个.A.1个B.2个C.3个D.4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.解:①y=ax2+(2﹣a)x﹣2=(x﹣1)(ax+2).则该抛物线恒过点A(1,0).故①正确;②∵y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴有2个交点,∴△=(2﹣a)2+8a=(a+2)2>0,∴a≠﹣2.∴该抛物线的对称轴为:x==﹣.无法判定的正负.故②不一定正确;③根据抛物线与y轴交于(0,﹣2)可知,y的最小值不大于﹣2,故③正确;④∵A(1,0),B(﹣,0),C(0,﹣2),∴当AB=AC时,=,解得.故④正确.综上所述,正确的结论有3个.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.化简(﹣x)3(﹣x)2的结果是﹣x5.【分析】根据同底数幂乘法法则即可计算.解:原式=(﹣x)3+2=﹣x5.故答案为﹣x514.计算(+)2的结果是7+2.【分析】利用完全平方公式计算.解:原式=()2+2+()2=5+2+2=7+2.故答案为7+2.15.在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是.【分析】画树状图列出所有等可能结果,从中找到两数之积为6的结果数,再利用概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中所得卡片上的两数之积是6的有2种结果,∴所得卡片上的两数之积是6的概率为=,故答案为:.16.将直线y=3x+1向下平移5个单位得到的直线的表达式是y=3x﹣4.【分析】根据“上加下减”的原则进行解答即可.解:由“上加下减”的原则可知,直线y=3x+1向下平移5个单位后得到直线的表达式是:y=3x+1﹣5,即y=3x﹣4.故答案为:y=3x﹣4.17.在平面直角坐标系中,有一条线段AB.已知点A(﹣3,0)和B(0,4).平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为15.【分析】首先根据A点和A1的坐标可得点A向右平移了3个单位,又向下平移了1个单位,进而利用面积公式解答即可.解:∵点A(﹣3,0),点A的对应点A1的坐标为(0,﹣1),∴点A向右平移了3个单位,又向下平移了1个单位,∴B的平移方式也是向右平移了3个单位,又向下平移了1个单位,∵B(0,4),∴B1的点(3,3),线段AB平移经过的区域(四边形ABB1A1)的面积为,故答案为:15.18.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD 的最小值等于3.【分析】过点P作PE⊥AD,交AD的延长线于点E,有锐角三角函数可得EP=PD,即PB+PD=PB+PE,则当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE.解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP=∴EP=PD∴PB+PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A==∴BE=3故答案为3三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空.完成本题的解答.(Ⅰ)解不等式①,得x≥﹣1.(Ⅱ)解不等式②,得x>﹣2.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x≥﹣1.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;解:,解不等式①,得x≥﹣1;解不等式②,得x>﹣2;原不等式组的解集为x≥﹣1,不等式组的解集在数轴上表示出来为:故答案为:x≥﹣1;x>﹣2;x≥﹣1.20.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分,根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(Ⅰ)①中的描述应为“6分m%“,其中m的值为10;扇形①的圆心角的大小是36°;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有360名学生,估计该校理化实验操作得满分的学生有多少人.【分析】(Ⅰ)利用6分的人数除以总数可得m%的值,进而可得m的值,用360°乘以①所占的百分比可得圆心角的度数;(Ⅱ)根据平均数、众数、中位数的定义分别解答;(Ⅲ)用九年级总人数乘以满分的人数所占的份数计算即可得解.解:(Ⅰ)m%=×100%=10%,则m=10,360°×10%=36°,故答案为:10;36°;(Ⅱ)平均数:(4×6+6×7+11×8+12×9+7×10)÷40=8.3(分),众数是9分,中位数是8分;(Ⅲ)360×=63(人),答:该校理化实验操作得满分的学生有63人.21.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.【分析】(1)根据圆内接四边形的性质得到∠EDA=∠ACB,根据圆周角定理得到∠CDA=∠ABC,根据等腰三角形的判定定理证明;(2)连接AO并延长交BC于H,AM⊥CD于M,根据角平分线的性质得到DM=DE =1,AE=AM=2,证明Rt△ABE≌Rt△ACM,得到CM=BE,根据勾股定理列式计算得到答案.【解答】(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.22.如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C 处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)【分析】由已知可得△ABC中∠C=67°,∠B=37°且AB=20海里.要求BC的长,可以过A作AD⊥BC于D,先求出CD和BD的长,就可转化为运用三角函数解直角三角形.