微反应器在化学化工领域中的应用_刘兆利

  • 格式:pdf
  • 大小:1.37 MB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第1期

·10·

化 工 进 展

微反应器在化学化工领域中的应用

刘兆利,张鹏飞

(天津大学化工学院,天津 300072)

摘要:微反应器是微型化学反应系统,具有换热和传质效率高、严格控制反应时间、易于放大、安全性能好等特点。和传统搅拌反应器相比,这些特点使得微反应器在缩短反应时间、大幅度提高化学反应的转化率和产品收率等方面展现出一定的优势。但微反应器也存在易堵塞,催化剂负载、微通道的设计与制造难度大等问题。本文介绍了近年来快速发展的微反应器技术,回顾了微反应器的特点,重点探讨微反应器在化学化工领域的应用以及微反应器在精细化工和制药工业、生物化工领域的应用实例,讨论了微反应器目前存在的诸多挑战。微反应器目前是化学和化工学科的前沿和热点方向,分析表明微反应器仍然有很大的发展空间,有潜力改变化学化工前景。提出应进一步深入系统地认识微反应器内化学反应以及微通道设计的基本规律和机理,将微反应器技术引入更广泛的反应体系中,加强微反应器的集成化水平。 关键词:微反应器;微通道;微尺度;层流;安全

中图分类号:TQ 052 文献标志码:A 文章编号:1000–6613(2016)01–0010–08 DOI :10.16085/j.issn.1000-6613.2016.01.002

Applications of microreactor in chemistry and chemical engineering

LIU Zhaoli ,ZHANG Pengfei

(School of Chemical Engineering ,Tianjin University ,Tianjin 300072,China )

Abstract :Microreactor belongs to the miniature chemical reaction system ,which has some characteristics of high heat- and mass- transfer rates ,strictly-controlled reaction time ,easy scale-up ,excellent safety performance ,and so on. Comparing with the common batch reactors ,advantages of microreactors are reducing reaction time ,greatly promoting conversion and yields. On the other hand ,there are some existing challenges ,such as the clogging problem ,catalyst loading ,design and fabrication of microchannels ,and so on. This paper aims to introduce the microreactor technology ,which has been growing rapidly in recent years. Some of the basic characteristics of microreactor are summarized focusing on applications of microreactor in chemistry and chemical engineering as well as some of typical examples of existing in fine chemical and pharmaceutical industry. A variety of challenges are also discussed. Microreactor is a frontier and hot topic in the research of chemistry and chemical engineering and analysis shows that microreactor still has very big development space and has the potential to change the chemistry and chemical engineering landscape. In the future ,further in-depth and systematic understanding of the regularities and mechanisms of chemical reaction in microreactor and design of microchannels should be emphasized. Introducing the microreactor technology into more reaction systems and further improving the integration level still need to be perfected.

Key words :microreactor ;microchannels ;microscale ;laminar flow ;safety 收稿日期:2015-07-08;修改稿日期:2015-07-29。

第一作者:刘兆利(1989—),男,硕士。E-mail liuzhaoli0302@ 。

联系人:张鹏飞,副研究员,研究方向为化工传质与分离。E-mail

zhangpf@ 。

第1期刘兆利等:微反应器在化学化工领域中的应用·11·

微反应器也被称作是微通道反应器,是微反应器、微混合器、微换热器、微控制器、微萃取器、微化学分析等一系列的微型化工设备的统称。微反应器技术起始于20世纪90年代的微流控技术[1],属于微尺度的范畴。由于微反应器相比于传统的反应器具有极大的优势,顺应了高技术含量和可持续发展的要求,微反应器技术一出现就引起了相关领域极大的关注,特别是一些世界著名学府和大型跨国公司(比如麻省理工学院、美国西北太平洋国家实验室、杜邦公司、巴斯夫公司等)都开始致力于微反应器的研究和应用。微反应器技术在国内起步偏晚,在近十多年时间才被国内相关人士了解、研究并应用,目前国内主要研究的机构有中国科学院大连化学物理研究所、清华大学等。目前在化学工程、合成、化学、制药工业、分析和生物化学过程等领域,微反应器技术是最有创造性和发展最快的技术之一[2]。

