江苏专用2019版高考物理大一轮复习第13单元热学学案20180510222
- 格式:doc
- 大小:2.46 MB
- 文档页数:39
第13单元热学高考热点统计要求2014年2015年2016年2017年ⅠⅡⅠⅡⅠⅡⅢⅠⅡⅢ分子动理论Ⅰ33(1) 33(1) 33(1)固体、液体和气体Ⅰ33(1) 33(1) 33(1) 33(1) 33(1) 33(1)33(2) 33(1) 气体实验定律、状态方程Ⅱ33 33(2) 33(2) 33(2) 33 33 33 33(2) 33 33 热力学定律和能量守恒定律Ⅰ33(1) 33(1) 33(1) 33 33(2) 33 33 考情分析1.本单元的主要内容是分子动理论的基本观点、固体和液体的基本性质、气体实验定律和理想气体状态方程及热力学定律,分子动理论、阿伏伽德罗常数的应用、气体实验定律及热力学第一定律的应用是高考命题的热点.2.扩散和布朗运动现象、阿伏伽德罗常数、分子力和分子势能、分子平均动能和温度、气体压强的微观解释、油膜法测分子直径、晶体与液晶、液体的表面张力等是本单元的基础知识,气体实验定律、理想气体状态方程与热力学定律是本单元的重点知识,应用气体实验定律、热力学第一定律的解题方法是教学重点.第32讲分子动理论内能用油膜法估测分子的大小一、分子动理论1.物体是由大量分子组成的(1)分子直径大小的数量级为m.(2)一般分子质量的数量级为kg.(3)阿伏伽德罗常数N A:1mol的任何物质所含的分子数,N A=mol-1.2.分子永不停息地做无规则热运动(1)扩散现象:相互接触的物体的分子或原子彼此进入对方的现象.温度越,扩散越快.(2)布朗运动:在显微镜下看到的悬浮在液体中的微小颗粒的永不停息的无规则运动.布朗运动反映了的无规则运动,颗粒越,运动越明显;温度越,运动越剧烈.3.分子力(1)分子间同时存在着和,实际表现的分子力是它们的.(2)引力和斥力都随着距离的增大而,但分子间距离变化相等时斥力比引力变化得.(3)分子间的作用力随分子间距离r变化的关系如图32-1所示:当r<r0时,表现为;当r=r0时,分子力为;当r>r0时,表现为;当r>10r0时,分子力变得十分微弱,可忽略不计.图32-1二、物体的内能1.分子的平均动能:物体内所有分子动能的平均值.是分子平均动能的标志,物体温度升高,分子热运动的增大.2.分子势能:与分子有关.分子势能的大小随分子间距离的变化曲线如图32-2所示(规定分子间距离无穷远时分子势能为零).图32-23.物体的内能:物体中所有分子的热运动与的总和.物体的内能跟物体的、及物体的都有关系.三、用油膜法估测分子的大小将油酸滴在水面上,让油酸尽可能散开,可认为油酸在水面上形成油膜,如果把分子看作,单层分子油膜的厚度就可以看作油酸分子的直径,如图32-3所示,测出油酸的体积V和油膜的面积S,就可以算出分子的直径d,则d=.图32-3【思维辨析】(1)布朗运动是液体分子的无规则运动.()(2)温度越高,布朗运动越剧烈.()(3)分子间的引力和斥力都随分子间距的增大而增大.()(4)-33℃=240K.()(5)分子动能指的是由于分子定向移动具有的能.()(6)当分子力表现为引力时,分子势能随分子间距离的增大而增大.()(7)内能相同的物体,它们的分子平均动能一定相同.()【思维拓展】分子的体积如何表示?考点一阿伏伽德罗常数的应用宏观量与微观量的转换桥梁作为宏观量的摩尔质量M mol、摩尔体积V mol、密度ρ与作为微观量的分子直径d、分子质量m、分子体积V0都可通过阿伏伽德罗常数联系起来.如图32-4所示.ρ图32-4(1)一个分子的质量:m=.(2)一个分子所占的体积:V0=(估算固体、液体分子的体积或气体分子平均占有的空间).(3)1mol物体的体积:V mol=.(4)质量为M的物体中所含的分子数:n=N A.(5)体积为V的物体中所含的分子数:n=N A.考向一液体、固体分子模型1[2017·江苏卷]科学家可以运用无规则运动的规律来研究生物蛋白分子.资料显示,某种蛋白的摩尔质量为66kg/mol,其分子可视为半径为3×10-9m的球,已知阿伏伽德罗常数为6.0×1023mol-1.请估算该蛋白的密度.(计算结果保留一位有效数字)■建模点拨固体、液体分子一个一个紧密排列,可将分子看成球体或立方体,如图32-5所示,分子间距等于小球的直径或立方体的棱长,所以d=(球体模型)或d=(立方体模型).图32-5考向二气体分子模型2 已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为N A,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为,空气分子之间的平均距离为.■建模点拨气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间.如图32-6所示,此时每个分子占有的空间视为棱长为d的立方体,所以d=.图32-6考点二分子动理论的应用考向一布朗运动与分子热运动3(多选)[2016·江苏涟水中学质检]关于布朗运动,下列说法不正确的是()A.布朗运动就是液体分子的无规则运动B.布朗运动就是悬浮的固体微粒分子的无规则运动C.气体分子的运动是布朗运动D.液体中的悬浮微粒越大,布朗运动就越不明显E.布朗运动是由液体分子从各个方向对悬浮微粒撞击作用的不平衡引起的考向二分子间的作用力与分子势能4(多选)[2017·山西晋城二模]将一个分子P固定在O点,另一个分子Q从图中的A点由静止释放,两分子之间的作用力与间距关系的图像如图32-7所示,则下列说法正确的是()图32-7A .分子Q 由A 运动到C 的过程中,先加速再减速B .分子Q 在C 点时分子势能最小C .分子Q 在C 点时加速度大小为零D .分子Q 由A 点释放后运动到C 点左侧的过程中,加速度先增大后减小再增大E .该图能表示固、液、气三种状态下分子力随分子间距变化的规律■ 方法技巧(1)分子势能在平衡位置有最小值,无论分子间距离如何变化,靠近平衡位置,分子势能减小,反之增大.(2)判断分子势能的变化有两种方法①看分子力的做功情况.②直接由分子势能与分子间距离的关系图线判断,但要注意其和分子力与分子间距离的关系图线的区别. 考向三物体的内能1.物体的内能与机械能的比较2.内能和热量的比较5(多选)关于物体的内能,下列说法不正确的是 ()A .温度相等的1kg 和100g 的水内能相同B .物体内能增加,一定要从外界吸收热量C .热量只能从内能多的物体转移到内能少的物体D .在相同物态下,同一物体温度降低,它的内能会减少E .物体运动时的内能不一定比静止时的内能大式题 (多选)[2017·太原二模] 如图32-8所示,甲分子固定在坐标原点O ,乙分子位于x 轴上,两分子之间的相互作用力的合力F 与两分子间距离x 的关系如图中曲线所示,F>0表现为斥力,F<0表现为引力,a 、b 、c 、d 为x 轴上四个特定的位置,现把乙分子从a 处由静止释放,则 ()图32-8A .乙分子从a 到b 做加速运动,由b 到c 做减速运动B.乙分子从a到c做加速运动,经过c点时速度最大C.乙分子由a到c的过程中,两分子组成的系统的分子势能一直减少D.乙分子由a到d的过程中,两分子组成的系统的分子势能一直减少E.乙分子位于c点时,两分子组成的系统的分子势能最小考点三用油膜法估测分子的大小(1)油膜体积的测定——积聚法:由于一滴纯油酸中含有的分子数仍很大,形成的单层分子所占面积太大,不便于测量,故实验中先把油酸溶于酒精中稀释,测定其浓度,再测出1mL油酸酒精溶液的滴数,取一滴用于实验,最后计算出一滴油酸酒精溶液中含有的纯油酸的体积作为油膜的体积.(2)油膜面积的测定:如图32-9所示,将画有油酸薄膜轮廓的有机玻璃板取下放在坐标格纸上,以边长为1cm的方格为单位,数出轮廓内正方形的格数(不足半格的舍去,超过半格的计为1格),计算出油膜的面积S.图32-96[2017·江苏联考]“用油膜法估测分子大小”的实验步骤如下:①向体积为V1的纯油酸中加入酒精,直到油酸酒精溶液总体积为V2;②用注射器吸取上述溶液,一滴一滴地滴入小量筒,当滴入n滴时体积为V0;③先往边长为30~40cm的浅盘里倒入2cm深的水;④用注射器往水面上滴一滴上述溶液,等油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描出油酸薄膜的轮廓;⑤将描有油酸薄膜轮廓的玻璃板,放在画有许多边长为a的小正方形的坐标纸上,读出轮廓范围内正方形的总数为N.上述过程中遗漏的步骤是 ;油酸分子直径的表达式是d=.式题[2017·郑州质检]在“用油膜法估测分子大小”实验中,将一滴油酸酒精溶液滴入事先洒有均匀痱子粉的水槽中,待油膜充分散开后,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图32-10所示.坐标纸上正方形小方格的边长为1cm,该油膜的面积是m2;已知油酸酒精溶液中油酸浓度为0.2%,400滴油酸酒精溶液滴入量筒后的体积是1.2mL,则油酸分子的直径为m.(结果均保留两位有效数字)图32-10■规律总结1.注意事项(1)油酸在水面上形成油膜时先扩散后收缩,要在稳定后再画轮廓.(2)在有机玻璃板上描绘油酸薄膜轮廓时动作要轻而迅速,视线要始终与玻璃板垂直.2.误差分析(1)油酸酒精溶液配制后长时间放置,溶液的浓度容易改变,会给实验带来较大误差;(2)利用小格子数计算轮廓面积时,轮廓的不规则性容易带来计算误差;(3)测量量筒内溶液增加1mL的滴数时,产生误差;(4)油膜形状的画线误差.第33讲固体、液体、气体的性质热力学定律一、固体和液体1.固体可以分为晶体和两种,晶体又分为单晶体和.2.晶体的微观结构:晶体的形状和物理性质与非晶体不同,晶体中原子(或分子、离子)按照一定的规则排列,具有空间上的性.3.液体的表面张力:液体的表面张力使液面具有的趋势,表面张力跟液面相切,跟这部分液面的分界线垂直.4.液晶:具有液体的性,具有晶体的光学各向性.二、气体1.气体的状态参量(1)压强:气体压强是大量分子对器壁撞击的宏观表现,其决定因素有和单位体积内的数.(2)体积:气体分子所能到达空间的体积,即气体所充满的容器的容积.(3)温度:宏观上温度表示物体的冷热程度,微观上温度是的标志,热力学温度与摄氏温度的关系为T=(t+)K.2.气体分子运动的特点(1)气体分子之间的距离大约是分子直径的倍,气体分子之间的相互作用力十分微弱,可忽略不计.(2)大量分子的热运动速率分布表现为“”的统计规律.(3)温度一定时,某种气体分子速率分布是确定的,平均速率是确定的.温度升高时,气体分子的增大,但并非每个分子的速率都增大.3.气体实验定律4.理想气体状态方程(1)理想气体:把在任何温度、任何压强下都遵从的气体称为理想气体.在压强不太大、温度不太低时,实际气体可以看作理想气体.理想气体的分子间除碰撞外不考虑其他作用,一定质量的某种理想气体的内能仅由决定.(2)理想气体状态方程:(质量一定的理想气体).三、热力学定律1.热力学第一定律:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体所做的功W加上物体从外界吸收的热量Q等于物体的增量.表达式为ΔU=.2.热力学第二定律(1)内容:不可能使热量由温物体传递到温物体,而不引起其他变化;不可能从热源吸收热量并把它全部用来对外,而不引起其他变化.(2)微观意义:一切自发过程总是沿着分子热运动的无序性的方向进行.3.热力学第三定律:热力学零度不可能达到.四、物体的内能1.能量守恒定律:能量既不会,也不会,它只能从一种形式转化为另一种形式,或者从转移到,在转化或转移的过程中,能量的总量.2.永动机:第一类永动机是不可能制成的,因为它违反了;第二类永动机也是不可能制成的,因为它违反了. 【思维辨析】(1)单晶体的所有物理性质都是各向异性的.()(2)液晶是液体和晶体的混合物.()(3)水蒸气达到饱和时,水蒸气的压强不再变化,这时水不再蒸发和凝结.()(4)压强极大的气体不遵从气体实验定律.()(5)做功和热传递的实质是相同的.()(6)绝热过程中,外界压缩气体做功20J,气体的内能一定减少.()(7)物体吸收热量,同时对外做功,内能可能不变.()(8)热机中,燃气的内能可以全部变为机械能而不引起其他变化.()【思维拓展】试推导理想气体压强公式,并说明影响气体压强的因素.假设有一个容积为V的容器,容器内所装气体分子的总数为N,容器内单位体积分子数为n,其中n=,每个气体分子质量为m,我们在这个容器的内壁附近作一个小的正立方体,小立方体与容器内壁相接触的面积为S,令小立方体的边长为l=vΔt,其中v为气体分子平均速率,Δt是我们所取的一小段考查的时间间隔.小立方体内气体分子的总数为N',N'=nSl=nSvΔt,在Δt内,这个小立方体内的气体分子有六分之一都将与接触面发生碰撞.考点一固体和液体的性质考向一固体的性质1(多选)[2015·全国卷Ⅰ]下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变■规律总结(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.考向二液体的性质2(多选)下列说法正确的是()A.把一枚针轻放在水面上,它会浮在水面.这是因为水表面存在表面张力B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,这是因为油脂使水的表面张力增大C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形,这是表面张力作用的结果D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开,这是由于水膜具有表面张力的缘故■规律总结(1)表面张力的形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表面张力的方向:和液面相切,垂直于这部分液面的分界线.(3)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.考向三饱和汽压和湿度的理解3(多选)关于饱和汽压和相对湿度,下列说法中正确的是()A.温度相同的不同饱和汽的饱和汽压都相同B.温度升高时,饱和汽压增大C.在相对湿度相同的情况下,夏天比冬天的绝对湿度大D.饱和汽压和相对湿度都与体积无关E.水蒸气的实际压强越大,人感觉越潮湿■规律总结(1)饱和汽压跟液体的种类有关,在相同的温度下,不同液体的饱和汽压一般是不同的.