数学必修3单元测评卷
- 格式:pdf
- 大小:1.51 MB
- 文档页数:10
新课标数学必修3第3章随机事件的概率单元测试卷(1)一、选择题:(本大题共10题,每小题5分,共50分) 1.下列说法正确的是( )A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( ) A.61 B. 21 C. `31 D. 41 3. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ) A.9991 B. 10001 C. 1000999 D. 21 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A. A 与C 互斥 B. B 与C 互斥 C. 任何两个均互斥 D. 任何两个均不互斥 5.从一批羽毛球产品中任取一个,其质量小于 4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( ) A. 0.62 B. 0.38 C. 0.02 D. 0.686.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( ) A.21 B. 41 C. 31 D. 817.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A. 31. B. 41 C. 21 D.无法确定8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( ) A. 1 B.21 C. 31 D. 32 9.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( ) A.21 B. 31 C. 41 D. 52 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( ) A.101 B. 53 C. 103 D. 109二、填空题(本大题共4小题,每小题5分,共20分)11. 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________ 12. 掷两枚骰子,出现点数之和为3的概率是_____________13. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________14. 我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程或演算步骤)15.(8分)如图,在边长为25cm 的正方形中挖去边长为23cm 的两个等腰直角三角形,现有均匀的粒子散落在正 问粒子落在中间带形区域的概率是多少?16.(8分)10本不同的语文书,2本不同的数学书,从中任意取出2本,能取出数学书的概率有多大?17.(14分)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,三种颜色的球各2个,从两个盒子中各取1个球(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).数学必修3第三章单元测试卷参考答案一、选择题:(本大题共10题,每小题5分,共50分)二、填空题(本大题共4小题,每小题5分,共20分)11. 51 12. 181 13. 7514. 0.25三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程或演算步骤)15. 解:因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的条件。
高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
测试卷一.选择题: (每小题5分,共60分)1. 某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002. 将两个数a=8,b=17下面语句正确一组是(A. B.3. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数.1.2{)(≥-<+= xx xxxf的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个4. 一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )(A)81.2, 4.4 (B)78.8, 4.4 (C)81.2, 84.4 (D)78.8, 75.65.关于频率分布直方图的下列有关说法正确的是( )(A)直方图的高表示取某数的频率(B)直方图的高表示该组上的个体在样本中出现的频率(C)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值(D)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值6. 将389 化成四进位制数的末位是( )A. 1B. 2C. 3D. 07. 下列各数中最小的数是( )A.)9(85 B.)6(210 C.)4(1000 D.)2(1111118. 用秦九韶算法计算多项式1876543)(23456++++++=xxxxxxxf当4.0=x时的值时,需要做乘法和加法的次数分别是( )A. 6 , 6B. 5 , 6C. 5 , 5D. 6 , 59. 某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,3010. 甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为和,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A.甲B.乙C.甲、乙相同D.不能确定11. 从2 006名学生中选取50名组成参观团,若采用以下方法选取:先用简单随机抽样从2 006名学生中剔除6名,再从2 000名学生中随机抽取50名.则其中学生甲被剔除和被选取的概率分别是( )(A) 311 00340, (B) 311 00040,(C) 3251 0031003, (D) 3251 0001 003,12. 上右程序运行后输出的结果为 ( ) A. 3 4 5 6 B. 4 5 6 7 C. 5 6 7 8 D. 6 7 8 9 二. 填空题.(每小题4分,共16分) 13.. (1)将二进制数(2)101101化为十进制数为______________(2)将十进制1375转化为六进制数为_____________(6) (3)212(8)= (2)14. 在一次实验中,测得(x, y)的四组值分别是 A(1,2),B(2,3),C(3,4),D(4,5).则y 与x 之间的回归直线方程为______________________________15. 下左程序运行后输出的结果为_________________________.16问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有 500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个 容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法 能配对的是① ② 。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
