信号分析与处理10
- 格式:ppt
- 大小:1.16 MB
- 文档页数:24
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
《信号分析与处理》实验报告华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化专业本科生3.先修课程信号分析与处理4.实验课时分配5需要配置微机及MATLAB工具软件。
6.实验总体要求1、掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法,用MATLAB编程语言实现基本信号的表示及可视化,计算和分析信号的频谱;2、掌握在时域、频域和变换域分析LTI系统的方法,及系统在时域、频域和变换域的描述方法,用MATLAB编程语言实现LTI系统的时域分析及频率分析。
3、掌握信号的调制与解调,用MATLAB编程语言仿真分析信号的调制与解调。
⒎ 本实验的重点、难点及教学方法建议实验通过MATLAB编程语言来实现基本信号的表示及可视化,计算分析信号的频谱,实现LTI系统的时域分析及频率分析,并仿真分析信号的调制与解调,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解。
实验的重点及难点是:掌握基本信号的数学表示,信号的频谱特点,计算LTI系统的典型响应,掌握信号的调制与解调。
在这样的理论基础上,学会用MATLAB编程语言来实现对信号与系统响应的可视化及对数字滤波器进行设计。
教学建议:打好理论基础,熟练编程语言。
目录实验一信号的时域与频域分析 3实验二信号的时域与频域处理 4实验三数字滤波器的设计 5实验一一、实验目的1、熟悉MATLAB 平台,高效的数值计算及符号计算功能;2、实现基本信号的表示及可视化计算;3、分析信号的频谱。
二、 实验类型验证型 三、 实验仪器微机,MATLAB 工具软件。
四、 实验原理MATLAB 是功能强大的数学软件,它提供了计算周期连续函数和周期离散序列的频谱的一系列函数。
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
信号分析与处理第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统.测试技术的目的是信息获取、处理和利用。
测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。
信号分析与处理是测试技术的重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。
一切物体运动和状态的变化,都是一种信号,传递不同的信息.信号常常表示为时间的函数,函数表示和图形表示信号。
信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。
信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析;信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。
信号处理包括时域处理和频域处理。
时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容;测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。
常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。
被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统。
系统的主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统。
第二章 连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号的傅立叶变换、周期信号的傅立叶变换、采样信号分析(从连续开始引入到离散)。
中国海洋大学本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:信号分析与处理是利用数学工具(傅里叶变换,Z变换等)对数字信号进行分析和处理研究,是地球信息科学与技术专业的学科基础课程。
本课程主要讲述信号分析与处理的基本原理和方法,共包括三部分。
第一部分包括:连续信号与系统、离散信号与系统、Z变换、物理可实现信号的相位性质、离散傅氏变换等,主要讲述信号分析的基本原理和方法;第二部分包括:相关分析、线性最优化方法、数值逼近等,主要讲述对数字信号进行一些修饰性的处理;第三部分是上机实验,包括四个编程实验:①雷克子波的波形显示及一维地震记录的合成;②连续信号的采样与重采样;③带通滤波及频谱分析;④半圆曲线拟合。
Signal analysis and processing is to use mathematical tools (Fourier transform, Z transform, etc.) to analyze and process digital signals. It is a basic course of Earth Information Science and technology.This course is mainly about the basic principles and methods of signal analysis and processing, including three parts.The first part includes: continuous signals and systems, discrete signals and systems, Z-transform, phase properties of physically realizable signals, and discrete Fourier transform, etc., which mainly describes the basic- 1 -principles and methods of signal analysis;The second part includes: correlation analysis, linear optimization method, numerical approximation, etc., which is mainly about the modification of digital signal processing;The third part is the computer experiment,which includes four programming experiments:①waveform display of Ricker wavelet and synthesis of one-dimensional seismic records;②sampling and resampling of continuous signal;③band-pass filtering and spectrum analysis;④semicircular curve fitting.2.设计思路:地球信息科学与技术专业涉及地球物理学、海洋探测技术、地球物理探测技术等专业知识,这些专业知识的学习会涉及到对数字信号进行分析和处理,本课程是学好这些专业课的前提。