解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B=,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B=,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH=,∴CH=≈5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.23.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印刷的数量为x份(x>0)(Ⅰ)根据题意填表:一次印刷数量(份)3005001500…甲印刷厂花费(元)180020003000…乙印刷厂花费(元)75012503750…(Ⅱ)设在甲印刷厂花费y1元,在乙印刷厂花费为y2元.分别求y1,y2为关于x的函数解析式;(Ⅲ)根据题意填空:①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为1000份;②印制800份宣传材料时,选择乙印刷厂比较合算;③电视机厂拟拿出3000元用于印制宣传材料,在甲印刷广印制宣传材料可以多一些.【分析】(Ⅰ)根据题意,可以分别计算出当印刷300份和印刷1500份材料时,在两家印刷厂的花费情况;(Ⅱ)根据题意,可以分别写出y1,y2为关于x的函数解析式;(Ⅲ)①根据题意,可以令y1=y2,即可得到相应的x的值,本题得以解决;②将x=800代入(Ⅱ)中的函数关系式,求出y的值,然后比较大小即可解答本题;③将y=3000代入(Ⅱ)中的函数关系式,求出x的值,然后比较大小即可解答本题.解:(Ⅰ)由题意可得,当印制300份材料时,甲印刷厂的花费为:300×1+1500=1800(元),乙印刷厂的花费为:300×2.5=750(元),当印制1500份材料时,甲印刷厂的花费为:1500×1+1500=3000(元),乙印刷厂的花费为:1500×2.5=3750(元),故答案为:1800,3000;750,3750;(Ⅱ)由题意可得,y1=x+1500,y2=2.5x;(Ⅲ)①由题意得,x+1500=2.5x,解得,x=1000,故答案为:1000;②当x=800时,y1=1500+800=2300,y2=2.5×800=2000,∵2300>2000,∴选择乙家印刷厂,故答案为:乙;③当y=3000时,选择甲印刷厂时,3000=x+1500,得x=1500,选择乙印刷厂时,3000=2.5x,得x=1200,∵1500>1200,∴视机厂拟拿出3000元用于印制宣传材料,在甲印刷广印制宣传材料可以多一些,故答案为:甲.24.如图,四边形AOBC是正方形,点C的坐标是(8,0).(Ⅰ)正方形AOBC的边长为8,点A的坐标是(4,4).(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A',B',C'.求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折钱OACB力向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动.运动时间为t秒,当它们相遇时同时停止运动.当△OPQ为等腰三角形时.求出t的值(直接写出结果即可)【分析】(Ⅰ)由正方形性质可得AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,由勾股定理可求AO,AE的长,即可求解;(Ⅱ)由旋转的性质可得OA=OA'=4,∠OA'B'=∠A=90°,可求A'C的长,由S重叠=S△OBC﹣S△A'PC可求重叠部分的面积;部分(Ⅲ)利用分类讨论思想和等腰三角形的性质可求t的值.解:(Ⅰ)如图,连接AB,交OC于点E,∵四边形AOBC是正方形∴AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,∵点C的坐标是(8,0).∴OC=8,∴OE=EC=4,∵OA2+AC2=OC2=128,∴OA=8∴AE==4,∴正方形边长为8,点A坐标为(4,4)故答案为:8,(4,4)(Ⅱ)如图,∵旋转45°,∠AOC=45°∴点A'落在OC上,∴OA=OA'=8,∠OA'B'=∠A=90°∴点A'(8,0),A'C=OC﹣OA'=8﹣8,∵∠ACB=45°,∴∠A'PC=∠A'CP=45°∴A'C=A'P=8﹣8,∴S重叠部分=S△OBC﹣S△A'PC=32﹣×(8﹣8)2=64﹣64.(Ⅲ)∵t=8时,点P与A重合,点Q与C重合,且△OAC是等腰三角形∴当t=8时,△OPQ为等腰三角形当点P在OA上,点Q在OB上时,OP=t,OQ=2t,则直角三角形OPQ不是等腰三角形;当点P在OA上,点Q在BC上时,∵△OPQ是等腰三角形∴点Q在OP的垂直平分线上,∴2t﹣8=t,∴t=当点P在AC上时,点Q在AC上时,OP≠OQ≠PQ∴△OPQ不是等腰三角形.∴当t=8或时,△OPQ为等腰三角形.25.已知抛物线y=ax2+bx+c过点A(﹣6,0),B(2,0),C(0,﹣3).(Ⅰ)求此抛物线的解析式;(Ⅱ)若点H是该抛物线第三象限的任意一点,求四边形OCHA的最大面积;(Ⅲ)若点Q在y轴上,点G为该抛物线的顶点,且∠GQA=45°.求点Q的坐标.【分析】(Ⅰ)将点A、B、C的坐标代入抛物线表达式,即可求解;(Ⅱ)S四边形OCHA=S△AMH+S梯形形OMHC,即可求解;(Ⅲ)证明△AMR≌△RNG(AAS),求出点R(﹣2,0),利用RQ=4,即可求解.解:(Ⅰ)将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+x﹣3;(Ⅱ)如图1,过点H作HM⊥AB于M,设点H的坐标为:(m,m2+m﹣3),则HM=﹣m2﹣m+3,OM=﹣m,∵点C的坐标为(0,﹣3),点A的坐标为(﹣6,0),∴OA=6,OC=3,∴AM=6﹣m,∴S四边形OCHA=S△AMH+S梯形形OMHC=AM•HM+(OC+MH)•OM=×(6﹣m)×(﹣m2﹣m+3)+×(3﹣m2﹣m+3)×(﹣m)=﹣m2﹣m+9,∵<0,故S四边形OCHA有最大值,当m=﹣3时,四边形OCHA的最大面积为;(Ⅲ)设△GAQ的外接圆圆心为R,如图3,∵∠GQA=45°,∴∠ARG=2∠GQA=90°,过点R作x轴的垂线交x轴于点M,交过点G与x轴的平行线于点N,设点R(x,y),则AM=x+6,RM=﹣y,RN=y+4,GN=x+2,∵∠MRA+∠GRN=90°,∠GRN+∠RNG=90°,∴∠RGN=∠ARM,又∵∠AMR=∠RNG=90°,RA=RG,∴△AMR≌△RNG(AAS),∴AM=RN,MR=GN,即x=2=﹣y,x+6=y+4,解得:,故点R(﹣2,0),则RM=﹣2﹣(﹣6)=4,设点Q(0,m),则RQ=4,即m2+4=16,解得:m=,故Q的坐标为:(0,2)或(0,﹣2).。