(北师大版)高中数学必修3(全册)单元检测试卷汇总单元训练(1)统计(一)1、以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A. 2,5B. 5,5C. 5,8D. 8,82、某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件、80件、60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n ( )A.9B.10C.12D.133、在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本: ①采用随机抽样法,将零件编号为00,01,02,,99,⋯抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个. 则( )A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15 B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同4、某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( ) A. 0.4.3ˆ2yx =+ B. 2 2.4ˆyx =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆyx =-+ 6、某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A.100B.150C.200D.2507、某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.1678、对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53答案1.C 解析:由题意得15,16.8(915101824)85x y y ==+++++⇒=,选C. 2.D解析:利用分层抽样抽取甲、乙、丙三个车间的产品数量比为120?:?80?:?606?:?4?:?3=,从丙车间的产品中抽取了3件,则3313n ⨯=,得13n =,故选D. 3.A解析:无论采用哪种抽样,每个个体被抽到的概率相等.4.D解析:设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 5.A解析:变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程. ∵变量x 与y 正相关,∴可以排除C,D; 样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选:A.6.A解析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值. 分层抽样的抽取比例为701350050=, 总体个数为350015005000+=, ∴样本容量1500010050n =⨯=. 故选:A.7.C解析:由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故答案选C考点:概率与统计.8.A解析:样本中共有30个数据,中位数为4547462+=; 显然样本中数据出现次数最多的为45,故众数为45;极差为6812? 56-=,故选A.单元训练(2)统计(二)1、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1,2,…, 840随机编号, 则抽取的42人中,编号落入区间[]481,720的人数为( )A.11B.12C.13D.142、为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.203、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本4、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A. e o m m x ==B. e o m m x =<C. e o m m x <<D. o e m m x <<5、,?A B 两名同学在5次数学考试中的成绩的茎叶图如图所示,若,?A B 两人的平均成绩分别是,A B X X ,则下列的结论正确的是( )A. A B X X <,B 比A 成绩稳定B. A B X X >,B 比A 成绩稳定C. A B X X <,A 比B 成绩稳定D. A B X X >,A 比B 成绩稳定6、在下列各图中,每个图的两个变量具有相关关系的是( )A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)7、根据如下样本数据 x 34 5 6 7 8 y 4.0 2.5 0.5- 0.52.0-3.0- 得到的回归方程为ˆybx a =+,则( )A. 0a >,0b <B. 0a >,0b >C. 0a <,0b <D. 0a <,0b >8、若样本11x +,21x +,31x +,···, 1n x +的平均数是10,方差为2,则对于样本12x +,22x +,···, 2n x +,下列结论正确的是( )A.平均数是10,方差为2B.平均数是11,方差为3C.平均数是11,方差为2D.平均数是12,方差为4答案1.B解析:使用系统抽样方法,从840人中抽取42人 ∵8404242=,抽取比例为1:2 编号在区间[]481,720的人数为240∴抽取的42人中, 编号落入区间[]481,720的人数为2401220= 2.C解析:由题意知,分段间隔为10002540=,故选C. 3.A解析:根据统计中总体、个体、样本、样本容量的相关定义直接进行判断.调查的目的是“了解某地5000名居民某天的阅读时间”,所以“5000名居民的阅读时间的全体”是调查的总体.4.D解析:由图可知05m =.由中位数的定义知应该是第15个数与第16个数的平均值,由图知将数据从小到大排,第15个数是5,第16个数是6, 所以5625.5e m +==.()324351066738292102 5.9751350.x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯≈>, 所以0e m m x <<5.A解析:由茎叶图知, 1(91+92+96+103+?128)=?102,5A X =⨯ 1(?99+108+107+114+112)=?108,5B X =⨯ ∴A B X X <,且B 比A 更稳定,故选A.6.D解析:散点图(1)中,所有的散点都在曲线上,所以(1)具有函数关系;散点图(2)中,所有的散点都分布在一条直线的附近,所以(2)具有相关关系;散点图(3)中,所有的散点都分布在一条曲线的附近,所以(3)具有相关关系,散点图(4)中,所有的散点杂乱无章,没有分布在一条曲线的附近,所以(4)没有相关关系. 故选D.7.A解析:由散点图知0b <,0a >,选A.8.C解析:∵样本1231,1,1,,1n x x x x +++⋯+的平均数是10,方差为2,∴123111110n x x x x n ++++++⋯++=,即123109n x x x x n n n +++⋯+=-=,方差()()()()()()22222221212111101101109992n n S x x x x x x n n ⎡⎤⎡⎤⎣=+-++-+⋯++-=-+-+⋯+⎣-⎦=⎦,则()1211222111n n x x x nn ++++⋯++==, 样本122,2,,2n x x x ++⋯+的方差()()()()()()22222221212112112112119992n n S x x x x x x n n ⎡⎤⎡⎤⎣=+-++-+⋯++-=-+-+⋯+⎣-⎦=⎦.故选C .