(2)饱和汽压跟温度有关,饱和汽压随温度的升高而增大.(3)饱和汽压跟体积无关,在温度不变的情况下,饱和汽压不随体积的变化而变化.考点二气体实验定律和气体压强的微观解释1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).(2)查理定律(等容变化):=C(常数).(3)盖—吕萨克定律(等压变化):=C(常数).2.利用气体实验定律解决问题的基本思路考向一玻意耳定律4[2017·全国卷Ⅲ]一种测量稀薄气体压强的仪器如图33-1甲所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图乙所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求:(1)待测气体的压强;(2)该仪器能够测量的最大压强.图33-1考向二查理定律5[2017·山西三模]如图33-3所示,横截面积为S的热水杯盖扣在水平桌面上,开始时内部封闭气体的温度为27℃,压强为大气压强p0.当封闭气体温度上升至30℃时,水杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为p0,温度仍为30℃.再经过一段时间,由于室温的降低,内部气体温度降至21℃.整个过程中封闭气体均可视为理想气体.求:(1)当封闭气体温度上升至30℃且水杯盖未被顶起时的压强p1;(2)当封闭气体温度下降至21℃时,竖直向上提起杯盖所需的最小力F min.图33-2考向三盖—吕萨克定律6[2017·全国卷Ⅱ]一热气球体积为V,内部充有温度为T a的热空气,气球外冷空气的温度为T b.已知空气在1个大气压、温度T0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g.(1)求该热气球所受浮力的大小;(2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m0,求充气后它还能托起的最大质量.考点三气体实验定律的图像问题(1)利用垂直于坐标轴的线作辅助线去分析同质量,不同温度的两条等温线,不同体积的两条等容线,不同压强的两条等压线的关系.例如:在图33-3甲中,虚线为等容线,A 、B 分别是虚线与T 2、T 1两条等温线的交点,可以认为从B 状态通过等容升压到A 状态,温度必然升高,所以T 2>T 1.图33-3又如图乙所示,A 、B 两点的温度相等,从B 状态到A 状态压强增大,体积一定减小,所以V 2<V 1.(2)关于一定质量的气体的不同图像的比较斜率越大 k=率越大体积越小 k=率越大压强越小7[2017·兰州一模] 一定质量的理想气体体积V 与热力学温度T 的关系图像如图33-4所示,气体在状态A 时的压强p A =p 0,温度T A =T 0,线段AB 与V 轴平行,BC 的延长线过原点.求:(1)气体在状态B 时的压强p B ;(2)气体在状态C 时的压强p C 和温度T C .图33-4式题[2017·上海静安质检]一定质量的气体经历一系列状态变化,其p-图线如图33-5所示,变化顺序为a→b→c→d→a,图中ab线段延长线过坐标原点,cd线段与P轴垂直,da线段与轴垂直.气体在此状态变化过程中()图33-5A.a→b,压强减小、温度不变、体积增大B.b→c,压强增大、温度降低、体积减小C.c→d,压强不变、温度升高、体积减小D.d→a,压强减小、温度升高、体积不变■方法总结气体状态变化的图像的应用技巧(1)明确点、线的物理意义:求解气体状态变化的图像问题,应当明确图像上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图像上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.(2)明确斜率的物理意义:在V-T图像(或p-T图像)中,比较两个状态的压强(或体积)大小,可以比较表示这两个状态的点与原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.考点四理想气体状态方程的求解1.理想气体(1)宏观上,理想气体是指在任何条件下始终遵循气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.2.状态方程:=C.3.应用状态方程解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始、末状态的参量p1、V1、T1及p2、V2、T2;(3)由状态方程列式求解;(4)讨论结果的合理性.8[2017·福建厦门一检]如图33-6所示,内壁光滑的水平放置气缸被两个活塞分成A、B、C三部分,两活塞间用轻杆连接,活塞厚度不计,在E、F两处设有限制装置,使左边活塞只能在E、F之间运动,E、F之间的容积为0.1V0.开始时左边活塞在E处,A部分的容积为V0,A部分内气体的压强为0.9p0(p0为大气压强),温度为297K;B部分的容积为1.1V0,B部分内气体的压强为p0,温度恒为297K;C部分内为真空.现缓慢加热A部分内气体,直至温度升为399.3K.求:(1)活塞刚离开E处时的温度T E;(2)A部分内气体最后的压强p.图33-6式题[2017·南昌十校二模]如图33-7所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银柱,两段空气柱被封闭在左、右两侧的竖直管中.开启上部连通左、右水银的阀门A,当温度为300K时,平衡时水银柱的位置如图所示,h1=h2=5cm,L1=50cm,大气压强为75cmHg.(1)求右管内空气柱的长度L2;(2)关闭阀门A,当温度升至405K时,求左侧竖直管内空气柱的长度L3.(大气压强保持不变)图33-7■方法总结对于两部分气体的问题,一定要找好两部分气体之间的关系,比如压强关系、体积关系等,分别找出两部分气体的初、末状态的压强、体积和温度,根据理想气体状态方程列式求解.考点五热力学定律的理解与应用考向一热力学第一定律的理解和应用1.改变内能的两种方式的比较2.温度、内能、热量、功的比较3.对公式ΔU=Q+W符号的规定4.几种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加量.(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量.(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量. 9(多选)[2017·全国卷Ⅱ]如图33-8所示,用隔板将一绝热气缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个气缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()图33-8A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变式题 (多选)[2017·全国卷Ⅲ]如图33-9所示,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到状态a.下列说法正确的是()图33-9A .在过程ab 中气体的内能增加B .在过程ca 中外界对气体做功C .在过程ab 中气体对外界做功D .在过程bc 中气体从外界吸收热量E .在过程ca 中气体从外界吸收热量■ 规律总结(1)做功情况看气体的体积:体积增大,气体对外做功,W 为负;体积缩小,外界对气体做功,W 为正.(2)如果研究对象是理想气体,由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子平均动能的变化上,从宏观上看就是温度发生了变化.考向二热力学第二定律的理解和应用1.对热力学第二定律的理解(1)“自发地”说明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.10(多选)关于热力学定律,下列说法正确的是 ()A .不可能从单一热源吸收热量,并把它全部用来做功B .可能从单一热源吸收热量,并把它全部用来做功C .不可能使热量从低温物体传向高温物体D .机械能转变为内能的实际宏观过程是不可逆过程E .与热现象有关的变化过程都具有方向性■ 规律总结热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,例如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,例如气体的等温膨胀过程.式题 (多选)关于第二类永动机,下列说法正确的是()A .能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫作第二类永动机B .第二类永动机违反了能量守恒定律,所以不可能制成C .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能D .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能在不引起其他变化的同时全部转化为机械能E .第二类永动机不违反能量守恒定律,但违反热力学第二定律■ 规律总结两类永动机的比较第34讲选修3-3计算题型突破考点一变质量气体计算题分析变质量问题时,可以通过巧妙地选择合适的研究对象,使这类问题转化为一定质量的气体问题,用相关规律求解.1.充气问题。
十三热学第1节分子动理论内能一、分子动理论1.物体是由大量分子组成的(1)分子模型:主要有两种模型,固体与液体分子通常用球体模型,气体分子通常用立方体模型.(2)分子的大小①分子直径:数量级是10-10 m;②分子质量:数量级是10-26 kg;③测量方法:油膜法.(3)阿伏加德罗常数1 mol任何物质所含有的粒子数,N A=6.02×1023 mol-1.2.分子热运动分子永不停息的无规则运动.(1)扩散现象相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行.(2)布朗运动悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著.3.分子力分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.二、内能1.分子平均动能(1)所有分子动能的平均值.(2)温度是分子平均动能的标志.2.分子势能由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能(1)内能:物体中所有分子的热运动动能与分子势能的总和.(2)决定因素:温度、体积和物质的量.三、温度1.意义:宏观上表示物体的冷热程度(微观上标志物体中分子平均动能的大小).2.两种温标(1)摄氏温标t:单位℃,在1个标准大气压下,水的冰点作为0 ℃,沸点作为100 ℃,在0 ℃~100 ℃之间等分100份,每一份表示1 ℃.(2)热力学温标T:单位K,把-273.15 ℃作为0 K.(3)就每一度表示的冷热差别来说,两种温度是相同的,即ΔT=Δt.只是零值的起点不同,所以二者关系式为T=t+273.15.(4)绝对零度(0 K),是低温极限,只能接近不能达到,所以热力学温度无负值.[自我诊断]1.判断正误(1)质量相等的物体含有的分子个数不一定相等.(√)(2)组成物体的每一个分子运动是有规律的.(×)(3)布朗运动是液体分子的运动.(×)(4)分子间斥力随分子间距离的减小而增大,但分子间引力却随分子间距离的减小而减小.(×)(5)内能相同的物体,温度不一定相同.(√) (6)分子间无空隙,分子紧密排列.(×)2.(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是( ) A .混合均匀主要是由于碳粒受重力作用B .混合均匀的过程中,水分子和碳粒都做无规则运动C .使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D .墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的解析:选BC.根据分子动理论的知识可知,最后混合均匀是扩散现象,水分子做无规则运动,碳粒做布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选B 、C.3.关于物体的内能,以下说法正确的是( ) A .不同物体,温度相等,内能也相等 B .所有分子的势能增大,物体内能也增大C .温度升高,分子平均动能增大,但内能不一定增大D .只要两物体的质量、温度、体积相等,两物体的内能一定相等解析:选 C.不同物体,温度相等,分子平均动能相等,分子动能不一定相等,不能说明内能也相等,A 错误;所有分子的势能增大,不能反映分子动能如何变化,不能确定内能也增大,B 错误;两物体的质量、温度、体积相等,但其物质的量不一定相等,不能得出内能相等,D 错误,C 正确.考点一 宏观量与微观量的计算1.微观量:分子体积V 0、分子直径d 、分子质量m 0.2.宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ. 3.关系(1)分子的质量:m 0=M N A =ρV mN A .(2)分子的体积:V 0=V m N A =MρN A.(3)物体所含的分子数:N =VV m ·N A =mρV m·N A或N =m M·N A =ρVM·N A .4.分子的两种模型(1)球体模型直径d = 36V 0π.(常用于固体和液体)(2)立方体模型边长d =3V 0.(常用于气体)对于气体分子,d =3V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.1.(多选)若以μ表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ表示在标准状态下水蒸气的密度,N A 表示阿伏加德罗常数,m 、v 分别表示每个水分子的质量和体积,下面关系正确的是( )A .N A =ρVmB .ρ=μN A vC .ρ<μN A vD .m =μN A解析:选ACD.