三元一次方程组知识点讲解
- 格式:pdf
- 大小:256.13 KB
- 文档页数:1
三元一次方程组讲解【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义:含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1. 下列方程组不是三元一次方程组的是().A.12236x yy zy+=⎧⎪+=-⎨⎪=⎩B.24013xy xxy z⎧-=⎪+=⎨⎪-=-⎩C.2231xyx z=⎧⎪=-⎨⎪-=⎩D.1321y xx zy z-=-⎧⎪+=⎨⎪-=⎩【思路点拨】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【答案】B【解析】解:由题意知,含有三个相同的未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A、满足三元一次方程组的定义,故A选项错误;B、x2-4=0,未知量x的次数为2次,∴不是三元一次方程,故B选项正确;C、满足三元一次方程组的定义,故C选项错误;D、满足三元一次方程组的定义,故D选项错误;故选B.【总结升华】三元一次方程组中的方程不一定都是三元一次方程,并且有时需对方程化简后再根据三元一次方程组的定义进行判断.类型二、三元一次方程组的解法2. 若x:y:z=2:7:5,x﹣2y+3z=6,求的值.【思路点拨】根据x:y:z=2:7:5,设x=2k,y=7k,z=5k,代入x﹣2y+3z=6得出方程,求出方程的解,即可求出x、y、z的值,最后代入求出即可.【答案与解析】解:∵x:y:z=2:7:5,∴设x=2k,y=7k,z=5k,代入x﹣2y+3z=6得:2k﹣14k+15k=6,解得:k=2,∴x=4,y=14,z=10,∴==0.18.【总结升华】若某一方程是比例形式,则先引入参数,后消元.举一反三:【变式】解方程组:2:3,:4:5,2329x y y z x y z =⎧⎪=⎨⎪-+=⎩①②③ 【答案】解:由①,得3x =2y ,即23x y =, ④ 由②,得5y =4z ,即54z y =,⑤ 把④、⑤代入③,得21522934y y y -+=. 解得y =12.⑥把⑥代入④,得x =8,把⑥代入⑤,得z =15.所以原方程组的解为8,12,15.x y z =⎧⎪=⎨⎪=⎩3.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10,求a 的值.【思路点拨】由题意可知,此方程组中的a 是已知数,x 、y 、z 是未知数,先解方程组,求出x ,y ,z(含有a 的代数式),然后把求得的x 、y 、z 代入等式x-2y+3z =-10,可得关于a 的一元一次方程,解这个方程,即可求得a 的值.【答案与解析】解法一: ②-①,得z-x =2a ④③+④,得2z =6a ,z =3a把z =3a 分别代入②和③,得y =2a ,x =a .∴ 23x a y a z a =⎧⎪=⎨⎪=⎩.把x =a ,y =2a ,z =3a 代入x-2y+3z =10得a-2×2a+3×3a =-10. 解得53a =-. 解法二:①+②+③,得2(x+y+z)=12a .即x+y+z=6a ④④-①,得z =3a ,④-②,得x =a ,④-③,得y =2a .∴ 23x a y a z a =⎧⎪=⎨⎪=⎩,把x =a ,y =2a ,z =3a 代入x-2y+3z =10得a-2×2a+3×3a =-10. 解得53a =-. 【总结升华】当方程组中三个方程的未知数的系数都相同时,可以运用此题解法2中的技巧解这类方程组.举一反三:【变式】若 303340x y z x y z -+=⎧⎨--=⎩①② ,则x :y :z = . 【答案】15:7:6类型三、三元一次方程组的应用4. 甲、乙、丙三块地,草长得一样密,一样快,甲地133公顷可供12头牛吃4周;乙地10公顷可供21头牛吃9周,求丙地24公顷可供几头牛吃18周?【思路点拨】本题草地上原有一些草,其数量不知,草地上的草还在不停地生长,但生长的速度不知道,因此解题时应把原有的草量、草的生长速度及每头牛每周的食草量用字母表示,设成辅助未知数,再根据题意便可列出方程组.【答案与解析】解:设每公顷草地原有牧草akg,每周每公顷草地生长草bkg,每头牛每周吃草ckg,丙地24公顷地可供x头牛吃18周.根据题意得101044123310910921 24182418a b ca b ca b xc⎧+⨯=⨯⎪⎪⎨+⨯=⨯⎪⎪⎩+⨯=⨯①②③由①②得545910a cb c⎧=⎪⎪⎨⎪=⎪⎩代入③,得x=36.答:丙地24公顷可供36头牛吃18周.【总结升华】用三元一次方程组解答实际问题的方法与用二元一次方程组解答实际问题的方法类似,根据题目给出的条件寻找相等关系是利用方程解应用题的重要一环.举一反三:【变式】(2020•黄冈中学自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元 C.0.95元 D.0.9元【答案】B.解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).。