单元训练(3)统计(三)1、在用频率分布直方图表示尺寸的过程中,将其尺寸分成若干组, [),a b 是其中的一组,抽查出的个数在该组内的频率为m ,表示该组的小矩形的高为h ,则b a -等于( )A. hmB.h mC. m hD.与,m h 无关2、对于给定的两个变量的统计数据,下列说法中正确的是( )A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系3、某路段检查站监控录像显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中200辆汽车进行车速分析,分析的结果表示为如图所示的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不低于90/km h 的约有( )A.100辆B.200辆C.300辆D.390辆4、已知两组样本数据{}12,,,n x x x 的平均数为h ,{}12,,,m y y y 的平均数为k ,则把两组数据合并成一组以后,这组样本的平均数为( )A.2h k + B. nh mk m n++ C. nk mh m n++ D. h k m n ++ 5、为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样6、现从100件产品中随机抽出10件进行质量检测,下列说法中正确的是( )A.100件产品是总体B.10件产品是样本C.样本容量为100D.样本容量为107、下列抽样方式是简单随机抽样的是( )A.某工厂从老年、中年、青年职工中按2:5:3的比例选取职工代表B.某班45名同学,指定个子高的5名同学参加学校组织的某项活动C.齐鲁福利彩票用摇奖机摇奖D.规定凡买到的明信片的最后四位号码是“6637”的人获得三等奖8、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
高中数学必修第三册《第八章 向量的数量积与三角恒等变换》单元测试卷(1)一、单选题(本大题共10小题,共50.0分) 1.设θ为两个非零向量a ⃗ ,b ⃗ 的夹角,已知对任意实数t ,|t a ⃗ +b ⃗ |的最小值为1,则( ) A. 若θ确定,则|a⃗ |唯一确定 B. 若|a⃗ |确定,则θ唯一确定 C. 若θ确定,则|b ⃗ |唯一确定D. 若θ确定,则θ唯一确定2.已知△ABC 中,点M 是线段BC 上靠近B 的三等分点,N 是线段AC 的中点,则BN ⃗⃗⃗⃗⃗⃗ =( ) A. 12AM⃗⃗⃗⃗⃗⃗ +MN ⃗⃗⃗⃗⃗⃗⃗ B. 13AM⃗⃗⃗⃗⃗⃗ +MN ⃗⃗⃗⃗⃗⃗⃗ C. 12AM⃗⃗⃗⃗⃗⃗ +2MN ⃗⃗⃗⃗⃗⃗⃗ D. 13AM⃗⃗⃗⃗⃗⃗ +2MN ⃗⃗⃗⃗⃗⃗⃗ 3. 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若csinC =acosB +bcosA ,则△ABC 的形状为( )A. 锐角三角形B. 等边三角形C. 直角三角形D. 钝角三角形4.设函数f(x)=sin3x +acos3x(a ∈R)满足f(π6−x)=f(π6+x),则a 的值是( )A. 3B. 2C. 1D. 05.已知函数f(x)=sin2x +2cos 2x −1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移π4个单位,得到函数y =g(x)的图象,则g(x)的解析式为( )A. y =√2sinxB. y =√2cosxC. y =√2sin(4x −3π4)D. y =√2cos4x6.已知向量a ⃗ =(m,1),b ⃗ =(−2,n),若a ⃗ ⊥b ⃗ ,则m ,n 间的关系正确的是( )A. m =2nB. m =−2nC. m =−12nD. m =12n7.圆O 中,弦PQ 满足|PQ|=2,则PQ ⃗⃗⃗⃗⃗ ⋅PO ⃗⃗⃗⃗⃗ =( )A. 2B. 1C. 12D. 48.化简√1−sin 2140°=( )A. ±cos40°B. cos40°C. −cos40°D. ±|cos40°|9.tan40°+tan80°−√3tan40°tan80°的值是( )A. √3B. −√3C. −√33 D. √3310. 如图,A 是单位圆与x 轴正半轴的交点,点P 在该单位圆上,∠AOP =θ(0<θ<π),点Q 满足PQ ⃗⃗⃗⃗⃗ =QA ⃗⃗⃗⃗⃗ ,三角形OAP 的面积记为S.则OA ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ +S 的最大值是( )A. √24B. √2+12C. √22D. √2+14二、单空题(本大题共6小题,共30.0分)11. 设平面向量a ⃗ =(1,−2),b ⃗ =(k,2)满足a ⃗ ⊥b ⃗ ,则|b ⃗ |=______. 12. 已知外接圆的半径为,且,,则__________ .13. 下面有四个命题: ①函数是偶函数②函数的最小正周期是;③函数在上是增函数;④函数的图像的一条对称轴为直线,则.其中正确命题的序号是 。
模块综合测评(一)(时间:100分钟,满分:100分)一、选择题(每小题4分,共48分)1.某学校有小学生126人,初中生280人,高中生95人,为了调查学生的身体状况,需要从他们当中抽取一个容量为100的样本,采用_________方法较为恰当( ) A.简单随机抽样 B.系统抽样C.分层抽样D.先从小学生中剔除1人,然后分层抽样 答案:D2.下列说法中,不正确的是( )A.简单随机抽样是从个数较少的总体中抽取个体B.系统抽样是从个体较多的总体中将总体均分,再按事先确定的规则在各部分抽取个体C.系统抽样是将差异明显的总体分成几部分再从各部分抽取个体D.分层抽样是将由差异明显的几部分组成的总体分成几层,分层进行抽取个体 答案:C3.输出两个变量a 、b 的值的语句中不正确的是( )A.print(%io(2),a,b)B.print(%io(2),“a,b”)C.print(%io(2),“a,b”,a,b)D.print(%io(2),“a,b=”,a,b) 答案:B4.如果两组数x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别为x 和y ,标准差分别为s 1和s 2,那么合为一组数x 1,x 2,…,x n ,y 1,y 2,…,y n 后的平均数和标准差分别是( )A.2,2221s s y x ++B.2,2221s s y x ++C.2,22221s s y x ++D.2,22221s s y x ++ 答案:D5.把红、黑、白、蓝四张纸牌随机地分给甲、乙、丙、丁四个人,每人得一张,事件“甲分得白牌”与事件“乙分得红牌”是( )A.对立事件B.不可能事件C.互斥但非对立事件D.以上都不对 答案:D6.某学校共有初中生900人,其中初一学生300人,初二学生200人,初三学生400人,现采用分层抽样的方法抽取容量为45的样本,那么初一、初二、初三各年级抽取的人数分别为( )A.15,5,25B.15,15,15C.10,5,30D.15,10,20 答案:D7.关于频率分布直方图中的有关数据,下列说法正确的是( ) A.直方图的高表示该组上的个体在样本中出现的频率 B.直方图的高表示取某数的频率C.直方图的高表示该组上的个体数与组距的比值D.直方图的高表示该组上的个体在样本中出现的频率与组距的比值 答案:D8.在数学考试中,小明的成绩在90分以上的概率是0.18,在80—89分的概率是0.51,在70—79分的概率是0.15,在60—69分的概率是0.09,则小明不及格(60分以下)的概率是( )A.0.93B.0.69C.0.31D.0.07 答案:D9.从甲袋中摸出一个红球的概率是31,从乙袋中摸出一个红球的概率是21,从两个袋中各摸出一球,则32等于( ) A.两球都不是红球的概率 B.两球都是红球的概率C.至少有一个红球的概率D.两球中恰好有一个红球的概率 答案:C10.