由于μ=ρV ,则N A =μm =ρV m ,变形得m =μN A,故A 、D 正确;由于分子之间有空隙,所以N A v <V ,水的密度为ρ=μV <μN A v,故C 正确,B 错误.2.(多选)已知铜的摩尔质量为M (kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为N A (mol -1).下列判断正确的是( )A .1 kg 铜所含的原子数为N A MB .1 m 3铜所含的原子数为MN AρC .1个铜原子的质量为M N A(kg) D .1个铜原子的体积为MρN A(m 3)解析:选ACD.1 kg 铜所含的原子数N =1M N A =N A M,A 正确;同理,1 m 3铜所含的原子数N=ρM N A =ρN A M ,B 错误;1个铜原子的质量m 0=M N A (kg),C 正确;1个铜原子的体积V 0=m 0ρ=M ρN A (m 3),D 正确.3.(2016·陕西西安二模)目前专家们正在研究二氧化碳的深海处理技术.实验发现,在水深300 m 处,二氧化碳将变成凝胶状态,当水深超过2 500 m 时,二氧化碳会浓缩成近似固体的硬胶体.设在某状态下二氧化碳气体的密度为ρ,摩尔质量为M ,阿伏加德罗常数为N A ,将二氧化碳分子看成直径为D 的球⎝ ⎛⎭⎪⎫球的体积公式V 球=16πD 3,则在该状态下体积为V 的二氧化碳气体变成硬胶体后体积为________.解析:二氧化碳气体变成硬胶体后,可以看成是分子一个个紧密排列在一起的,故体积为V 的二氧化碳气体质量为m =ρV ;所含分子数为n =m MN A =ρVMN A ;变成硬胶体后体积为V ′=n ·16πD 3=πρVN A D 36M.答案:πρVN A D 36M在进行微观量与宏观量之间的换算的两点技巧(1)正确建立分子模型:固体和液体一般建立球体模型,气体一般建立立方体模型. (2)计算出宏观量所含物质的量,通过阿伏加德罗常数进行宏观量与微观量的转换与计算.考点二 布朗运动与分子热运动1.(多选)关于扩散现象,下列说法正确的是( ) A .温度越高,扩散进行得越快B .扩散现象是不同物质间的一种化学反应C .扩散现象是由物质分子无规则运动产生的D .扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的解析:选ACD.扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确.扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B错误、选项C正确、选项E错误.扩散现象在气体、液体和固体中都能发生,选项D正确.2.关于布朗运动,下列说法正确的是( )A.布朗运动就是液体分子的无规则运动B.布朗运动就是悬浮微粒的固体分子的无规则运动C.气体分子的运动是布朗运动D.液体中的悬浮微粒越大,布朗运动就越不明显解析:选 D.布朗运动是悬浮在液体中的固体颗粒的无规则运动,是液体分子无规则运动的表现,A、B错误.气体分子的运动不是布朗运动,C错误.布朗运动的剧烈程度与液体的温度以及颗粒的大小有关,液体中的悬浮微粒越大,布朗运动就越不明显,D正确.3.(多选)下列哪些现象属于热运动( )A.把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间再把它们分开,会看到与它们相接触的面都变得灰蒙蒙的B.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,但我们喝汤时尝到了胡椒的味道C.含有泥沙的水经一定时间会变澄清D.用砂轮打磨而使零件温度升高解析:选ABD.热运动在微观上是指分子的运动,如扩散现象,在宏观上表现为温度的变化,如“摩擦生热”、物体的热传递等,而水变澄清的过程是泥沙在重力作用下的沉淀,不是热运动,C错误.区别布朗运动与热运动应注意以下两点(1)布朗运动并不是分子的热运动.(2)布朗运动可通过显微镜观察,分子热运动不能用显微镜直接观察.考点三分子力、分子力做功和分子势能分子力和分子势能随分子间距变化的规律如下:[典例] (2016·东北三省三市联考)(多选)分子力比重力、引力等要复杂得多,分子势能跟分子间的距离的关系也比较复杂.图示为分子势能与分子间距离的关系图象,用r 0表示分子引力与分子斥力平衡时的分子间距,设r →∞时,E p =0,则下列说法正确的是( )A .当r =r 0时,分子力为零,E p =0B .当r =r 0时,分子力为零,E p 为最小C .当r 0<r <10r 0时,E p 随着r 的增大而增大D .当r 0<r <10r 0时,E p 随着r 的增大而减小 E .当r <r 0时,E p 随着r 的减小而增大解析 由E p -r 图象可知,r =r 0时,E p 最小,再结合F -r 图象知此时分子力为0,则A 项错误,B 项正确;结合F -r 图象可知,在r 0<r <10r 0内分子力表现为引力,在间距增大过程中,分子引力做负功分子势能增大,则C 项正确,D 项错误;结合F -r 图象可知,在r <r 0时分子力表现为斥力,在间距减小过程中,分子斥力做负功,分子势能增大,则E 项正确.答案 BCE判断分子势能变化的两种方法(1)利用分子力做功判断分子力做正功,分子势能减小;分子力做负功,分子势能增加.(2)利用分子势能E p与分子间距离r的关系图线判断如图所示,仅受分子力作用,分子动能和势能之和不变,根据E p变化可判知E k变化.而E p变化根据图线判断.但要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆.1.(2016·海口模拟)(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是( ) A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变解析:选ACE.由E p-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故B错误;在r=r0时,分子势能最小,但不为零,动能最大,故C正确,D错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E正确.2.(2016·山东烟台二模)(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是( )A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D .分子势能先增大,后减小E .分子势能和动能之和不变解析:选BCE.两分子从较远靠近的过程分子力先表现为引力且先增大后减小,到平衡位置时,分子力为零,之后再靠近分子力表现为斥力且越来越大,A 选项错误;分子力先做正功后做负功,B 选项正确;分子势能先减小后增大,动能先增大后减小,C 选项正确、D 选项错误;只有分子力做功,分子势能和分子动能相互转化,总和不变,E 选项正确.考点四 实验:用油膜法估测分子大小1. 实验原理:利用油酸酒精溶液在平静的水面上形成单分子油膜,将油酸分子看作球形,测出一定体积油酸溶液在水面上形成的油膜面积,用d =VS计算出油膜的厚度,其中V 为一滴油酸酒精溶液中纯油酸的体积,S 为油膜面积,这个厚度就近似等于油酸分子的直径.2.实验器材:盛水浅盘、滴管(或注射器)、试剂瓶、坐标纸、玻璃板、痱子粉(或细石膏粉)、油酸酒精溶液、量筒、彩笔.3.实验步骤:(1)取1 mL(1 cm 3)的油酸溶于酒精中,制成200 mL 的油酸酒精溶液.(2)往边长为30~40 cm 的浅盘中倒入约2 cm 深的水,然后将痱子粉(或细石膏粉)均匀地撒在水面上.(3)用滴管(或注射器)向量筒中滴入n 滴配制好的油酸酒精溶液,使这些溶液的体积恰好为1 mL ,算出每滴油酸酒精溶液的体积V 0=1nmL.(4)用滴管(或注射器)向水面上滴入一滴配制好的油酸酒精溶液,油酸就在水面上慢慢散开,形成单分子油膜.(5)待油酸薄膜形状稳定后,将一块较大的玻璃板盖在浅盘上,用彩笔将油酸薄膜的形状画在玻璃板上.(6)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,算出油酸薄膜的面积.(7)据油酸酒精溶液的浓度,算出一滴溶液中纯油酸的体积V ,据一滴油酸的体积V 和薄膜的面积S ,算出油酸薄膜的厚度d =V S,即为油酸分子的直径.比较算出的分子直径,看其数量级(单位为m)是否为10-10m ,若不是10-10m 需重做实验.4.实验时应注意的事项:(1)油酸酒精溶液的浓度应小于11 000.(2)痱子粉的用量不要太大,并从盘中央加入,使粉自动扩散至均匀.(3)测1滴油酸酒精溶液的体积时,滴入量筒中的油酸酒精溶液的体积应为整毫升数,应多滴几毫升,数出对应的滴数,这样求平均值误差较小.(4)浅盘里水离盘口面的距离应较小,并要水平放置,以便准确地画出薄膜的形状,画线时视线应与板面垂直.(5)要待油膜形状稳定后,再画轮廓.(6)利用坐标纸求油膜面积时,以边长为1 cm的正方形为单位,计算轮廓内正方形的个数,不足半个的舍去.大于半个的算一个.5.可能引起误差的几种原因:(1)纯油酸体积的计算引起误差.(2)油膜面积的测量引起的误差主要有两个方面:①油膜形状的画线误差;②数格子法本身是一种估算的方法,自然会带来误差.1.(2016·湖北三校联考)在“油膜法估测油酸分子的大小”实验中,有下列实验步骤:①往边长约为40 cm的浅盘里倒入约2 cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上.完成下列填空:(1)上述步骤中,正确的顺序是_____.(填写步骤前面的数字)(2)将1 cm3的油酸溶于酒精,制成300 cm3的油酸酒精溶液,测得1 cm3的油酸酒精溶液有50滴.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13 m2.由此估算出油酸分子的直径为________ m.(结果保留1位有效数字)解析:(1)依据实验顺序,首先配置混合溶液,然后在浅盘中放水和痱子粉,将一滴溶液滴入浅盘中,将玻璃板放在浅盘上获取油膜形状,最后用已知边长的坐标纸上的油膜形状来计算油膜的总面积,故正确的操作顺序为④①②⑤③;(2)一滴油酸酒精溶液的体积为V=1 cm3300×50=SD,其中S=0.13 m2,故油酸分子直径D =V S =1×10-6m 3300×50×0.13 m 2=5×10-10m. 答案:(1)④①②⑤③ (2)5×10-102.(1)现有按酒精与油酸的体积比为m ∶n 配制好的油酸酒精溶液,用滴管从量筒中取体积为V 的该种溶液,让其自由滴出,全部滴完共N 滴.把一滴这样的溶液滴入盛水的浅盘中,由于酒精溶于水,油酸在水面上展开,稳定后形成单分子油膜的形状如图所示,已知坐标纸上每个小方格面积为S .根据以上数据可估算出油酸分子直径为d =________;(2)若已知油酸的密度为ρ,阿伏加德罗常数为N A ,油酸的分子直径为d ,则油酸的摩尔质量为________.解析:(1)一滴油酸酒精溶液里含油酸的体积为:V 1=nV m +n N,油膜的总面积为8S ; 则油膜的厚度即为油酸分子直径,即d =V 18S =nV 8S m +n N(2)一个油酸分子的体积:V ′=16πd 3,则油酸的摩尔质量为M =ρN A V ′=16πρN A d 3. 答案:(1)nV 8S m +n N (2)πρN A d 363.在“用油膜法估测分子的大小”的实验中,所用油酸酒精溶液的浓度为每104mL 溶液中有纯油酸6 mL ,用注射器测得1 mL 上述溶液为75滴.把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用彩笔在玻璃板上描出油膜的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图所示,坐标中正方形方格的边长为1 cm.则(1)油酸薄膜的面积是________cm 2.(2)每滴油酸酒精溶液中含有纯油酸的体积是________mL.(取一位有效数字)(3)按以上实验数据估测出油酸分子直径约为________m .(取一位有效数字)解析:(1)根据数方格数的原则“多于半个的算一个,不足半个的舍去”可查出共有115个方格,故油膜的面积:S =115×1 cm 2=115 cm 2.(2)一滴油酸酒精溶液的体积:V ′=175mL ,一滴油酸酒精溶液中含纯油酸的体积: V =6104V ′=8×10-6mL. (3)油酸分子的直径:d =V S =8×10-12115×10-4 m =7×10-10 m. 答案:(1)115±3 (2)8×10-6 (3)7×10-10课时规范训练[基础巩固题组]1.(多选)以下关于分子动理论的说法中正确的是( )A .物质是由大量分子组成的B .-2 ℃时水已经结为冰,部分水分子已经停止了热运动C .随分子间距离的增大,分子势能可能先减小后增大D .分子间的引力与斥力都随分子间距离的增大而减小解析:选ACD.物质是由大量分子组成的,A 正确;分子是永不停息地做无规则运动的,B 错误;在分子间距离增大时,如果先是分子力做正功,后是分子力做负功,则分子势能是先减小后增大的,C 正确;分子间的引力与斥力都随分子间距离的增大而减小,但斥力变化得快,D 正确.2.下列叙述正确的是( )A .只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B .只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积C .悬浮在液体中的固体颗粒越大,布朗运动就越明显D .当分子间的距离增大时,分子间的引力变大而斥力减小解析:选A.水的摩尔质量除以水分子的质量就等于阿伏加德罗常数,选项A 正确;气体分子间的距离很大,气体的摩尔体积除以阿伏加德罗常数得到的不是气体分子的体积,选项B 错误;布朗运动与固体颗粒大小有关,颗粒越大,布朗运动越不明显,选项C 错误;当分子间距离增大时,分子间的引力和斥力都减小,选项D 错误.3.(多选)1 g 100 ℃的水和1 g 100 ℃的水蒸气相比较,下列说法正确的是( ) A.分子的平均动能和分子的总动能都相同B.分子的平均动能相同,分子的总动能不同C.内能相同D.1 g 100 ℃的水的内能小于1 g 100 ℃的水蒸气的内能解析:选AD.