天津市南开区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°2.如图,BC 平分∠ABE ,AB ∥CD ,E 是CD 上一点,若∠C=35°,则∠BED 的度数为( )A .70°B .65°C .62°D .60°3.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k>-14 B .k>-14且0k ≠ C .k<-14 D .k ≥-14且0k ≠ 4.若代数式3x x -的值为零,则实数x 的值为( ) A .x =0 B .x≠0 C .x =3 D .x≠35.已知圆内接正三角形的面积为33,则边心距是( )A .2B .1C .3D .3 6.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v7.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④8.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )A .2011﹣2014年最高温度呈上升趋势B .2014年出现了这6年的最高温度C .2011﹣2015年的温差成下降趋势D .2016年的温差最大9.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .10.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°11.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<12.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.14.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.15.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.16.若一个棱柱有7个面,则它是______棱柱.17.分解因式:a2-2ab+b2-1=______.18.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?20.(6分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.21.(6分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD 为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?23.(8分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?通过这段对话,请你求出该地驻军原来每天清理道路的米数.24.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E ,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,C 类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱C D ,两类校本课程的学生约共有多少名.25.(10分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点;①连接PO ,交AC 于点E ,求PE EO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.26.(12分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m%和m%,结果在结算时发现,两种耗材的总价相等,求m的值.27.(12分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键2.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.3.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键. 4.A【解析】根据分子为零,且分母不为零解答即可.【详解】 解:∵代数式3x x -的值为零, ∴x =0,此时分母x-3≠0,符合题意.故选A .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.5.B【解析】【分析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,由三角形重心的性质得AD=3x ,利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可.【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD, ∴BD= tan30°·3,∴3,∵1332BC AD ⋅=, ∴12×33 ∴x =1所以该圆的内接正三边形的边心距为1,【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.6.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.7.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。