(2007山东济宁模拟)阅读如图所示的程序框图:输出的结果为( )A.20B.3C.5D.15 ∵a 的初值为5.每循环一次a 的值减1.故循环2次. ∴s=20. 答案:A11.在数轴上的区间[0,3]上任取一点,则此点落在区间[2,3]上的概率是( )A.31 B.21 C.32 D.43 解析:由两区间长度之比得31,∴选A.答案:A12.从甲、乙、丙三人中任选两名代表,则甲被选上的概率为( ) A.31 B.32 C.43 D.61 答案:B二、填空题(每小题4分,共16分)13.某校高中部有学生1 600人,其中高一520人,高二500人,高三580人,如果想抽出80人调查学生情况,考虑到不同年级学生的情况有明显差异,而同一年级学生间差异较小则应采用___________方法抽样,高一学生应抽查___________人. 答案:分层 2614.某人午觉醒来,发现表停了,他打开收音机想听电台报时(电台整点报时),则他等待的时间不多于6分钟的概率是___________. 答案:101 15.把50个数据分成6个组,有一个组有15个数据,那么该组的频数是___________,频率是___________. 答案:15 0.316.(2007山东潍坊期中)下图所示的程序框图的输出结果是____________.当i=1,n=2时,S=2,n=4, 当i=2时,S=6,n=6. 当i=3时,S=12,n=8 当i=4>3时,输出12. 答案:12三、解答题(共36分)17.(8分)某工厂在职人员100人,其中干部10人,科室人员20人,工人70人,为了解工厂改革的意见,从中抽取一个容量为20的样本,试确定如何抽样,并写出具体实施过程. 解析:因为工厂改革关系到不同层次的人的不同利益,故采用分层抽样,各层可采取简单随机抽样. ∵20100=5,∴510=2,570=14,520=4. ∴从干部中抽取2人,科室人员抽取4人,从工人中抽取14人.因干部与科室人员的人数较少,把他们分别按1—10与1—20编号,然后采用抽签法分别抽2人和4人;对工人70人进行00,01,02,…,69编号,然后用随机数表法抽取14人.(2)至少3人排队等候的概率是多少?记事件在窗口等候的人数为0,1,2,3,4,5人及5人以上分别为A 、B 、C 、D 、E 、F. (1)至多2人排队等候的概率是P(A ∪B ∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一:至少3人排队等候的概率是P(D ∪E ∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44. 方法二:因为至少3人排队等候与至多2人排队等候是对立事件,故由对立事件的概率公式,至少3人排队等候的概率是P (D ∪E ∪F)=1-P(A ∪B ∪C)=1-0.56=0.44. ∴至多2人排队等候的概率是0.56,至少3个排队等候的概率是0.44. 19.(10分)对任意正整数,设计一个求S=1+n13121+++ 的值的程序框图. 解析:20.(10分)(2007山东临沂模拟)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,表甲和图乙是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频率分布条形图.请你根据图中和表中提供的信息,解答以下问题:(1)填充表甲频率分布表中的空格;(2)在图乙中,将表示“自然科学”的部分补充完整. 解析:(1)自然科学对应的频率=1-0.50-0.25-0.05=0.20,自然科学对应的频数=50.01000×0.20=400. (2)如图所示导学乐园靠自己小蜗牛问妈妈:为什么我们从生下来,就要背负这个又硬又重的壳呢?妈妈:因为我们的身体没有骨骼的支撑,只能爬,又爬不快.所以要这个壳的保护!小蜗牛:毛虫姊姊没有骨头,也爬不快,为什么她却不用背这个又硬又重的壳呢?妈妈:因为毛虫姊姊能变成蝴蝶,天空会保护她啊.小蜗牛:可是蚯蚓弟弟也没骨头,也爬不快,更不会变成蝴蝶,他为什么不用背这个又硬又重的壳呢?妈妈:因为蚯蚓弟弟会钻土, 大地会保护他啊.小蜗牛哭了起来:我们好可怜,天空不保护,大地也不保护.蜗牛妈妈安慰他:所以我们有壳啊!我们不靠天,也不靠地,我们靠自己.。
同步单元卷(1)算法与程序框图1、下面的结论正确的是( ) A.—个程序的算法步骤是可逆的 B.—个算法可以无止境地运算下去 C.完成一件事情的算法有且只有一种 D.设计算法要本着简单方便的原则2、在设计一个算法求12和14的最小公倍数时,设计的算法不恰当的一步是( ) A.首先将12因式分解: 21223=⨯ B.其次将14因式分解: 1427=⨯C.确定其素因数及素因数的最高指数: 2112,3,7D.其最小公倍数为23742S =⨯⨯= 3、下面对算法描述正确的一项是( ) A.算法只能用自然语言来描述 B.算法只能用图形方式来表示 C.同一问题可以有不同的算法 D.同一问题的算法不同,结果必然不同 4、下列不是算法特征的是( )A.抽象性B.精确性C.有穷性D.唯一性 5、下列所给问题中,不能设计一个算法求解的是( ) A.用二分法求方程230x -=的近似解(精确度0.01) B.解方程组50{30x y x y ++=-+=C.求半径为2的球的体积D.求123S =+++⋯的值 6、下列语句能称为算法的是( )① 拨打本地电话的过程为: a .提起话筒; b .拨号; c .等通话信号; d .开始通话; e .结束通话.② 利用公式V Sh =,计算底面积为3,高为4的三棱柱的体积.③2230x x --=④求所有能被3整除的正数,即3,6,9,12,.⋯ A.①② B.①③ C.②④ D.①②④7、执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A. []6,2--B. []5,1--C. []4,5-D. [3,6]-8、执行如图所示的程序框图,输出的结果为( )A. ()2,2-B. ()4,0-C. ()4,4--D. ()0,8-9、阅读下面程序框图,如果输出的函数值在区间11,42⎡⎤⎢⎥⎣⎦内,则输入的实数x 的取值范围是( )A. (,2]-∞-B. []2,1--C. []1,2-D. [)2+∞,10、如图所示的程序框图的运行结果是( )A.2B.2.5C.4D.3.511、执行下面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.15812、如果执行如图所示的框图,输入5N =,则输出S 的数等于( )A.54 B. 45 C. 65 D. 5613、如图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A. 1000A >和1n n =+B. 1000A >和2n n =+C. 1000A ≤和1n n =+D. 1000A ≤和2n n =+14、阅读如图所示的程序框图,运行相应的程序,则输出S 的值为__________15、在如图所示的程序框图中,当程序被执行后输出s 的结果是__________.16、如图为某算法的程序框图,则程序运行后输出T 的值为__________.17、你要乘火车去外地办一件事,请你写出从自己房间出发到坐在车厢内的三步主要算法: 第一步:__________; 第二步:__________; 第三步:__________.18、下面给出一个问题的算法: 第一步,输入a .第二步,若4a ≥,则执行第三步;否则,执行第四步. 第三步,输出2 1.a -第四步,输出22 3.a a -+则这个算法解决的问题是________,当输入的a=________时,输出的数值最小.19、— 个算法的步骤如下: 第一步,令0,2i S ==.第二步,如果15i ≤,则执行第三步;否则执行第六步 第三步,计算S i +并用结果代替S . 第四步,用2i +的值代替i . 第五步,转去执行第二步. 第六步,输出S .运行该算法,输出的结果S =__________. 20、下面是解决一个问题的算法: 第一步,输入x .第二步,若6x ≥,转到第三步;否则,转到第四步。