温度相同则它们的分子平均动能相同;又因为1 g水和1 g水蒸气的分子数相同,因而它们的分子总动能相同,A正确、B错误;当100 ℃的水变成100 ℃的水蒸气时,分子间距离变大,分子力做负功、分子势能增加,该过程吸收热量,所以 1 g 100 ℃的水的内能小于1 g 100 ℃的水蒸气的内能,C错误、D正确.4.(多选)下列关于布朗运动的说法,正确的是( )A.布朗运动是液体分子的无规则运动B.液体温度越高,悬浮粒子越小,布朗运动越剧烈C.布朗运动是由于液体各个部分的温度不同而引起的D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的解析:选BD.布朗运动是悬浮颗粒的无规则运动,A错误.温度越高、颗粒越小,布朗运动越剧烈,B正确.布朗运动是由液体分子撞击的不平衡引起的,间接反映了液体分子的无规则运动,C错误、D正确.5.(多选)下列说法正确的是( )A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.分子势能随着分子间距离的增大,可能先减小后增大D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素E.当温度升高时,物体内每一个分子热运动的速率一定都增大解析:选ACD.根据布朗运动的定义,显微镜下观察到墨水中的小炭粒在不停地做无规则运动,不是分子运动,是小炭粒的无规则运动.但却反映了小炭粒周围的液体分子运动的无规则性,A正确.分子间的相互作用力随着分子间距离的增大,可能先增大后减小,也可能一直减小,B错误.由于分子间的距离不确定,故分子势能随着分子间距离的增大,可能先减小后增大,也可能一直增大,C正确.由扩散现象可知,在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素,D正确.当温度升高时,分子的热运动加剧,但不是物体内每一个分子热运动的速率都增大,E错误.6.如图所示是分子间作用力和分子间距离的关系图线,关于图线下面说法正确的是( )A.曲线a是分子间引力和分子间距离的关系曲线B.曲线b是分子间作用力的合力和分子间距离的关系曲线C.曲线c是分子间斥力和分子间距离的关系曲线D.当分子间距离r>r0时,曲线b对应的力先减小,后增大解析:选B.在F-r图象中,随着距离的增大,斥力比引力变化得快,所以a为斥力曲线,c为引力曲线,b为合力曲线,故A、C错误,B正确;当分子间距离r>r0时,曲线b 对应的力先增大,后减小,故D错误.7.(多选)当两分子间距为r0时,它们之间的引力和斥力大小相等.关于分子之间的相互作用,下列说法正确的是( )A.当两个分子间的距离等于r0时,分子势能最小B.当两个分子间的距离小于r0时,分子间只存在斥力C.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小D.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力一直增大E.在两个分子间的距离由r=r0逐渐减小的过程中,分子间作用力的合力一直增大解析:选ACE.两个分子间的距离等于r0时,分子力为零,分子势能最小,选项A正确;两分子之间的距离小于r0时,它们之间既有引力又有斥力的作用,而且斥力大于引力,作用力表现为斥力,选项B错误;当分子间距离等于r0时,它们之间引力和斥力的大小相等、方向相反,合力为零,当两个分子间的距离由较远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小,表现为引力,选项C正确,D错误;两个分子间的距离由r=r0开始减小的过程中,分子间作用力的合力一直增大,表现为斥力,选项E正确.8.在做“用油膜法估测分子的大小”的实验中:(1)关于油膜面积的测量方法,下列说法中正确的是( )A.油酸酒精溶液滴入水中后,要立刻用刻度尺去量油膜的面积B.油酸酒精溶液滴入水中后,要让油膜尽可能地散开,再用刻度尺去量油膜的面积C.油酸酒精溶液滴入水中后,要立即将油膜的轮廓画在玻璃板上,再利用坐标纸去计算油膜的面积D.油酸酒精溶液滴入水中后,要让油膜尽可能散开,等到状态稳定后,再把油膜的轮廓画在玻璃板上,用坐标纸去计算油膜的面积(2)实验中,将1 cm 3的油酸溶于酒精,制成200 cm 3的油酸酒精溶液,又测得1 cm 3的油酸酒精溶液有50滴,现将1滴溶液滴到水面上,水面上形成0.2 m 2的单分子薄层,由此可估算油酸分子的直径d =________ m.解析:(1)在做“用油膜法估测分子的大小”的实验中,油酸酒精溶液滴在水面上,油膜会散开,待稳定后,再在玻璃板上画下油膜的轮廓,用坐标纸计算油膜面积,故选D.(2)一滴油酸酒精溶液里含纯油酸的体积V =1200×150 cm 3=10-10 m 3.油酸分子的直径d =V S =10-100.2m =5×10-10 m. 答案:(1)D (2)5×10-10[综合应用题组]9.(多选)如图所示,纵坐标表示两个分子间引力、斥力的大小,横坐标表示两个分子间的距离,图中两条曲线分别表示两分子间引力、斥力的大小随分子间距离的变化关系,e 为两曲线的交点,则下列说法中正确的是( )A .ab 为斥力曲线,cd 为引力曲线,e 点横坐标的数量级为10-10 m B .ab 为引力曲线,cd 为斥力曲线,e 点横坐标的数量级为10-10 m C .若两个分子间距离增大,则分子势能也增大D .由分子动理论可知,温度相同的氢气和氧气,分子平均动能相同E .质量和温度都相同的氢气和氧气(视为理想气体),氢气的内能大解析:选BDE.分子引力和分子斥力都会随着分子间距离的增大而减小,只是斥力减小得更快,所以当分子间距离一直增大,最终分子力表现为引力,即ab 为引力曲线,cd 为斥力曲线,二者相等即平衡时分子距离数量级为10-10 m ,A 错误,B 正确.若两个分子间距离增大,如果分子力表现为引力,则分子力做负功,分子势能增大,若分子力表现为斥力,分子力做正功,分子势能减小,C 错误.分子平均动能只与温度有关,即温度相等时,氢气和氧气分子平均动能相等,D 正确,若此时质量相同,则氢气分子数较多,因此氢气内能大,E 正确.10.近期我国多个城市的PM2.5数值突破警戒线,受影响最严重的是京津冀地区,雾霾笼罩,大气污染严重.PM2.5是指空气中直径等于或小于2.5微米的悬浮颗粒物,其漂浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是( )。
第3节热力学定律与能量守恒定律知识点1 热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.3.ΔU=W+Q中正、负号法则物理量W Q ΔU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的.”2.用熵的概念表示热力学第二定律在任何自然过程中,一个孤立系统的总熵不会减小(选填“增大”或“减小”).3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行.知识点3 能量守恒定律和两类永动机1.能量守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.两类永动机(1)第一类永动机:不消耗任何能量,却源源不断地对外做功的机器.违背能量守恒定律,因此不可能实现.(2)第二类永动机:从单一热源吸收热量并把它全部用来对外做功,而不引起其他变化的机器.违背热力学第二定律,不可能实现.热力学第一定律的理解和应用1.Δ过程名称公式内能变化物理意义绝热Q=0ΔU=W 外界对物体做的功等于物体内能的增加等容W=0Q=ΔU 物体吸收的热量等于物体内能的增加等温ΔU=0W=-Q 外界对物体做的功,等于物体放出的热量两种方式做功热传递内能变化情况外界对物体做功,物体的内能增加;物体对外界做功,物体的内能减少物体吸收热量,内能增加;物体放出热量,内能减少从运动形式上看做功是宏观的机械运动向物体的微观分子热运动的转化热传递则是通过分子之间的相互作用,使同一物体的不同部分或不同物体间的分子热运动发生变化,是内能的转移区别从能量的角度看做功是其他形式的能与内能相互转化的过程不同物体间或同一物体不同部分之间内能的转移能的性质变化情况能的性质发生了变化能的性质不变联系做一定量的功或传递一定量的热量在改变内能的效果上是相同的1.(2017·桂林模拟)一定质量的理想气体从状态a开始,经历三个过程ab、bc、ca 回到原状态,其VT图象如图1331所示,p a、p b、p c分别表示状态a、b、c的压强,下列判断正确的是( )图1331A.过程ab中气体一定吸热B.p c=p b>p aC.过程bc中分子势能不断增大D.过程bc中每一个分子的速率都减小E.过程ca中气体吸收的热量等于对外界做的功ABE[由题图知,该理想气体从a到b为等容变化,外界对气体做功为零,温度升高,内能增大,根据ΔU=Q+W,可知气体一定吸热,选项A正确;从b到c为等压变化,故p c =p b,而从a到b为等容变化,根据查理定律p=CT,可知温度升高,压强变大,故p b>p a,选项B正确;理想气体没有分子势能,选项C错误;从b到c,温度降低,分子的平均动能降低,平均速率减小,但不是每一个分子的速率都减小,选项D错误;从c到a,气体发生等温变化,内能不变,气体对外界做功,吸收热量,根据ΔU=Q+W,气体吸收的热量等于对外界做的功,选项E正确.]2.一定质量的气体,在从状态1变化到状态2的过程中,吸收热量280 J,并对外做功120 J,试问:(1)这些气体的内能发生了怎样的变化?(2)如果这些气体又返回原来的状态,并放出了240 J热量,那么在返回的过程中是气体对外界做功,还是外界对气体做功?做功多少?【解析】(1)由热力学第一定律可得ΔU=W+Q=-120 J+280 J=160 J,气体的内能增加了160 J.(2)由于气体的内能仅与状态有关,所以气体从状态2回到状态1的过程中内能的变化应等于从状态1到状态2的过程中内能的变化,则从状态2到状态1的内能应减少160 J,即ΔU′=-160 J,又Q′=-240 J,根据热力学第一定律得:ΔU′=W′+Q′,所以W′=ΔU′-Q′=-160 J-(-240 J)=80 J,即外界对气体做功80 J.【答案】(1)增加了160 J (2)外界对气体做功80 J如果研究对象是理想气体,则由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化.热力学第二定律的理解及应用(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.3.热力学过程方向性实例(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地且不能完全转化为热.(3)气体体积V1能自发膨胀到不能自发收缩到气体体积V2(V1<V2).(4)不同气体A和B能自发混合成不能自发分离成混合气体AB.4.两类永动机的比较分类第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,违背热力学第二定律1.下列关于热力学第二定律的说法正确的是( )A.所有符合能量守恒定律的宏观过程都能真实发生B.一切与热现象有关的宏观自然过程都是不可逆的C.机械能可以全部转化为内能,而内能无法全部用来做功以转化成机械能而不引起其他变化D.气体向真空的自由膨胀是可逆的E.热运动的宏观过程会有一定的方向性BCE[符合能量守恒定律但不符合热力学第二定律的宏观过程不能发生,选项A错;气体向真空的自由膨胀是不可逆的,选项D错.]2.(2017·唐山二模)根据热力学定律,下列说法正确的是( )A.第二类永动机违反能量守恒定律,因此不可能制成B .效率为100%的热机是不可能制成的C .电冰箱的工作过程表明,热量可以从低温物体向高温物体传递D .从单一热源吸收热量,使之完全变为功是提高机械效率的常用手段E .吸收了热量的物体,其内能也不一定增加BCE [第二类永动机不可能制成,是因它违反了热力学第二定律,故A 错误;效率为100%的热机是不可能制成的,故B 正确;电冰箱的工作过程表明,热量可以从低温物体向高温物体传递,故C 正确;从单一热源吸收热量,使之完全变为功是不可能实现的,故D 错误;改变内能的方式有做功和热传递,吸收了热量的物体,其内能也不一定增加,E 正确.]气体实验定律与热力学定律的综合[母题] (2017·潍坊模拟)如图1332所示在绝热气缸内,有一绝热轻活塞封闭一定质量的气体,开始时缸内气体温度为27 ℃,封闭气柱长9 cm ,活塞横截面积S =50 cm 2.现通过气缸底部电阻丝给气体加热一段时间,此过程中气体吸热22 J ,稳定后气体温度变为127 ℃。
2019年高考物理大一轮复习第13章选考部分第3讲热力学定律学案新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理大一轮复习第13章选考部分第3讲热力学定律学案新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理大一轮复习第13章选考部分第3讲热力学定律学案新人教版的全部内容。
第三讲热力学定律1.判断正误(1)自然界进行的涉及热现象的宏观过程都具有方向性,是不可逆的.()(2)功转变为热的实际宏观过程一定是可逆过程.( )(3)空调既能制热又能制冷,说明热传递不存在方向性.( )(4)不断改进工艺,热机的效率可能达到100%。
()(5)热量不可以自发地从低温物体传递到高温物体,是因为违背了热力学第一定律.()答案:(1)√(2)×(3)×(4)×(5)×2.一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少1.3×105 J,则此过程()A.气体从外界吸收热量2。