按照不同的分类方法,微反应器有多种类型[3]。按照操作模式进行分类,可以分为连续微反应器、半连续微反应器和间歇微反应器;按照反应相态可以分为气固相催化微反应器、气液相微反应器、液液相微反应器和气液固相微反应器;按照用途可以分为生产用微反应器和实验用微反应器;按照分析应用可以分为化学和生物中应用的微反应器以及化学工程和化学中应用的微反应器。微反应器有多种几何结构,最简单的是管式结构,还有板式结构、微通道结构以及集成试剂注射、混合、换热、溶剂交换、相分离等多种功能为一体的复合式结构。

针对化学反应的特点,比如温度、压力、腐蚀性、比热容和电特性等,要选择合适的微反应器制作材料。制作材料有玻璃、硅、陶瓷、金属和聚合物等。其中应用最广泛的材料是玻璃,这是由于玻璃材料是化学惰性的,允许在许多溶剂中使用电渗流(EOF),允许可见光检测设备并且易于制造[4-5]。目前微反应器的制作技术主要有LIGA(光刻、电铸和塑模结合的工艺)、机械加工、微模塑技术等[6]。

1 微反应器的特性

1.1 换热效率和混合效率高

微反应器内部微通道的特征尺寸一般在数十到几百微米之间[7],特征通道中单相流动的特点为较低的雷诺数,由层流扩散影响混合[8],局部也会形成二次流混合[9]。微反应器的尺寸属于微尺度范畴,所产生的直接优势就是扩散时间很短,混合过程很快。微反应器内传质和传热推动力会随之增加,从而扩大了单位面积和单位体积的扩散通量,这对于化学反应过程非常有利。因为总传热系数与通道尺寸成反比,微反应器内液相传热系数可以达到10000W/(m2·K),比常规换热设备大一个数量级以上[10]。尺寸的缩小赋予微反应器无与伦比的比表面积,可以达到10000~50000m2/m3,而传统的搅拌设备的比表面积最多可以达到1000m2/m3[11]。研究结果表明,利用微反应器能够有效强化传递或混合控制的化学反应过程,而这类过程在传统的反应装置内往往难以精确控制,极易产生局部热点、浓度分布不均、短路流和流动死区等问题,微反应器具有的高效混合和快速传递性能是解决这些问题的重要手段[12],可以有效抑制不良反应的产生,提高反应产物的纯度[13]。

为了进一步提高混合效率,还可以利用多种方法强化混合。强化混合分为两种,即主动混合和被动混合[14]。主动混合主要是利用了外界的能量输入来形成局部二次流,这些主要的外界能量有超声波、声诱振动、周期性变化的泵送能等。被动混合方式主要是通过通道的设计实现流体的重组来加快混合,主要方式有在微通道中设置多层薄片进行流体的分离和再混、通过涡流的形成和重叠强化混合以及利用喷射流碰撞进行混合等。被动混合由于操作简单,因此广泛应用于化工领域,而主动混合由于装置比较复杂而且不易多通道并行放大,所以主要应用于生物分析领域[9]。

1.2 可直接放大,无放大效应

传统的化工生产一般都是通过小试-中试-大生产的模式,但是在放大过程中流动、传质和传热的“三传”问题很突出。微反应器的优良性能得益于微尺度化,在扩大生产时是通过并行增加微反应器的数量而不是对反应器的尺寸进行放大[15]。与传统管式反应器并行放大的主要区别在于其优良的单通道“三传”状态重现性和多通道间抗干扰性[16]。在对整个反应系统进行优化时,只需对单个微反应器进行模拟和分析,这就避免了传统的从实验室规模到中试规模再到工业化规模的放大过程中所遇到的诸多问题,减少了操作费用,节省了空间,也避免了进行知之甚少的中试反应过程,提高了安全性[6,17]。

1.3 高度集成化

利用成熟的微加工技术可将微混合、微反应、微换热、微分离、微分析等多个单元操作和一些与之相匹配的微传感器、微阀等器件集成到一块反应芯片上,实现单一反应芯片的多功能化操作,从而