北师大版高中数学必修3第一章单元质量评估B卷第一章单元质量评估(二)时限:120分钟满分:150分第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列哪种工作不能使用抽样方法进行( ) A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.(1)某学校为了了解2021年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.问题与方法配对正确的是( )A.(1)Ⅲ (2)Ⅰ C.(1)Ⅱ (2)ⅢB.(1)Ⅰ (2)Ⅱ D.(1)Ⅲ (2)Ⅱ3.对某校400名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,则学生体重在60 kg以上的人数为( )A.200 B.100 C.40 D.204.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.67x+54.9.表中一个数据模糊不清,请你推断出该数据的值为( )零件数x(个) 加工时间y(min) A.75 C.6810 62 20 B.62 D.8130 75 40 81 50 89 5.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )A.12,24,15,9 C.8,15,12,5B.9,12,12,7 D.8,16,10,66.某机床生产一种机器零件,10天中每天出的次品数分别是:2,3,1,1,0,2,1,1,0,1,则这组数据的平均数和方差(即标准差的平方)分别是( )A.1.2,0.76 C.1.2,0.472B.1.2,2.173 D.1.2,0.687 47.某学校从高二甲、乙两个班中各选6名同学参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y的值为( )A.6 C.8B.7 D.98.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数 B.甲的成绩的中位数等于乙的成绩的中位数 C.甲的成绩的方差小于乙的成绩的方差 D.甲的成绩的极差小于乙的成绩的极差9.某校开展“了解传统习俗,弘扬民族文化”为主题的实践活动,实践小组就“是否知道端午节的由来”这个问题对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人,下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32 C.图中“记不清”对应的圆心角为60° D.全校“知道”的人数约占全校人数的64%10.已知数据x1,x2,x3的中位数为k,众数为m,平均数为n,方差为p,则下列说法中,错误的是( )A.数据2x1,2x2,2x3的中位数为2k B.数据2x1,2x2,2x3的众数为2m C.数据2x1,2x2,2x3的平均数为2n D.数据2x1,2x2,2x3的方差为2p答案1.D 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A,B,C都是从总体中抽取部分个体进行检验,选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.2.A 通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.3.B 由频率分布直方图可知学生体重在60 kg以上的频率为(0.04+0.01)×5=0.25,故学生体重在60 kg以上的人数为400×0.25=100.4.C 设表中模糊不清的数据为m,由表中数据得-x=30,-y=m+307-,由于由最小二乘法求得回归方程y=0.67x+54.9,将x=30,5m+307-y=5代入回归直线方程,得m=68,故选C.4015.D 抽样比例为800=20,因此,从各层依次抽取的人数为1111160×20=8,320×20=16,200×20=10,120×20=6.112-6.A x=10(2+3+1+1+0+2+1+1+0+1)=1.2,s=10(0.82+1.82+0.22+0.22+1.22+0.82+0.22+0.22+1.22+0.22)=0.76.7.D 由众数的定义知x=5,由乙班的平均分为81得78+70+y+81+81+80+92=81,解得y=4,故x+y=9. 68.C 甲射击比赛中靶4,5,6,7,8环各1次,则甲成绩的中位数为6环,平均数为6环,极差为4环,方差为2平方环;乙射击比赛中靶5环3次,6环1次,9环1次,则乙成绩的中位数为5环,平均数为6环,极差为4环,方差为2.4平方环.所以甲成绩的方差比乙成绩的方差小.故选C.9.C “不知道”的学生有8人,所占比例为16%,所以被调查的学生共有8÷16%=50(人),被调查的学生中“知道”的人数为50×64%=32,题图中“记不清”对应的圆心角为360°×(1-16%-64%)=72°.感谢您的阅读,祝您生活愉快。
高二数学下册(必修三)导数 单元测试卷及答案解析一 、单选题(本大题共8小题,共40分)1.(5分)函数f(x)在x =4处的切线方程为y =3x +5,则f(4)+f ′(4)=( )A. 10B. 20C. 30D. 402.(5分)设a 为实数,函数f (x )=x 3+ax 2+(a −2)x 的导函数是f ′(x),且f ′(x)是偶函数,则曲线y =f (x )在原点处的切线方程为( )A. y =−2xB. y =3xC. y =−3xD. y =−4x3.(5分)若函数f(x)=x 2+lnx 的图像在(a,f(a))处的切线与直线2x +6y −5=0垂直,则a 的值为( )A. 1B. 2或14C. 2D. 1或124.(5分)已知函数f (x )={&ln (x +1),−1<x ⩽14 x 2+14,x >14 ,且关于x 的方程f (x )−kx =0恰有2个实数解,则实数k 的取值范围是( )A. [1,54] B. [54,+∞)C. [4ln 54,1]D. [4ln 54,1]⋃[54,+∞)5.(5分)曲线y =13x 3 在x =1处切线的倾斜角为( )A. 1B. −π4C. π4D.5π46.(5分) 若曲线f(x)=x 4−4x 在点A 处的切线平行于x 轴,则点A 的坐标为( )A. (-1,2)B. (1,-3)C. (1,0)D. (1,5)7.(5分)曲线f(x)=e x lnx 在x =1处的切线与坐标轴围成的三角形面积为( )A. e4B. e2C. eD. 2e8.(5分)曲线f(x)=x 2+3x 在点A(1,4)处的切线斜率为( )A. 2B. 5C. 6D. 11二 、多选题(本大题共5小题,共25分) 9.(5分)下列命题中是真命题有()A. 若f′(x0)=0,则x0是函数f(x)的极值点B. 函数y=f(x)的切线与函数可以有两个公共点C. 函数y=f(x)在x=1处的切线方程为2x−y=0,则f′(1)=2D. 若函数f(x)的导数f′(x)<1,且f(1)=2,则不等式f(x)>x+1的解集是(−∞,1)10.(5分)若函数y=f(x)的图象上存在两点,使得函数图象在这两点处的切线互相垂直,则称函数y=f(x)具有“T性质”.则下列函数中具有“T性质”的是()A. y=xe x B. y=cosx+1 C. y=1x3D. y=ln2log2x11.