0×105 JB.气体向外界放出热量2.0×105 JC.气体从外界吸收热量6.0×104 JD.气体向外界放出热量6.0×104 J答案:B3.木箱静止于水平地面上,现在用一个80 N的水平推力推动木箱前进10 m,木箱受到的摩擦力为60 N,则转化为木箱与地面系统的内能U和转化为木箱的动能E k分别是()A.U=200 J,E k=600 JB.U=600 J,E k=200 JC.U=600 J,E k=800 JD.U=800 J,E k=200 J答案:B4.(人教版选修3-3P61第2题改编)(多选)下列现象中能够发生的是( )A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体答案:CD考点一热力学第一定律与能量守恒定律1.对公式符号W QΔU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少2①若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加.②若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加.③若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.1.(2015·北京卷)下列说法正确的是()A.物体放出热量,其内能一定减小B.物体对外做功,其内能一定减小C.物体吸收热量,同时对外做功,其内能可能增加D.物体放出热量,同时对外做功,其内能可能不变解析:选C 根据热力学第一定律ΔU=W+Q可知,若外界对物体做功,物体放出热量,内能可能增加,选项A错误;物体对外界做功,若同时吸收热量,内能可能增加,选项B错误,C正确;物体放出热量,同时对外做功,其内能一定减小,选项D错误.2.(2016·全国卷Ⅲ)(多选)关于气体的内能,下列说法正确的是( )A.质量和温度都相同的气体,内能一定相同B.气体温度不变,整体运动速度越大,其内能越大C.气体被压缩时,内能可能不变D.一定量的某种理想气体的内能只与温度有关E.一定量的某种理想气体在等压膨胀过程中,内能一定增加解析:选CDE 物体内大量分子做无规则运动具有的动能和分子势能的总和叫内能.质量和温度都相同的气体,内能不一定相同,其内能还与气体的体积和压强等有关,故选项A错误;气体内能的大小与气体的质量和温度等有关,而与气体的运动速度无关,故宏观速度增大,不会影响内能,选项B错误;气体被压缩时外界对气体做功,若在此过程中同时放出热量,根据ΔU =W+Q可知,内能可能不变,选项C正确;由于理想气体是理想化的物理模型,其内能只考虑分子动能,表现在宏观上只与温度有关,选项D正确;一定量的某种理想气体在等压膨胀过程中,温度一定升高,内能一定增加,选项E 正确.考点二热力学第二定律1(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.3.热力学过程方向性实例:①高温物体错误!低温物体②功错误!热③气体体积V1错误!气体体积V2(较大)④不同气体A和B错误!混合气体AB4.热力学第一、第二定律的比较热力学第一定律热力学第二定律定律揭示的问题它从能量守恒的角度揭示了功、热量和内能改变量三者的定量关系它指出自然界中出现的过程是有方向性的机械能和内能的转化当摩擦力做功时,机械能可以全部转化为内能内能不可能在不引起其他变化的情况下完全变成机械能表述形式只有一种表述形式有多种表述形式两定律的关系在热力学中,两者既相互独立,又互为补充,共同构成了热力学知识的理论基础3.(2018·辽宁锦州联考)(多选)下列叙述中正确的是( )A.热力学第二定律可描述为“不可能使热量由低温物体传递到高温物体”B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数D.由于液体表面分子间距离大于液体内部分子间距离,液体表面分子间表现为引力,所以液体表面具有收缩的趋势E.用活塞压缩汽缸内的理想气体,对气体做了3。
(江苏专用)2019版高考物理大一轮复习第13单元热学作业手册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2019版高考物理大一轮复习第13单元热学作业手册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2019版高考物理大一轮复习第13单元热学作业手册的全部内容。
第13单元热学课时作业(三十二)第32讲分子动理论内能用油膜法估测分子的大小时间/ 40分钟基础巩固1。
(多选)下列叙述正确的是( )A.扩散现象说明了分子在不停地做无规则运动B.布朗运动就是液体分子的运动C.分子间距离增大,分子间的引力和斥力一定都减小D。
物体的温度越高,分子运动越激烈,每个分子的动能一定都越大E。
两个铅块压紧后能连在一起,说明分子间有引力2。
(多选)下列说法中正确的是()A。
液体分子的无规则运动称为布朗运动B.液体中悬浮微粒越小,布朗运动越显著C.布朗运动是液体分子热运动的反映D.分子间的引力总是大于斥力E。
分子间同时存在引力和斥力3。
(多选)[2017·山东淄阳一中模拟]已知下列物理量,不能算出氢气密度的是() A。
氢气的摩尔质量和阿伏伽德罗常数B.氢气分子的体积和氢气分子的质量C.氢气的摩尔质量和氢气的摩尔体积D。
氢气分子的质量和氢气的摩尔体积及阿伏伽德罗常数E。
氢气的摩尔体积和阿伏伽德罗常数4.(多选)[2017·西安一中模拟]关于分子动理论,下列说法中正确的是()A。
显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性B.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素C.当分子间的引力大于斥力时,宏观物体呈现固态;当分子间的引力小于斥力时,宏观物体呈现气态D.随着分子间距离的增大,分子间的相互作用力一定先减小后增大E.随着分子间距离的增大,分子势能可能先减小后增大5。
(新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练的全部内容。
第二节固体、液体和气体(建议用时:60分钟)一、选择题1.下列说法正确的是()A.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,这是因为油脂使水的表面张力增大B.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形,这是表面张力作用的结果C.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关D.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开,这是由于水膜具有表面张力解析:选BC。
水在油脂上不浸润,在干净的玻璃板上浸润,A错误;当宇宙飞船绕地球做匀速圆周运动时,里面的所有物体均处于完全失重状态,此时自由飘浮的水滴在表面张力作用下呈现球形,B正确;对于浸润液体,在毛细管中上升,对于非浸润液体,在毛细管中下降,C正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开,是大气压的作用,D错误.2.(2018·贵阳摸底)以下说法中正确的是()A.金刚石、食盐都有确定的熔点B.饱和汽的压强与温度无关C.一些小昆虫可以停在水面上是由于液体表面张力的作用D.多晶体的物理性质表现为各向异性E.当人们感觉空气干燥时,空气的相对湿度一定较小解析:选ACE.金刚石、食盐都是晶体,有确定的熔点,选项A正确;饱和汽的压强与温度有关,选项B错误;因为液体表面张力的存在,有些小昆虫能停在水面上,选项C正确;多晶体的物理性质表现为各向同性,选项D错误;在一定温度条件下,相对湿度越小,水蒸发得也就越快,人就越感到干燥,故当人们感到干燥时,空气的相对湿度一定较小,选项E正确.3.(2018·广东联考)下列说法正确的是()A.气体的内能是分子间势能B.气体的温度变化时,气体分子的平均动能一定改变C.晶体有固定的熔点且物理性质各向异性D.金属在各个方向具有相同的物理性质,但它是晶体解析:选BD.由热力学知识知:气体的内能是分子热运动的动能与分子间势能之和,A错误;气体的温度变化时,气体分子的平均动能变化,B正确;晶体分为单晶体和多晶体,单晶体具有各向异性,多晶体是各向同性的,C错误;通常金属在各个方向具有相同的物理性质,它为多晶体,D正确.4.(2018·武汉部分学校调研)下列说法正确的是()A.用油膜法可以估测分子的质量B.石英、云母、明矾、食盐等是晶体,玻璃、蜂蜡、松香、橡胶等是非晶体C.从微观角度来看,气体压强的大小跟气体分子的平均动能以及分子的密集程度有关D.英国物理学家焦耳通过实验测定了外界对系统做功和传热对于系统状态的影响,以及功与热量的相互关系解析:选BCD。
第36讲热力学定律与能量守恒1.热力学第一定律①内容:一个热力学系统的__内能增量__等于外界向它传递的热量与外界对它所做的功的和.②表达式:ΔU__Q+W__.③符号法则2.热力学第二定律的三种表述(1)克劳修斯表述:热量不能__自发地__从低温物体传到高温物体.(2)开尔文表述:不可能从__单一__热库吸收热量,使之完全变成功,而__不产生__其他影响.或表述为“第二类永动机不可能制成”.(3)用熵的概念进行表述:在任何自然过程中,一个孤立系统的总熵不会__减小__(热力学第二定律又叫做熵增加原理).3.能量守恒定律(1)内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式__转化__为另一种形式,或者从一个物体__转移__到别的物体,在转化或转移的过程中,能量的__总和__保持不变.(2)能源的利用①存在能量耗散和__品质降低__.②重视利用能源时对__环境__的影响.③推进开发新能源,如__太阳能__、生物能、风能、潮汐能等.1.判断正误(1)做功和热传递的实质是相同的.( ×)(2)绝热过程中,外界压缩气体做功20 J,气体的内能一定减少20 J.( ×)(3)物体吸收热量,同时对外做功,内能可能不变.( √)(4)在给自行车打气时,会发现打气筒的温度升高,这是因为外界对气体做功.( √)(5)自由摆动的秋千摆动幅度越来越小,能量正在消失.( ×)(6)利用河水的能量使船逆水航行的设想,符合能量守恒定律.( √)(7)热机中,燃气的内能可以全部变为机械能而不引起其他变化.( ×)一热力学第一定律1.改变内能的两种方式的比较2.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.3.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;(3)若过程的始、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.理想气体内能变化的判定对一定质量的理想气体,由于无分子势能,其内能只包含分子无规则热运动的动能,这时内能只与温度有关,故判定一定质量的理想气体内能是否变化,应看温度是否发生了变化,与体积无关.[例1](2017·全国卷Ⅲ)如图,一定质量的理想气体从状态a出发,经过等容过程ab 到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到初态a.下列说法正确的是__ABD__.(选填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分)A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量E.在过程ca中气体从外界吸收热量解析(1)由p-V图可知,在过程ab中体积不变,气体不对外做功,W=0,压强增大,温度升高,气体内能增加,选项A正确,C错误;过程bc为等温变化过程,理想气体内能不变,而体积增大,气体对外做功,W<0,由热力学第一定律ΔU=W+Q知Q>0,气体从外界吸收热量,选项D正确;过程ca为等压变化过程,体积减小,外界对气体做功,W>0,由盖—吕萨克定律知气体温度降低,内能减小,由ΔU=W+Q知Q<0,气体放出热量,选项B正确,E错误.二热力学第二定律1.热力学过程方向性实例(1)高温物体 热量Q 能自发传给热量Q 不能自发传给低温物体(2)功 能自发地完全转化为不能自发地且不能完全转化为热量(3)气体体积V 1 能自发膨胀到不能自发收缩到气体体积V 2(较大)(4)不同气体A 和B 能自发混合成不能自发分离成混合气体AB2.热力学第一定律和热力学第二定律的关系热力学第一定律是和热现象有关的物理过程中能量守恒的特殊表达形式及热量与内能改变的定量关系.而第二定律指明了能量转化与守恒能否实现的条件和过程进行的方向,指出了一切变化过程的自然发展是不可逆的,除非靠外界影响.所以二者相互联系,又相互补充.3.两类永动机的比较时,强迫制冷剂在冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.(1)(多选)下列说法正确的是!!! BC ###.A .热量可以自发地从冰箱内传到冰箱外B .电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C .电冰箱的工作原理不违反热力学第一定律D .电冰箱的工作原理违反热力学第一定律(2)电冰箱的制冷系统从冰箱内吸收的热量与释放到外界的热量相比,有怎样的关系? 解析 (1)热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故选项C 正确,D 错误;由热力学第二定律可知,热量不能自发地从低温物体传到高温物体,除非有外界的影响或帮助,电冰箱把热量从低温的内部传到高温的外部,需要压缩机的帮助并消耗电能,故选项B 正确,A 错误.(2)由热力学第一定律可知,电冰箱制冷系统从冰箱内吸收了热量,同时消耗了电能,释放到外界的热量比从冰箱内吸收的热量多.答案(2)见解析热力学第二定律的涵义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.1.(多选)根据热力学定律,下列说法中正确的是( AB)A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量C.科技的进步可以使内燃机成为单一热源的热机D.对能源的过度消耗将使自然界的能量不断减少,形成“能源危机”解析在一定条件下,热量可以从低温物体传给高温物体,选项A正确;空调机工作过程中,电流做功产生热,所以向室外放热多,从室内吸热少,选项B正确;选项C中的说法违反热力学第二定律,选项C错误;对能源的过度消耗会造成可以利用的能量减少,而总的能量是守恒的,选项D错误.2.用隔板将一容器隔成A和B两部分,A中盛有一定量的气体,B为真空(如图甲所示),现把隔板抽去,A中的气体将自动充满整个容器(如图乙所示),这个过程称为气体的自由膨胀.