信号分析与处理课后习题答案第五章 快速傅里叶变换1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问:(1)直接计算需要多少时间?用FFT 计算呢?(2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解:分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1);利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ;(1) 直接DFT 计算:复乘所需时间2215010245052.4288T N us us s =⨯=⨯=复加所需时间2(1)101024(10241)1010.47552T N N us us s =-⨯=-⨯= 所以总时间1262.90432DFT T T T s =+=FFT 计算:复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =⨯=⨯⨯⨯= 复加所需时间422log 101024log 1024100.1024T N N us us s =⨯=⨯⨯= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积计算过程为如下:第一步:求1()X k ,2()X k ;所需时间为2FFT T ⨯第二步:计算12()()()X k X k X k =•,共需要N 次复乘运算所需时间为501024500.0512To N us us s =⨯=⨯=第三步:计算(())IFFT X k ,所需时间为FFT T所以总时间为230.35840.0512 1.1264FFT T T To s s s =⨯+=⨯+= 容许计算信号频率为N/T=911.3Hz2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。
信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号:是传载信息的物理量,是信息的表现形式。
区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。
内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
信号分析与处理第3版赵光宙课后引言《信号分析与处理》是作者赵光宙创作的一本经典教材,已经有3个版本了。
本文档将对《信号分析与处理》第三版的课后习题进行分析和讨论,并对其中一些重要的概念和方法进行介绍和解释。
读者可以通过这些习题的分析,深入理解信号分析与处理的关键概念,为进一步研究和实践打下坚实的基础。
第一章信号与系统本章主要介绍了信号与系统的基本概念和性质。
其中,信号是指随着时间或空间变化而变化的物理量。
系统是信号的输入与输出之间的关系。
课后习题主要涉及信号的分类、线性系统和非线性系统的特性等方面的内容。
习题1:请分类描述以下信号的类型:1.电压信号2.温度信号3.音频信号4.光信号解答:1.电压信号属于连续时间信号,因为时间是连续的。
2.温度信号既可以是连续时间信号,也可以是离散时间信号,取决于温度的采样方式。
3.音频信号属于连续时间信号,因为声音是连续变化的。
4.光信号既可以是连续时间信号,也可以是离散时间信号,取决于光的采样方式。
习题2:判断以下系统是线性系统还是非线性系统:1.y(t) = x(t) + sin(x(t))2.y(t) = 3x(t) - 23.y(t) = x(t)^2解答:1.这个系统是非线性系统,因为它包含了非线性运算sin(x(t))。
2.这个系统是线性系统,因为它只是对输入信号进行了比例增益和平移操作。
3.这个系统是非线性系统,因为它包含了非线性运算x(t)^2。
第二章离散时间信号与系统本章主要介绍了离散时间信号与系统的基本概念和性质。
离散时间信号是在离散时间点上取值的信号,而离散时间系统是对离散时间信号进行处理的系统。
课后习题主要涉及离散时间信号的表示和性质、离散时间系统的差分方程表示等方面的内容。
习题1:请给出以下离散时间信号的表示方式:1.x[n] = {1, 2, 3, 4, 5}2.x[n] = (-1)^n3.x[n] = sin(πn/4)解答:1.x[n] = {1, 2, 3, 4, 5},表示在离散时间点上的取值分别为1, 2, 3, 4, 5。
一、选择题:1、下列哪个系统不属于因果系统( )。
A 、]1[][][+-=n x n x n yB 、12()(0)2(0)3()y t x x f t =+-C 、[][]nk y n x k =-∞=∑ D 、()()(1)y t cf t df t =+-2、设激励为f 1(t )、f 2(t )时系统产生的响应分别为y l (t )、y 2(t ),并设a 、b 为任意实常数,若系统具有如下性质:af 1(t )+bf 2(t )↔ay l (t )+by 2(t ),则系统为( )。
A 、线性系统 B 、因果系统 C 、非线性系统D 、时不变系统3、右图所示f (t )的表达式为(C )。
A 、[]()(1)(1)t t t t εεε--+- B 、[]()(1)t t t εε--- C 、[](1)()(1)t t t εε---- D 、[]()(2)t t t εε--4、结构组成和元件参数不随时间变化的系统称为( )系统。
A 、时变 B 、时不变 C 、线性 D 、非线性5、积分f (t )=13-⎰(2t 2+1)δ(t -2)dt 的结果为( )。
A 、1B 、3C 、0D 、9 6、积分55(4)()t t dt δ--⎰等于( )。
A 、-4B 、4C 、3D 、-37、已知信号()f t 的最高频率0f Hz ,则对信号(/2)f t 取样时,其频谱不混叠的最大取样间隔max T 等于( )。
A 、02f B 、 01f C 、012f D 、014f 8线性常系数微分方程()2()3()2()()y t y t y t x t x t ''''++=+表征的LTI 系统,其单位冲激响应h (t )中( )。
A 、包括()t δ项B 、不包括()t δ项C 、不能确认D 、包括()t δ'项 9、以下分别是4个信号的拉普拉斯变换,其中(C )不存在傅里叶变换?A 、1sB 、1C 、12s -D 、12s +10、周期信号的频谱特点是( )。