(5分)已知函数f(x)=x+√2x图象上的一条切线与g(x)=x的图象交于点M,与直线x=0交于点N,则下列结论不正确的有()A. 函数f(x)的最小值为2√2B. 函数的值域为(−∞,−2√24]C. |MN|2的最小值为16−8√2D. 函数f(x)图象上任一点的切线倾斜角的所在范围为[0,π4]12.(5分)已知曲线上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a可能的取值()A. 196B. 3 C. 103D. 9213.(5分)设函数f(x)=x−ln|x|x,则下列选项中正确的是()A. f(x)为奇函数B. 函数y=f(x)−1有两个零点C. 函数y=f(x)+f(2x)的图象关于点(0,2)对称D. 过原点与函数f(x)相切的直线有且只有一条三、填空题(本大题共5小题,共25分)14.(5分)已知倾斜角为45°的直线l与曲线y=lnx−2x+1相切,则直线l的方程是 ______.15.(5分)已知曲线C:y=x3−3x2+2x,直线l过(0,0)与曲线C相切,则直线l的方程是______ .16.(5分)函数f(x)={1−2x,x⩾012x2+2x,x<0,函数g(x)=k(x−2),若方程f(x)=g(x)恰有三个实数解,则实数k的取值范围为__________.17.(5分)函数f(x)=√4x+1,则函数f(x)在x=2处切线的斜率为 ______.18.(5分)某物体作直线运动,其位移S与时间t的运动规律为S=t+2√t(t的单位为秒,S的单位为米),则它在第4秒末的瞬时速度应该为______米/秒.四、解答题(本大题共5小题,共60分)19.(12分)已知函数f(x)=x3+x−16.(1)求曲线y=f(x)在点(2,−6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.20.(12分)在抛物线C:y=ax2(a>0)上取两点A(m1,n1),B(m2,n2),且m2−m1=4,过点A,B分别作抛物线C的切线,两切线交于点P(1,−3).(1)求抛物线C的方程;(2)设直线l交抛物线C于M,N两点,记直线OM,ON(其中O为坐标原点)的斜率分别为k OM,k ON,且k OM.k ON=−2,若ΔOMN的面积为2√3,求直线l的方程.21.(12分)已知函数f(x)=(x+a)lnx,g(x)=x 2e x.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x−y=0平行.(1)求a的值;(2)证明:方程f(x)=g(x)在(1,2)内有且只有一个实根.22.(12分)设f(x)=ae x+1ae x+b(a>0)(I)设曲线y=f(x)在点(2,f(2))的切线方程为y=32x;求a,b的值.(II)求f(x)在[0,+∞)上的最小值.23.(12分)已知曲线y=13x3+43,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.参考答案与解析1.【答案】B;【解析】解:∵函数f(x)在x=4处的切线方程为y=3x+5,∴f′(4)=3,又f(4)=3×4+5=17,∴f(4)+f′(4)=17+3=20.故选:B.由已知可得f′(4),在切线方程中取x=4求得f(4),则答案可求.此题主要考查对数的几何意义及其应用,是基础题.2.【答案】A;【解析】此题主要考查导数的几何意义,函数的奇偶性,直线的点斜式方程,属于基础题.求导函数f′(x),由f′(x)是偶函数求出a的值,然后根据导数的几何意义求切线方程.解:由f(x)=x3+ax2+(a−2)x,得,f′(x)=3x2+2ax+(a−2),又∵f′(x)是偶函数,∴2a=0,即a=0,∴f′(x)=3x2−2,∴曲线y=f(x)在原点处的切线斜率为−2,曲线y=f(x)在原点处的切线方程为y=−2x,故选A.3.【答案】D;【解析】解:函数f(x)=x2+lnx的导数为f′(x)=2x+1x,在(a,f(a))处的切线的斜率为2a+1a,由切线与直线2x+6y−5=0垂直,可得−13(2a+1a)=−1,解得a=1或12,故选:D.求得f(x)的导数,由导数的几何意义可得切线的斜率,再由两直线垂直的条件,解方程可得所求值.此题主要考查导数的运用:求切线的斜率,以及两直线垂直的条件,考查方程思想和运算能力,属于基础题.4.【答案】C;【解析】此题主要考查了方程的根与函数的图象之间的关系应用及学生的作图能力,同时考查了导数的几何意义的应用,属于中档题.方程f(x)=kx恰有两个不同实数根,等价于y=f(x)与y=kx有2个交点,又k表示直线y= kx的斜率,求出k的取值范围.解:画出函数f(x)图象,可求得函数f(x)=ln(x+1)(−1<x⩽14)图象在点O(0,0)处的切线方程为y=x,过点O(0,0)且与函数f(x)=x2+14(x>14)图象相切的直线方程也为y=x,即得直线y=x为函数f(x)图象的切线,且有两个切点,切点为O(0,0)和A(12,12 ),关于x的方程f(x)−kx=0恰有2个实数解当且仅当直线y=kx函数f(x)图象有两个公共点,由图可知当且仅当k OB⩽k⩽k OA时符合题意,又k OA=1,k OB=ln(14+1)14=4ln54,则求得4ln54⩽k⩽1.故选C.5.【答案】C;【解析】解:∵y =13x 3,∴y ′=x 2,设曲线y =13x 3 在x =1处切线的倾斜角为α,根据导数的几何意义可知,切线的斜率k =y ′|x=1=12=1=tan α, ∴α=π4,即倾斜角为π4. 故选C .欲求在x =1处的切线倾斜角,先根据导数的几何意义可知k =y ′|x=1,再结合正切函数的值求出角α的值即可.该题考查了导数的几何意义,以及利用正切函数的性质可求倾斜角,本题属于容易题.6.【答案】B;【解析】解:f(x)=x 4−4x 的导数为f ′(x)=4x 3−4, 设切点为A(m,n),则n =m 4−4m , 可得切线的斜率为k =4m 3−4=0, 解得m =1,n =−3.即A(1,−3). 故选:B .求得函数的导数,设出切点A(m,n),代入函数式,求得切线的斜率,令它为0,解得m ,n ,进而得到切点A 的坐标.该题考查导数的运用:求切线的斜率,考查导数的几何意义,设出切点和正确求导是解答该题的关键,属于基础题.7.【答案】B; 【解析】此题主要考查导数的几何意义及三角形面积公式,属于基础题,先求出曲线f(x)=e x lnx 在x =1处的切线方程,再其求与坐标轴的交点即可求得三角形面积;解:f ′(x)=e xlnx +e x x,则f ′(1)=e ,f(1)=0,∴曲线f(x)=e x lnx 在x =1处的切线方程为y =e(x −1),令x=0,得y=−e,令y=0,得x=1,∴切线与坐标轴围成的三角形面积为S=12×e×1=e2.故选B.8.【答案】B;【解析】解:函数的导数为f′(x)=2x+3,所以函数在A(1,4)处的切线斜率k=f′(1)=2+3=5.故选:B.求曲线在点处得切线的斜率,就是求曲线在该点处得导数值.该题考查了导数的几何意义.导数的几何意义是指函数y=f(x)在点x0处的导数是曲线y= f(x)在点P(x0,y0)处的切线的斜率.它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.9.【答案】BCD;【解析】此题主要考查极值的概念,导数的几何意义,利用导数研究函数的单调性,利用单调性求解不等式,属于中档题.由题意结合知识点,逐个选项分析即可.解:选项A,若f′(x0)=0,x0不一定是函数f(x)的极值点,例如函数f(x)=x3,f′(0)=0,但x=0不是极值点,故错误;选项B,函数y=f(x)的切线与函数可以有两个公共点,例如函数f(x)=x3−3x,在x=1处的切线为y=−2与函数还有一个公共点为(−2,−2),故正确;选项C,因为函数y=f(x)在x=1处的切线方程为2x−y=0,所以f′(1)=2,故正确. 