则关于气体的自由膨胀下列说法中正确的是 ( D)A.在自由膨胀过程中,所有气体分子的运动方向相同B.在自由膨胀过程中,只要把握好隔板插入的时机,全部气体就能到达B部分C.气体充满整个容器后,只要时间足够长,还能全部自动回到A部分D.气体充满整个容器后,B部分中的某些气体分子有可能再回到A部分解析气体分子在永不停息地做无规则运动,在自由膨胀过程中也不例外,选项A错误;在自由膨胀过程中,气体分子将充满所能达到的空间,即整个容器,选项B错误;热力学第二定律指出具有大量分子参与的宏观过程都具有方向性,所以选项C错误;气体充满整个容器后,气体分子朝各个方向运动的机会均等,所以B部分中的某些气体分子有可能再回到A 部分,选项D正确.3.(2017·福建泉州模拟)一定质量的理想气体从状态A 变化到状态B ,再变化到状态C ,其状态变化过程的p V 图象如图所示.已知该气体在状态A 时的温度为27 ℃.求:(1)该气体在状态B 时的温度;(2)该气体从状态A 到状态C 的过程中与外界交换的热量.解析 (1)对于理想气体:A →B 过程,由查理定律有p A T A =p B T B ,得T B =100 K ,所以t B =T B -273 ℃=-173 ℃.(2)B →C 过程,由盖-吕萨克定律有V B T B =V C T C,得T C =300 K ,所以t C =T C -273 ℃=27 ℃,由于状态A 与状态C 温度相同,气体内能相等,而A →B 过程中等容变化,气体对外不做功,B →C 过程中气体体积膨胀对外做功,即从状态A 到状态C 气体对外做功,故气体应从外界吸收热量. Q =p ΔV =1×105×(3×10-3-1×10-3)J =200 J .答案 (1)-173℃ (2)吸收热量200 J4.(多选))关于一定量的气体,下列叙述正确的是( AD )A .气体吸收的热量可以完全转化为功B .气体体积增大时,其内能一定减少C .气体从外界吸收热量,其内能一定增加D .外界对气体做功,气体内能可能减少解析 由热力学第二定律知吸收的热不能自发地全部转化为功,但通过其他方法可以全部转化为功,故选项A 正确;气体体积增大,对外做功,若同时伴随吸热,其内能不一定减少,选项B 错误;气体从外界吸热,若同时伴随对外界做功,其内能不一定增加,选项C 错误;外界对气体做功,若同时气体放热,其内能可能减少,选项D 正确.[例1](6分)(多选)如图所示,一绝热容器被隔板K 隔开成a 、b 两部分.已知a 内有一定量的稀薄气体,b 内为真空.抽开隔板K 后,a 内气体进入b ,最终达到平衡状态.在此过程中( )A .气体对外界做功,内能减少B .气体不做功,内能不变C .气体压强变小,温度不变D .气体压强变大,温度不变E .单位时间内撞击容器壁的分子数减少[答题送检]来自阅卷名师报告[规范答题][解析] 绝热容器内的稀薄气体与外界没有热传递,Q =0,稀薄气体向真空扩散时气体没有做功,W =0,根据热力学第一定律稀薄气体的内能不变,则温度不变,稀薄气体扩散体积增大,根据玻意耳定律可知,气体的压强必然变小,故选项A 、D 错误,B 、C 正确;温度不变,分子的平均动能不变,压强减小,说明单位时间内撞击容器壁的分子数减少,故E 正确.[答案] BCE1.(2017·全国卷Ⅱ)(多选)如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是( ABD )A .气体自发扩散前后内能相同B .气体在被压缩的过程中内能增大C .在自发扩散过程中,气体对外界做功D .气体在被压缩的过程,外界对气体做功E .气体在被压缩的过程,气体分子的平均动能不变解析 抽开隔板,气体自发扩散过程中,气体对外界不做功,与外界没有热交换,因此气体的内能不变,选项A正确,C错误;气体在压缩的过程中,外界对气体做正功,选项D 正确;由于气体与外界没有热交换,根据热力学第一定律可知,气体在被压缩的过程中内能增大,因此气体的温度升高,气体分子的平均动能增大,选项B正确,E项错误.2.(多选)如图所示,是某气体状态变化的p-V图象,则下列说法正确的是( BCD)A.气体做的是等温变化B.从A到B气体的压强一直减小C.从A到B气体的体积一直增大D.气体的三个状态参量一直都在变解析由等温线的特点可知图中所示AB图线不是等温线,AB过程不是等温变化,选项A错误;从AB图线可知气体从A状态变为B状态的过程中,压强p在逐渐减小,体积V在不断增大,则选项B、C正确.又因为该过程不是等温过程,所以气体的三个状态参量一直都在变化,选项D正确.3.(2017·福建福州模拟)如图所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸顶的距离为h=10 cm,活塞可在汽缸内无摩擦滑动且不漏气,大气压强为p0=1.0×105Pa.求:(1)此时桌面对汽缸的作用力F N;(2)现通过电热丝给气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值.解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S,得F N=(p0-p)S=50 N.(2)设温度升高至T时,活塞与汽缸顶的距离为H,则气体对外界做功W=p0ΔV=p0S(H -h),由热力学第一定律得ΔU=Q-W,解得H=12 cm.气体温度从T0升高到T的过程,由理想气体状态方程,得pShT0=p0SHT,解得T=p0HphT0=720 K.答案 (1)50 N (2)720 K4.(2017·江苏南京模拟)如图所示,竖直放置的气缸内壁光滑,横截面积为S =10-3m 2,活塞的质量为m =2 kg ,厚度不计.在A 、B 两处设有限制装置,使活塞只能在A 、B 之间运动,B 下方气缸的容积为1.0×10-3m 3,A 、B 之间的容积为2.0×10-4m 3,外界大气压强p 0=1.0×105 Pa.开始时活塞停在B 处,缸内气体的压强为0.9p 0,温度为27 ℃,现缓慢加热缸内气体,直至327 ℃.求:(1)活塞刚离开B 处时气体的温度t 2;(2)缸内气体最后的压强.解析 (1)活塞刚离开B 处时,设气体的压强为p 2,由二力平衡可得p 2=p 0+mg S,解得p 2=1.2×105 Pa , 由查理定律得0.9p 0273+t 1=p 2273+t 2,解得t 2=127 ℃. (2)设活塞最终移动到A 处,缸内气体最后的压强为p 3,由理想气体状态方程得p 1V 0273+t 1=p 3V 3273+t 3,解得p 3=1.5×105Pa , 因为p 3>p 2,故活塞最终移动到A 处的假设成立.答案 (1)127 ℃ (2)1.5×105 Pa1.(多选)关于热力学定律,下列说法正确的是( BDE )A .气体吸热后温度一定升高B .对气体做功可以改变其内能C .理想气体等压膨胀过程一定放热D .热量不可能自发地从低温物体传到高温物体E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡解析 根据热力学第一定律,气体吸热的同时若对外做功,则内能不一定增大,温度不一定升高,选项A 错误.对气体做功可以改变其内能,选项B 正确;理想气体等压膨胀过程,对外做功,由理想气体状态方程可知,气体温度升高,内能增大,故气体一定吸热,选项C 错误;根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,选项D 正确;根据热平衡定律,如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,选项E 正确.2.(多选)一定量的理想气体从状态a 开始,经历等温或等压过程ab 、bc 、cd 、da 回到原状态,其p T 图象如图所示,其中对角线ac 的延长线过原点O .下列判断正确的是!!! ABE ###.A .气体在a 、c 两状态的体积相等B .气体在状态a 时的内能大于它在状态c 时的内能C .在过程cd 中气体向外界放出的热量大于外界对气体做的功D .在过程da 中气体从外界吸收的热量小于气体对外界做的功E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功解析 由pV T =k 可知,P T 图象中过原点的一条倾斜的直线是等容线,选项A 正确;气体从状态c 到状态d 的过程温度不变,内能不变,从状态d 到状态a 的过程温度升高,内能增加,选项B 正确;由于过程cd 中气体的内能不变,根据热力学第一定律可知,气体向外放出的热量等于外界对气体做的功,选项C 错误;在过程da 中气体内能增加,气体从外界吸收的热量大于气体对外界做的功,选项D 错误;过程bc 中,外界对气体做的功W bc =p b (V b -V c )=p b V b -p c V c ,过程da 中气体对外界做的功W da =p d (V a -V d )=p a Va -p d V d ,由于p b V b =p a V a ,p c V c =p d V d ,因此过程bc 中外界对气体做的功与过程da 中气体对外界做的功相等,选项E 正确.3.(多选)一定量的理想气体从状态a 开始,经历三个过程ab 、bc 、ca 回到原状态.其p -T 图象如图所示.下列判断正确的是( ADE )A .过程ab 中气体一定吸热B .过程bc 中气体既不吸热也不放热C .过程ca 中外界对气体所做的功等于气体所放的热D .a 、b 和c 三个状态中,状态a 分子的平均动能最小E .b 和c 两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同 解析 对封闭气体,由题图可知a →b 过程,气体体积V 不变,没有做功,而温度T 升高,则为吸热过程,选项A 正确.b →c 过程为等温变化,压强减小,体积增大,对外做功,则为吸热过程,选项B 错误;c →a 过程为等压变化,温度T 降低,内能减少,体积V 减小,外界对气体做功,依据W +Q =ΔE ,外界对气体所做的功小于气体所放的热,选项C 错误;温度是分子平均动能的标志,T a <T b =T c ,故选项D 正确;同种气体的压强由气体的分子密度ρ和温度T 决定,由题图可知T b =T c ,p b >p c ,显然选项E 正确.4.某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么( D )A .外界对胎内气体做功,气体内能减小B .外界对胎内气体做功,气体内能增大C .胎内气体对外界做功,内能减小D .胎内气体对外界做功,内能增大解析 车胎体积增大,故胎内气体对外界做功,胎内气体温度升高,故胎内气体内能增大,选项D 正确.5.如图所示,一底面积为S 、内壁光滑的圆柱形容器竖直放置在水平地面上,开口向上,内有两个质量均为m 的相同活塞A 和B ;在A 与B 之间、B 与容器底面之间分别封有一定量的同样的理想气体,平衡时体积均为V .已知容器内气体温度始终不变,重力加速度大小为g ,外界大气压强为p 0.现假设活塞B 发生缓慢漏气,致使B 最终与容器底面接触.求活塞A 移动的距离.解析 A 与B 之间、B 与容器底面之间的气体压强分别为p 1、p 2,在漏气前,对A 分析有p 1=p 0+mg S ,对B 有p 2=p 1+mg S, B 最终与容器底面接触后,A 、B 间的压强为p ,气体体积为V ′,则有p =p 0+mg S, 因为温度始终不变,对于混合气体有(p 1+p 2)V =pV ′,设活塞B 厚度为d ,漏气前A 距离底面的高度为h =2V S +d , 漏气后A 距离底面的高度为h ′=V ′S +d , 联立可得Δh =h ′-h ,联立以上各式化简得Δh =mgV (p 0S +mg )S . 答案 mgV (p 0S +mg )S6.(1)如图甲所示,在斯特林循环的p -V 图象中,一定质量理想气体从状态A 依次经过状态B 、C 和D 后再回到状态A ,整个过程由两个等温和两个等容过程组成.B →C 的过程中,单位体积中的气体分子数目__不变__(选填“增大”“减小”或“不变”).状态A和状态D的气体分子热运动速率的统计分布图象如图乙所示,则状态A对应的是__①__(选填“①”或“②”).(2)如图甲所示,在A→B和D→A的过程中,气体放出的热量分别为4 J和20 J.在B→C 和C→D的过程中,气体吸收的热量分别为20 J和12 J.求气体完成一次循环对外界所做的功.解析(1)从B→C的过程中,气体的体积不变,因此单位体积中气体分子数目不变,从状态D到状态A,气体的体积不变,压强减小,温度降低,分子平均动能减小,因此A状态对应的是①.(2)气体完成一次循环,其内能不变,即ΔU=0,吸收的热量Q=(20+12-4-20) J =8 J,由热力学第一定律ΔU=Q+W得,W=-8 J,则气体对外做功为8 J.答案(2)8 J课时达标第36讲[解密考纲]理解热力学第一定律,知道改变内能的两种方式;知道与热现象有关的宏观物理过程的方向性,了解热力学第二定律;掌握能量守恒定律及应用.1.地球上有很多的海水,它的总质量约为1.4×1018吨,如果这些海水的温度降低0.1℃,将要放出5.8×1023焦耳的热量,有人曾设想利用海水放出的热量使它完全变成机械能来解决能源危机,但这种机器是不能制成的,其原因是( C)A.内能不能转化成机械能B.内能转化成机械能不满足热力学第一定律C.只从单一热源吸收热量并完全转化成机械能的机器不满足热力学第二定律D.上述三种原因都不正确解析内能可以转化成机械能,如热机,选项A错误;内能转化成机械能的过程满足热力学第一定律,即能量守恒定律,选项B错误;热力学第二定律告诉我们:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化,选项C正确,D错误.2.重庆出租车常以天然气作为燃料.加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( B) A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小解析储气罐中气体体积不变,气体不做功,当温度升高时,气体压强增大,气体内能增大,分子平均动能增大;由热力学第一定律可知,气体一定吸热,故选项B 正确.3.一定量的理想气体在某一过程中,从外界吸收热量 2.5×104 J ,气体对外界做功1.0×104 J ,则该理想气体的( D )A .