选项D,令g(x)=f(x)−x−1,因为函数f(x)的导数f′(x)<1,则g′(x)=f′(x)−1<0,所以函数g(x)=f(x)−x−1在R上单调递减,又g(1)=f(1)−2=0,由不等式f(x) > x+1得g(x) > 0=g(1),得x 1,所以不等式f(x) > x+1的解集是(−∞,1),故正确.故选BCD.10.【答案】AB;【解析】解:由题意,可知若函数y =f(x)具有“T 性质”,则存在两点, 使得函数在这两点处的导数值的乘积为−1, 对于A ,(xe x )′=1−x e x,满足条件;对于B ,(cosx +1)′=−sinx ,满足条件;对于C ,(1x 3)′=−3x 4<0恒成立,负数乘以负数不可能得到−1,不满足条件;对于D ,(ln2log 2x)′=ln2.1xln2=1x >0恒成立,正数乘以正数不可能得到−1,不满足条件. 故选:AB.分别求出四个选项中函数的导函数,看是否满足存在两点,使得函数在这两点处的导数值的乘积为−1即可.此题主要考查导数的几何意义及应用,考查化归与转化思想,关键是熟记基本初等函数的导函数,是中档题.11.【答案】ABD; 【解析】此题主要考查导数的运算和几何意义以及基本不等式求最值,属于中档题. 由题意和导数的运算结合基本不等式,逐个选项验证正误即可. 解:已知f(x)=x +√2x,当x >0时,f(x)=x +√2x⩾2√24,当x <0时,f(x)=x +√2x⩽−2√24,故选项A 、B 不正确;设直线l 与函数f(x)的图象相切于点(x 0,x 02+√2x 0),函数f(x)的导函数为f ′(x)=1−√2x 2=x 2−√2x 2,则直线l 的方程为y −x 02+√2x 0=x 02−√2x 02(x −x 0),即y =x 02−√2x 02x +2√2x 0,直线l 与g(x)=x 的交点为M(2x 0,2x 0),与x =0的交点为N(0,2√2x 0), 所以|MN|2=4x 02+(2x 0−2√2x 0)2=8x 02+8x 02−8√2⩾16−8√2,当且仅当x 02=1时取等号,故选项C 正确; f ′(x)=1−√2x 2=x 2−√2x 2⩽1,可知切线斜率可为负值,即倾斜角可以为钝角,故选项D 不正确.故选ABD.12.【答案】AC;【解析】此题主要考查导数的几何意义和二次方程的实根的分布,考查运算能力,属于中档题.求出导数,由题意可得2x2−2x+a=3有两个不相等的正根,由此列出不等式组即可得到a 的取值范围,进而可得a的可能取值.解:f(x)=23x3−x2+ax−1的导数为f′(x)=2x2−2x+a,由题意可得2x2−2x+a=3有两个不相等的正根,则{Δ=28−8a>0a−32>0,解得3<a<72,故选:AC.13.【答案】BCD;【解析】解:函数f(x)=x−ln|x|x的定义域为{ x|x≠0},f(−x)+f(x)=1−ln|−x|−x +1−ln|x|x=2≠0,所以f(x)不为奇函数,故A错误;由f(x)=1,可得ln|x|x=0,解得x=±1,故y=f(x)−1有两个零点,故B正确;由f(−x)+f(−2x)+f(x)+f(2x)=[f(−x)+f(x)]+[f(−2x)+f(2x)]=2+2=4,则函数y=f(x)+f(2x)的图象关于点(0,2)对称,故C正确;当x>0时,f(x)=1−lnxx ,f′(x)=−1−lnxx2,设过原点与f(x)相切的切点为(m,n),则切线的方程为y−n=lnm−1m2(x−m),即y−1+lnmm =lnm−1m2(x−m),代入(0,0),可得1+m=2lnm,设g(m)=2lnm−1−m,g′(m)=2m−1,当0<m<2时,g(m)递增,m>2时,g(m)递减,则g(m)的最大值为g(2)=2ln2−3<0,所以x>0时,不存在过原点的切线;当x<0时,f(x)=1−ln(−x)x ,f′(x)=−1−ln(−x)x2,设过原点与f(x)相切的切点为(s,t)(s<0),则切线的方程为y−t=ln(−s)−1s2(x−s),即y−1+ln(−s)s =ln(−s)−1s2(x−s),代入(0,0),可得1+s=2ln(−s),设g(s)=2ln(−s)−1−s,g′(m)=2s−1<0,所以g(s)递减,则g(s)只有一个零点,所以x<0时,只存在一条过原点的切线.综上可得存在一条过原点的切线,故D正确.故选:BCD.由函数的奇偶性和零点、对称性、导数的几何意义,可得结论.此题主要考查导数的运用:求切线的方程,考查方程思想和运算能力、推理能力,属于中档题.14.【答案】x−y+ln2−2=0;【解析】由直线的倾斜角求得直线的斜率,求出原函数的导函数,由导函数值为1求解切点坐标,再由直线方程的点斜式得答案.此题主要考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,是基础题.解:直线的倾斜角为45°,则直线的斜率为tan45°=1,由y=lnx−2x +1,得y′=1x+2x2,由y′=1x +2x2=1,解得x=−1(舍去)或x=2.∴切点坐标为(2,ln2),则直线l的方程为y−ln2=1×(x−2),即x−y+ln2−2=0.故答案为:x−y+ln2−2=0.15.【答案】y=−x或y=−14x或y=2x;【解析】求出函数的导数,结合直线关系即可得到结论.这道题主要考查函数的切线的求解,根据函数导数的几何意义是解决本题的关键.注意要进行分类讨论.解:函数的导数为f ′(x)=3x 2−6x +2, 设切点为(a,b),则k =f ′(a)=3a 2−6a +2,b =a 3−3a 2+2a , 则切线的方程y −b =(3a 2−6a +2)(x −a), 即y =(3a 2−6a +2)x −2a 3+9a 2−4a , ∵直线l 过点(0,0), ∴−2a 3+9a 2−4a =0, 即2a 3−9a 2+4a =0, 则a(a −4)(2a −1)=0, 解得a =0或a =4或a =12,当a =1时,对应的直线方程为y =−x , 当a =12时,对应的直线方程为y =−14x , 当a =0时,对应的直线方程为y =2x , 故答案为:y =−x 或y =−14x 或y =2x16.【答案】(0,4-2√3) ; 【解析】此题主要考查函数的零点与方程的根之间的关系,函数的导数求解切线方程,考查数形结合以及计算能力,是难题.画f(x)={1−2x ,x ⩾012x 2+2x,x <0,的图象,结合直线g(x)=k(x −2)过定点(2,0),函数g(x)的图象与f(x)=12x 2+2x ,x <0的图象相切时,函数f(x),g(x)的图象恰有两个交点.设切点为P(x 0,y 0),由f ˈ(x)=x +2,x <0,求出切线的斜率,利用函数的图象的交点个数与函数的零点个数,推出k 的范围即可.解:依题意,画出f(x)={1−2x,x⩾012x2+2x,x<0的图象如图:因为直线g(x)=k(x−2)过定点(2,0),由图象可知,当函数g(x)的图象与f(x)=12x2+2x,x<0的图象相切时,函数f(x),g(x)的图象恰有两个交点.下面利用导数法求该切线的斜率.设切点为P(x0,y0),由fˈ(x)=x+2,x<0,则k=f′(x0)=x0+2=12x02+2x0x0-2,解得x0=2+2√3(舍去)或x0=2-2√3,则k=4−2√3,要使方程f(x)=g(x)恰有三个实数解,则函数f(x),g(x)的图象恰有三个交点,结合图象可的实数k的取值范围为(0,4-2√3),故答案为(0,4-2√3).17.【答案】23;【解析】解:由f(x)=√4x+1,得f′(x)=2(4x+1)−1 2,所以函数f(x)在x=2处切线的斜率k=f′(2)=23.故答案为:23.对f(x)求导,根据导数的几何意义,得到f(x)在x=2处的切线斜率.此题主要考查了利用导数研究函数的切线方程和导数的几何意义,属基础题.18.【答案】32;【解析】解:S=t+2√t,∴S′=1+√t,∴它在4秒末的瞬时速度为1+√4=32,故答案为:32.物理中的瞬时速度常用导数来求,故求出S的导数,代入4求值.该题考查变化的快慢与变化率,解答本题关键是理解导数的物理意义,由此转化为求导数的问题.19.【答案】解:(1)∵f′(x)=(x3+x−16)′=3x2+1,∴在点(2,−6)处的切线的斜率k=f′(2)=3×22+1=13,∴切线的方程为y=13x−32.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,∴直线l的方程为y=(3x02+1)(x−x0)+x03+x0−16.又∵直线l过点(0,0),∴0=(3x02+1)(−x0)+x03+x0−16,整理,得x03=−8,∴x0=−2,∴y0=(−2)3+(−2)−16=−26,直线l的斜率k=3×(−2)2+1=13,∴直线l的方程为y=13x,切点坐标为(−2,−26).;【解析】(1)先求出函数的导函数,再求出函数在(2,−6)处的导数即斜率,易求切线方程.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,从而求得直线l的方程,有条件直线1过原点可求解切点坐标,进而可得直线1的方程.此题主要考查直线的点斜式方程,属基础题型,较为简单.20.【答案】解:(1)由y=ax2(a>0)得y′=2ax(a>0),则曲线在点A处的切线斜率为2am1,曲线在点A处的切线方程为y−am12=2am1(x−m1),曲线在点A处的切线过点P(1,−3),故am12−2am1−3=0①,同理可得曲线y=ax2(a>0)在点B处的切线方程为y−am22=2am2(x−m2),∴am12−2am1−3=0②,①−②得m1+m2=2,m2−m1=4,∵m2−m1=4,∴m1=−1,m2=3,将m1=−1代入①,可得a=1,故抛物线方程为x2=y;(2)由题意知直线l的斜率存在,设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x2−kx−b=0,∴x1+x2=k,x1.x2=−b,∴k OM.k ON=x12x1.x22x2=x1x2=−2,可得b=2,∴直线l经过点(0,2),∴SΔ=12×|OP|×|x1−x2|=2√3,∴|x1−x2|=2√3,∴k2=4,∴k=±2,经检验k=±2,b=2符合题意,∴直线l的方程为y=2x+2或y=2x−2.;【解析】此题主要考查了直线与抛物线涉及到利用导数求曲线的切线方程、抛物线的几何性质、直线方程的求法等知识,综合性较强.(1)利用导数,可以求出曲线在点A,B处的切线斜率为2am1,2am2,从而求出切线方程,得到关于m1,m2的关系式,可以求出m的值,从而求出切线方程;(2)设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x1+x2=k,x1.x2=−b,求出b=2,根据题意列方程求出k的值,从而求出直线方程.21.【答案】(本题满分为12分)解:(1)f′(x)=lnx+ax+1,由题意知,曲线y=f(x)在点(1,f(1))处的切线斜率为2,则f'(1)=2,所以a+1=2,解得a=1.…(4分)(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x 2e x,x∈(1,2),则ˈ(1)=−1e <0,ˈ(2)=3ln2−4e2>0,所以h(1)h(2)<0,所以函数h(x)在(1,2)内一定有零点,…(8分)可得ˈ′(x)=lnx+x+1x −2x−x2e x(e x)2=lnx+1x+1−−(x−1)2+1e x>1−1e>0,∴h(x)在(1,2)上单调递增,所以函数h(x)在(1,2)内有且只有一个零点,即方程f(x)=g(x)在(1,2)内有且只有一个实根.…(12分);【解析】(1)求得f(x)的导数,可得x=1处切线的斜率,由两直线平行的条件:斜率相等,解方程即可得到所求值.(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x2e x ,x∈(1,2),由ˈ(1)=−1e<0,ˈ(2)=3ln2−4e2>0,可得函数ˈ(x)在(1,2)内一定有零点,进而证明ˈ′(x)>0,可得ˈ(x)在(1,2)上单调递增,即可得证.此题主要考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,考查函数的零点判定定理,正确求导是解答该题的关键,属于中档题.22.【答案】解:(I )由题意得,f(x)=ae x +1aex+b ,则f ′(x)=ae x −1ae x,因为在点(2,f (2))的切线方程为y=32x ,所以{(f(2)=3f ′(2)=32), 即{(ae 2+1ae 2+b =3ae 2−1ae 2=32),解得{(a =2e 2b =12)…(6分)(Ⅱ)设t=e x (t ≥1),则原函数化为:y =at +1at +b , 所以y ′=a −1at 2=a 2t 2−1at 2,令y ′=0,解得t=±1a ,(1)当a ≥1时,则y ′>0在[1,+∞)上成立, 所以函数y =at +1at +b 在[1,+∞)上是增函数, 则当t=1(x=0)时,函数f (x )取到最小值是a +1a +b ; (2)当0<a <1时,y =at +1at +b ≥2+b ,当且仅当at=1(t=e x =1a >1,则x=-lna )时,取等号, 此时函数f (x )取到最小值是b+2,综上可得,当a ≥1时,函数f (x )的最小值是a +1a +b ; 当0<a <1时,函数f (x )的最小值是b+2.…(12分); 【解析】(Ⅰ)由求导公式和法则求出f ′(x),根据导数的几何意义和条件列出方程组,求出a 、b 的值; (Ⅱ)设t =e x (t ⩾1),代入原函数化简并求出导数,根据临界点和区间对a 进行分类讨论,利用导数与单调性、基本不等式求出函数的最小值.此题主要考查求导公式和法则,导数的几何意义,以及导数与函数单调性、基本不等式求函数的最值问题,属于中档题.23.【答案】解:(1)∵P(2,4)在曲线y =13x 3+43上,且y ′=x 2 ∴在点P(2,4)处的切线的斜率k =y ′|x=2=4;∴曲线在点P(2,4)处的切线方程为y −4=4(x −2),即4x −y −4=0.(2)设曲线y =13x 3+43与过点P(2,4)的切线相切于点A(x 0,13x 03+43),则切线的斜率k=y′|x=x=x02,∴切线方程为y−(13x03+43)=x02(x−x0),即y=x02.x−23x03+43∵点P(2,4)在切线上,∴4=2x02−23x03+43,即x03−3x02+4=0,∴x03+x02−4x02+4=0,∴(x0+1)(x0−2)2=0解得x0=−1或x0=2故所求的切线方程为4x−y−4=0或x−y+2=0.(3)设切点为(x0,y0)则切线的斜率为k=x02=4,x0=±2.切点为(2,4),(−2,−43)∴切线方程为y−4=4(x−2)和y+43=4(x+2)即4x−y−4=0和12x−3y+20=0.;【解析】该题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.(1)根据曲线的解析式求出导函数,把P的横坐标代入导函数中即可求出切线的斜率,根据P的坐标和求出的斜率写出切线的方程即可;(2)设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可;(3)设出切点坐标,由切线的斜率为4,把切点的横坐标代入导函数中求出的函数值等于4列出关于切点横坐标的方程,求出方程的解即可得到切点的横坐标,代入曲线方程即可求出相应的纵坐标,根据切点坐标和斜率分别写出切线方程即可.。