温度降低,密度增大B .温度降低,密度减小C .温度升高,密度增大D .温度升高,密度减小 解析 从外界吸热,Q =2.5×104 J ,对外界做功,W =-1.0×104 J ,由ΔU =Q +W 可得,ΔU =1.5×104 J ,内能增大,这说明温度升高;又由于气体对外界做功,体积增大,由ρ=m V可知,密度减小.选项D 正确.4.(多选)如图为某同学设计的喷水装置.内部装有2 L 水,上部密封1 atm 的空气0.5 L ,保持阀门关闭,再充入1 atm 的空气0.1 L ,设在所有过程中空气可看作理想气体,且温度不变,下列说法正确的有( AC )A .充气后,密封气体压强增加B .充气后,密封气体的分子平均动能增加C .打开阀门后,密封气体对外界做正功D .打开阀门后,不再充气也能把水喷光解析 温度不变,分子平均动能不变,充气后由于气体的质量增大,温度、体积基本不变,气体的压强增大,选项A 正确、B 错误;打开阀门后,水减少,气体膨胀,密封气体对水做正功,选项C 正确;如果水全排出,气体压强为p 3,p 3(2 L +0.5 L)=p 1(0.5 L +0.1 L)得p 3=0.24p 1<p 1,故不再充气不能把水喷光,因为当气压与外界大气压相同时就不再喷水,选项D 错误.5.(多选)关于一定量的气体,下列说法正确的是( ABE )A .气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B .只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C .在完全失重的情况下,气体对容器壁的压强为零D .气体从外界吸收热量,其内能一定增加E .气体在等压膨胀过程中温度一定升高解析 气体体积为气体分子所能达到的空间的体积,而气体分子体积很小,体积之和远小于气体体积,选项A 正确;气体温度反映了分子运动的剧烈程度,分子运动的剧烈程度减弱,温度必然降低,选项B 正确;气体压强是大量气体分子频繁碰撞容器器壁的结果,在完全失重的情况下,气体对器壁仍产生压强,选项C 错误;气体从外界吸收热量,但如果同时对外做功,那么气体的内能不一定增加,选项D 错误;根据气体定律可知,气体在等压膨胀过程中,体积与热力学温度成正比,体积变大,温度升高,选项E 正确.6.如图所示为某种椅子与其升降部分的结构示意图,M 、N 两筒间密闭了一定质量的气体,M 可沿N 的内壁上下滑动,设筒内气体不与外界发生热交换,在M 向下滑动的过程中( A )A .外界对气体做功,气体内能增大B .外界对气体做功,气体内能减小C .气体对外界做功,气体内能增大D .气体对外界做功,气体内能减小解析 M 向下滑动的过程中,气体体积减小,故外界对气体做功,W >0,下滑过程不与外界发生热交换,Q =0,由热力学第一定律ΔU =W +Q 可知内能增大,选项A 正确,选项B 、C 、D 错误.7.如图所示,内壁光滑的圆柱形金属容器内有一个质量为m 、面积为S 的活塞.容器固定放置在倾角为θ的斜面上.一定量的理想气体被密封在容器内,温度为T 0,活塞底面与容器底面平行,距离为h .已知大气压强为p 0,重力加速度为g .(1)容器内气体压强为!!! p 0+mg cos θS###. (2)由于环境温度变化,活塞缓慢下移h 2时气体温度为!!! T 02###,此过程中容器内气体!!!_放热__(选填“吸热”或“放热”),气体分子的平均速率!!!_减小__.(选填“增大”“减小”或“不变”)解析 (1)容器内气体的压强与大气压和活塞的重力有关.活塞对气体产生的压强为p ′=mg cos θS ,则容器内气体的压强p =p 0+p ′=p 0+mg cos θS. (2)环境温度变化,活塞缓慢下移,可认为是等压变化,则V 0T 0=V 1T 1,且V 0=2V 1,解得T 1=T 02.。
第十三章热学[选修3-3][全国卷5年考情分析]阿伏加德罗常数(Ⅰ)液晶的微观结构(Ⅰ)液体的表面张力现象(Ⅰ)饱和蒸气、未饱和蒸气、饱和蒸气压(Ⅰ)能量守恒定律(Ⅰ)中学物理中涉及的国际单位制的基本单位和其他单位,例如摄氏度、标准大气压(Ⅰ)实验十三:用油膜法估测分子的大小第1节分子动理论__内能(1)布朗运动是液体分子的无规则运动。
(×)(2)温度越高,布朗运动越剧烈。
(√)(3)分子间的引力和斥力都随分子间距的增大而增大。
(×)(4)-33 ℃=240 K。
(×)(5)分子动能指的是由于分子定向移动具有的能。
(×)(6)当分子力表现为引力时,分子势能随分子间距离的增大而增大。
(√)(7)内能相同的物体,它们的分子平均动能一定相同。
(×)1.阿伏加德罗常数N A=6.02×1023 mol-1,是联系宏观量和微观量的桥梁。
2.扩散现象和布朗运动都说明分子是永不停息地做无规则运动,且都随温度升高而变得更加剧烈。
3.两分子间距为r0时分子力为零,分子势能最低,但不一定为零。
4.温度是分子平均动能的标志,温度相同时,各种物体分子的平均动能均相同。
突破点(一)微观量的估算1.两种分子模型物质有固态、液态和气态三种情况,不同物态下应将分子看成不同的模型。
(1)固体、液体分子一个一个紧密排列,可将分子看成球形或立方体形,如图所示,分子间距等于小球的直径或立方体的棱长,所以d = 36V π(球体模型)或d =3V (立方体模型)。
(2)气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间。
如图所示,此时每个分子占有的空间视为棱长为d 的立方体,所以d =3V 。
2.宏观量与微观量的转换桥梁作为宏观量的摩尔质量M mol 、摩尔体积V mol 、密度ρ与作为微观量的分子质量m 、单个分子的体积V 0、分子直径d 都可通过阿伏加德罗常数联系起来。
第13单元 热学固体、液体和33(1)33气体实验定律、理想气体状态方程第32讲 分子动理论 内能 用油膜法估测分子的大小一、分子动理论1.物体是由大量分子组成的(1)分子直径大小的数量级为 m . (2)一般分子质量的数量级为 kg .(3)阿伏伽德罗常数N A :1 mol 的任何物质所含的分子数,N A = mol -1. 2.分子永不停息地做无规则热运动(1)扩散现象:相互接触的物体的分子或原子彼此进入对方的现象.温度越 ,扩散越快.(2)布朗运动:在显微镜下看到的悬浮在液体中的微小颗粒的永不停息的无规则运动.布朗运动反映了 的无规则运动,颗粒越 ,运动越明显;温度越 ,运动越剧烈. 3.分子力(1)分子间同时存在着 和 ,实际表现的分子力是它们的 .(2)引力和斥力都随着距离的增大而 ,但分子间距离变化相等时斥力比引力变化得 .(3)分子间的作用力随分子间距离r 变化的关系如图32-1所示:当r<r 0时,表现为 ;当r=r 0时,分子力为 ;当r>r 0时,表现为 ;当r>10r 0时,分子力变得十分微弱,可忽略不计.图32-1二、物体的内能1.分子的平均动能:物体内所有分子动能的平均值. 是分子平均动能的标志,物体温度升高,分子热运动的 增大.2.分子势能:与分子 有关.分子势能的大小随分子间距离的变化曲线如图32-2所示(规定分子间距离无穷远时分子势能为零).图32-23.物体的内能:物体中所有分子的热运动与的总和.物体的内能跟物体的、及物体的都有关系.三、用油膜法估测分子的大小将油酸滴在水面上,让油酸尽可能散开,可认为油酸在水面上形成油膜,如果把分子看作,单层分子油膜的厚度就可以看作油酸分子的直径,如图32-3所示,测出油酸的体积V和油膜的面积S,就可以算出分子的直径d,则d= .图32-3【思维辨析】(1)布朗运动是液体分子的无规则运动.()(2)温度越高,布朗运动越剧烈.()(3)分子间的引力和斥力都随分子间距的增大而增大.()(4)-33 ℃=240 K.()(5)分子动能指的是由于分子定向移动具有的能.()(6)当分子力表现为引力时,分子势能随分子间距离的增大而增大.()(7)内能相同的物体,它们的分子平均动能一定相同.()【思维拓展】分子的体积如何表示?考点一阿伏伽德罗常数的应用宏观量与微观量的转换桥梁作为宏观量的摩尔质量M mol、摩尔体积V mol、密度ρ与作为微观量的分子直径d、分子质量m、分子体积V0都可通过阿伏伽德罗常数联系起来.如图32-4所示.ρ图32-4(1)一个分子的质量:m=.(2)一个分子所占的体积:V0=(估算固体、液体分子的体积或气体分子平均占有的空间).(3)1 mol物体的体积:V mol=.(4)质量为M的物体中所含的分子数:n=N A.(5)体积为V的物体中所含的分子数:n=N A.考向一液体、固体分子模型1 [2017·江苏卷]科学家可以运用无规则运动的规律来研究生物蛋白分子.资料显示,某种蛋白的摩尔质量为66 kg/mol,其分子可视为半径为3×10-9 m的球,已知阿伏伽德罗常数为6.0×1023 mol-1.请估算该蛋白的密度.(计算结果保留一位有效数字)■建模点拨固体、液体分子一个一个紧密排列,可将分子看成球体或立方体,如图32-5所示,分子间距等于小球的直径或立方体的棱长,所以d=(球体模型)或d=(立方体模型).图32-5考向二气体分子模型2 已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为N A,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为,空气分子之间的平均距离为.■建模点拨气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间.如图32-6所示,此时每个分子占有的空间视为棱长为d的立方体,所以d=.图32-6考点二分子动理论的应用考向一布朗运动与分子热运动3 (多选)[2016·江苏涟水中学质检]关于布朗运动,下列说法不正确的是()A.布朗运动就是液体分子的无规则运动B.布朗运动就是悬浮的固体微粒分子的无规则运动C.气体分子的运动是布朗运动D.液体中的悬浮微粒越大,布朗运动就越不明显E.布朗运动是由液体分子从各个方向对悬浮微粒撞击作用的不平衡引起的考向二分子间的作用力与分子势能4 (多选)[2017·山西晋城二模]将一个分子P固定在O点,另一个分子Q从图中的A点由静止释放,两分子之间的作用力与间距关系的图像如图32-7所示,则下列说法正确的是()图32-7A.分子Q由A运动到C的过程中,先加速再减速B.分子Q在C点时分子势能最小C.分子Q在C点时加速度大小为零D.分子Q由A点释放后运动到C点左侧的过程中,加速度先增大后减小再增大E.该图能表示固、液、气三种状态下分子力随分子间距变化的规律■方法技巧(1)分子势能在平衡位置有最小值,无论分子间距离如何变化,靠近平衡位置,分子势能减小,反之增大.(2)判断分子势能的变化有两种方法①看分子力的做功情况.②直接由分子势能与分子间距离的关系图线判断,但要注意其和分子力与分子间距离的关系图线的区别.考向三物体的内能1.物体的内能与机械能的比较2.内能和热量的比较5 (多选)关于物体的内能,下列说法不正确的是()A.温度相等的1 kg和100 g的水内能相同B.物体内能增加,一定要从外界吸收热量C.热量只能从内能多的物体转移到内能少的物体D.在相同物态下,同一物体温度降低,它的内能会减少E.物体运动时的内能不一定比静止时的内能大式题 (多选)[2017·太原二模]如图32-8所示,甲分子固定在坐标原点O,乙分子位于x轴上,两分子之间的相互作用力的合力F与两分子间距离x的关系如图中曲线所示,F>0表现为斥力,F<0表现为引力,a、b、c、d为x轴上四个特定的位置,现把乙分子从a处由静止释放,则()图32-8A.乙分子从a到b做加速运动,由b到c做减速运动B.乙分子从a到c做加速运动,经过c点时速度最大C.乙分子由a到c的过程中,两分子组成的系统的分子势能一直减少D.乙分子由a到d的过程中,两分子组成的系统的分子势能一直减少E.乙分子位于c点时,两分子组成的系统的分子势能最小考点三用油膜法估测分子的大小(1)油膜体积的测定——积聚法:由于一滴纯油酸中含有的分子数仍很大,形成的单层分子所占面积太大,不便于测量,故实验中先把油酸溶于酒精中稀释,测定其浓度,再测出1 mL油酸酒精溶液的滴数,取一滴用于实验,最后计算出一滴油酸酒精溶液中含有的纯油酸的体积作为油膜的体积.(2)油膜面积的测定:如图32-9所示,将画有油酸薄膜轮廓的有机玻璃板取下放在坐标格纸上,以边长为1 cm的方格为单位,数出轮廓内正方形的格数(不足半格的舍去,超过半格的计为1格),计算出油膜的面积S.图32-96 [2017·江苏联考]“用油膜法估测分子大小”的实验步骤如下:①向体积为V1的纯油酸中加入酒精,直到油酸酒精溶液总体积为V2;②用注射器吸取上述溶液,一滴一滴地滴入小量筒,当滴入n滴时体积为V0;③先往边长为30~40 cm的浅盘里倒入2 cm深的水;④用注射器往水面上滴一滴上述溶液,等油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描出油酸薄膜的轮廓;⑤将描有油酸薄膜轮廓的玻璃板,放在画有许多边长为a的小正方形的坐标纸上,读出轮廓范围内正方形的总数为N.上述过程中遗漏的步骤是;油酸分子直径的表达式是d= .式题 [2017·郑州质检]在“用油膜法估测分子大小”实验中,将一滴油酸酒精溶液滴入事先洒有均匀痱子粉的水槽中,待油膜充分散开后,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图32-10所示.坐标纸上正方形小方格的边长为1 cm,该油膜的面积是m2;已知油酸酒精溶液中油酸浓度为0.2%,400滴油酸酒精溶液滴入量筒后的体积是1.2 mL,则油酸分子的直径为m.(结果均保留两位有效数字)图32-10■规律总结1.注意事项(1)油酸在水面上形成油膜时先扩散后收缩,要在稳定后再画轮廓.(2)在有机玻璃板上描绘油酸薄膜轮廓时动作要轻而迅速,视线要始终与玻璃板垂直.2.误差分析(1)油酸酒精溶液配制后长时间放置,溶液的浓度容易改变,会给实验带来较大误差;(2)利用小格子数计算轮廓面积时,轮廓的不规则性容易带来计算误差;(3)测量量筒内溶液增加1 mL的滴数时,产生误差;(4)油膜形状的画线误差.第33讲固体、液体、气体的性质热力学定律一、固体和液体1.固体可以分为晶体和两种,晶体又分为单晶体和.2.晶体的微观结构:晶体的形状和物理性质与非晶体不同,晶体中原子(或分子、离子)按照一定的规则排列,具有空间上的性.3.液体的表面张力:液体的表面张力使液面具有的趋势,表面张力跟液面相切,跟这部分液面的分界线垂直.4.液晶:具有液体的性,具有晶体的光学各向性.二、气体1.气体的状态参量(1)压强:气体压强是大量分子对器壁撞击的宏观表现,其决定因素有和单位体积内的数.(2)体积:气体分子所能到达空间的体积,即气体所充满的容器的容积.(3)温度:宏观上温度表示物体的冷热程度,微观上温度是的标志,热力学温度与摄氏温度的关系为T=(t+ ) K.2.气体分子运动的特点(1)气体分子之间的距离大约是分子直径的倍,气体分子之间的相互作用力十分微弱,可忽略不计.(2)大量分子的热运动速率分布表现为“”的统计规律.(3)温度一定时,某种气体分子速率分布是确定的,平均速率是确定的.温度升高时,气体分子的增大,但并非每个分子的速率都增大.3.气体实验定律4.理想气体状态方程(1)理想气体:把在任何温度、任何压强下都遵从的气体称为理想气体.在压强不太大、温度不太低时,实际气体可以看作理想气体.理想气体的分子间除碰撞外不考虑其他作用,一定质量的某种理想气体的内能仅由决定.(2)理想气体状态方程:(质量一定的理想气体).三、热力学定律1.热力学第一定律:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体所做的功W加上物体从外界吸收的热量Q等于物体的增量.表达式为ΔU= .2.热力学第二定律(1)内容:不可能使热量由温物体传递到温物体,而不引起其他变化;不可能从热源吸收热量并把它全部用来对外,而不引起其他变化.(2)微观意义:一切自发过程总是沿着分子热运动的无序性的方向进行.3.热力学第三定律:热力学零度不可能达到.四、物体的内能1.能量守恒定律:能量既不会,也不会,它只能从一种形式转化为另一种形式,或者从转移到,在转化或转移的过程中,能量的总量.2.永动机:第一类永动机是不可能制成的,因为它违反了;第二类永动机也是不可能制成的,因为它违反了.【思维辨析】(1)单晶体的所有物理性质都是各向异性的.()(2)液晶是液体和晶体的混合物.()(3)水蒸气达到饱和时,水蒸气的压强不再变化,这时水不再蒸发和凝结.()(4)压强极大的气体不遵从气体实验定律.()(5)做功和热传递的实质是相同的.()(6)绝热过程中,外界压缩气体做功20 J,气体的内能一定减少.()(7)物体吸收热量,同时对外做功,内能可能不变.()(8)热机中,燃气的内能可以全部变为机械能而不引起其他变化.()【思维拓展】试推导理想气体压强公式,并说明影响气体压强的因素.假设有一个容积为V的容器,容器内所装气体分子的总数为N,容器内单位体积分子数为n,其中n=,每个气体分子质量为m,我们在这个容器的内壁附近作一个小的正立方体,小立方体与容器内壁相接触的面积为S,令小立方体的边长为l=vΔt,其中v为气体分子平均速率,Δt是我们所取的一小段考查的时间间隔.小立方体内气体分子的总数为N',N'=nSl=nSvΔt,在Δt内,这个小立方体内的气体分子有六分之一都将与接触面发生碰撞.考点一固体和液体的性质考向一固体的性质1 (多选)[2015·全国卷Ⅰ]下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变■规律总结(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.考向二液体的性质2 (多选)下列说法正确的是()A.把一枚针轻放在水面上,它会浮在水面.这是因为水表面存在表面张力B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,这是因为油脂使水的表面张力增大C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形,这是表面张力作用的结果D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开,这是由于水膜具有表面张力的缘故■规律总结(1)表面张力的形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表面张力的方向:和液面相切,垂直于这部分液面的分界线.(3)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.考向三饱和汽压和湿度的理解3 (多选)关于饱和汽压和相对湿度,下列说法中正确的是()A.温度相同的不同饱和汽的饱和汽压都相同B.温度升高时,饱和汽压增大C.在相对湿度相同的情况下,夏天比冬天的绝对湿度大D.饱和汽压和相对湿度都与体积无关E.水蒸气的实际压强越大,人感觉越潮湿■规律总结(1)饱和汽压跟液体的种类有关,在相同的温度下,不同液体的饱和汽压一般是不同的.(2)饱和汽压跟温度有关,饱和汽压随温度的升高而增大.(3)饱和汽压跟体积无关,在温度不变的情况下,饱和汽压不随体积的变化而变化.考点二气体实验定律和气体压强的微观解释1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).(2)查理定律(等容变化):=C(常数).(3)盖—吕萨克定律(等压变化):=C(常数).2.利用气体实验定律解决问题的基本思路考向一玻意耳定律4 [2017·全国卷Ⅲ]一种测量稀薄气体压强的仪器如图33-1甲所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图乙所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求:(1)待测气体的压强;(2)该仪器能够测量的最大压强.图33-1考向二查理定律5 [2017·山西三模]如图33-3所示,横截面积为S的热水杯盖扣在水平桌面上,开始时内部封闭气体的温度为27 ℃,压强为大气压强p0.当封闭气体温度上升至30 ℃时,水杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为p0,温度仍为30 ℃.再经过一段时间,由于室温的降低,内部气体温度降至21 ℃.整个过程中封闭气体均可视为理想气体.求:(1)当封闭气体温度上升至30 ℃且水杯盖未被顶起时的压强p1;(2)当封闭气体温度下降至21 ℃时,竖直向上提起杯盖所需的最小力F min.图33-2考向三盖—吕萨克定律6 [2017·全国卷Ⅱ]一热气球体积为V,内部充有温度为T a的热空气,气球外冷空气的温度为T b.已知空气在1个大气压、温度T0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g.(1)求该热气球所受浮力的大小;(2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m0,求充气后它还能托起的最大质量.考点三气体实验定律的图像问题(1)利用垂直于坐标轴的线作辅助线去分析同质量,不同温度的两条等温线,不同体积的两条等容线,不同压强的两条等压线的关系.例如:在图33-3甲中,虚线为等容线,A、B分别是虚线与T2、T1两条等温线的交点,可以认为从B状态通过等容升压到A状态,温度必然升高,所以T2>T1.图33-3又如图乙所示,A 、B 两点的温度相等,从B 状态到A 状态压强增大,体积一定减小,所以V 2<V 1. (2)关于一定质量的气体的不同图像的比较p-斜率越大率越大体积越小k=率越大压强越小7 [2017·兰州一模] 一定质量的理想气体体积V 与热力学温度T 的关系图像如图33-4所示,气体在状态A 时的压强p A =p 0,温度T A =T 0,线段AB 与V 轴平行,BC 的延长线过原点.求: (1)气体在状态B 时的压强p B ;(2)气体在状态C 时的压强p C 和温度T C .图33-4式题 [2017·上海静安质检]一定质量的气体经历一系列状态变化,其p-图线如图33-5所示,变化顺序为a→b→c→d→a,图中ab线段延长线过坐标原点,cd线段与P轴垂直,da线段与轴垂直.气体在此状态变化过程中()图33-5A.a→b,压强减小、温度不变、体积增大B.b→c,压强增大、温度降低、体积减小C.c→d,压强不变、温度升高、体积减小D.d→a,压强减小、温度升高、体积不变■方法总结气体状态变化的图像的应用技巧(1)明确点、线的物理意义:求解气体状态变化的图像问题,应当明确图像上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图像上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.(2)明确斜率的物理意义:在V-T图像(或p-T图像)中,比较两个状态的压强(或体积)大小,可以比较表示这两个状态的点与原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.考点四理想气体状态方程的求解1.理想气体(1)宏观上,理想气体是指在任何条件下始终遵循气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.2.状态方程:=C.3.应用状态方程解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始、末状态的参量p1、V1、T1及p2、V2、T2;(3)由状态方程列式求解;(4)讨论结果的合理性.8 [2017·福建厦门一检]如图33-6所示,内壁光滑的水平放置气缸被两个活塞分成A、B、C三部分,两活塞间用轻杆连接,活塞厚度不计,在E、F两处设有限制装置,使左边活塞只能在E、F之间运动,E、F之间的容积为0.1V0.开始时左边活塞在E处,A部分的容积为V0,A部分内气体的压强为0.9p0(p0为大气压强),温度为297 K;B 部分的容积为1.1V0,B部分内气体的压强为p0,温度恒为297 K;C部分内为真空.现缓慢加热A部分内气体,直至温度升为399.3 K.求:(1)活塞刚离开E处时的温度T E;(2)A部分内气体最后的压强p.图33-6式题 [2017·南昌十校二模]如图33-7所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银柱,两段空气柱被封闭在左、右两侧的竖直管中.开启上部连通左、右水银的阀门A,当温度为300 K时,平衡时水银柱的位置如图所示,h1=h2=5 cm,L1=50 cm,大气压强为75 cmHg.(1)求右管内空气柱的长度L2;(2)关闭阀门A,当温度升至405 K时,求左侧竖直管内空气柱的长度L3.(大气压强保持不变)图33-7■方法总结对于两部分气体的问题,一定要找好两部分气体之间的关系,比如压强关系、体积关系等,分别找出两部分气体的初、末状态的压强、体积和温度,根据理想气体状态方程列式求解.考点五热力学定律的理解与应用考向一热力学第一定律的理解和应用1.改变内能的两种方式的比较2.温度、内能、热量、功的比较3.对公式ΔU=Q+W 符号的规定4.几种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU ,外界对物体做的功等于物体内能的增加量. (2)若过程中不做功,即W=0,则Q=ΔU ,物体吸收的热量等于物体内能的增加量.(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q ,外界对物体做的功等于物体放出的热量. 9 (多选)[2017·全国卷Ⅱ] 如图33-8所示,用隔板将一绝热气缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个气缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是( )图33-8A .气体自发扩散前后内能相同B .气体在被压缩的过程中内能增大C .在自发扩散过程中,气体对外界做功D .气体在被压缩的过程中,外界对气体做功E .气体在被压缩的过程中,气体分子的平均动能不变式题 (多选)[2017·全国卷Ⅲ] 如图33-9所示,一定质量的理想气体从状态a 出发,经过等容过程ab 到达状态b ,再经过等温过程bc 到达状态c ,最后经等压过程ca 回到状态a.下列说法正确的是 ()图33-9A .在过程ab 中气体的内能增加B .在过程ca 中外界对气体做功C .在过程ab 中气体对外界做功D .在过程bc 中气体从外界吸收热量E .在过程ca 中气体从外界吸收热量 ■ 规律总结(1)做功情况看气体的体积:体积增大,气体对外做功,W 为负;体积缩小,外界对气体做功,W 为正.(2)如果研究对象是理想气体,由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子平均动能的变化上,从宏观上看就是温度发生了变化. 考向二 热力学第二定律的理解和应用 1.对热力学第二定律的理解(1)“自发地”说明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等. 2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.10 (多选)关于热力学定律,下列说法正确的是 ( ) A .不可能从单一热源吸收热量,并把它全部用来做功 B .可能从单一热源吸收热量,并把它全部用来做功 C .不可能使热量从低温物体传向高温物体D .机械能转变为内能的实际宏观过程是不可逆过程E .与热现象有关的变化过程都具有方向性 ■ 规律总结热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,例如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,例如气体的等温膨胀过程.式题 (多选)关于第二类永动机,下列说法正确的是( )A .能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫作第二类永动机B .第二类永动机违反了能量守恒定律,所以不可能制成C .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能D .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能在不引起其他变化的同时全部转化为机械能E .第二类永动机不违反能量守恒定律,但违反热力学第二定律 ■ 规律总结 两类永动机的比较。