三元一次方程组及其应用要点一、三元一次方程及三元一次方程组的概念1. 三元一次方程的定义:含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组类型一、三元一次方程及三元一次方程组的概念1. 下列方程组不是三元一次方程组的是().A. B. C.D.类型二、三元一次方程组的解法2. 解三元一次方程组3. 已知方程组的解使得代数式x-2y+3z的值等于-10,求a的值.【巩固训练】:知识点1.三元一次方程组的概念1.下列是三元一次方程组的是( )A.⎩⎨⎧2x =5,x 2+y =7,x +y +z =6B.⎩⎪⎨⎪⎧3x -y +z =-2,x -2y +z =9,y =-3C.⎩⎨⎧x +y -z =7,xyz =1,x -3y =4D.⎩⎨⎧x +y =2,y +z =1,x +z =9知识点2.三元一次方程组的解法2.将三元一次方程组⎩⎨⎧5x +4y +z =0,①3x +y -4z =11,②x +y +z =-2,③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( )A.⎩⎨⎧4x +3y =2,7x +5y =3B.⎩⎨⎧4x +3y =2,23x +17y =11C.⎩⎨⎧3x +4y =2,7x +5y =3D.⎩⎨⎧3x +4y =2,23x +17y =113.对于方程组⎩⎨⎧x +y +z =6,①y -z =4,②x -y -2z =3.③(1)若先消去x ,可得含y ,z 的方程组是__ __;(2)若先消去y ,可得含x ,z 的方程组是__ 或 或 __;(3)若先消去z ,可得含x ,y 的方程组是__ 或 或 __.知识点3.利用三元一次方程组求待定系数4.当x =0,1,-1时,二次三项式ax 2+bx +c 的值分别为5,6,10,则a =__ __,b =__ __,c =__ __.5.在等式y =ax 2+bx +c 中,当x =-1时,y =4;当x =2时,y =4;当x =1时,y =2.(1)求a ,b ,c 的值;(2)当x =-2时,求y 的值.知识点4.三元一次方程组的简单应用6.某次知识竞赛共出了30道试题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小丰同学不答的题比答错的题多3道,他的总分为81分,则他答对了( )A .19道题B .20道题C .21道题D .22道题【易错点】忽略集中消同一未知数导致不会解三元一次方程组.7.解下列三元一次方程组:(1)⎩⎨⎧2x +y =4,①x +3z =1,②x +y +z =7;③ (2)⎩⎨⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③8、如图所示,已知前两架天平两端保持平衡.要使第三架天平两端保持平衡,则应在天平的右托盘上放__ __个圆形物品.9.有一个三位数,它的十位上的数字等于个位上的数字与百位上的数字的和,个位上的数字与十位上的数字之和等于8,百位上的数字与个位上的数字对调后所得的三位数比原来的三位数大99.求原来的三位数.10.某汽车在相距70 km的甲、乙两地往返行驶,因为行驶中有一坡度均匀的小山,该汽车从甲地到乙地需要2.5 h,而从乙地到甲地需要2.3 h,假设汽车在平地、上坡、下坡的行驶过程中的时速分别为30 km,20 km,40 km.问:从甲地到乙地的过程中,平地路、上坡路、下坡路各为多少千米.11.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入y元.(1)求x,y的值;(2)若营业员小丽某月的总收入不低于3 800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.求某顾客想购买甲、乙、丙各一件共需多少元.【作业】:一、选择题1. 下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩ 2. 已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A. 3B.4C.0D.-13. 下列说法正确的是( ).A.方程3220x y z ++=有唯一组解.B.若x 、y 、z 是非负数,则三元一次方程3x+5y+2z =0只有一组解.C. 方程4x+y+2z =7是三元一次方程.D.三元一次方程组有且只有一组解.4.已知代数式2ax bx c ++,当x =-1时,其值为4;当x =1时,其值为8;当x =2时,其值为25;则当x =3时,其值为 ( ).A .1个B .2个C .3个D .4个5.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,则这对夫妇共有( )个子女.A .1个B .2个C .3个D .4个6.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ) .A .11支B .9支C .7支D .5支二、填空题7. 若12||(1)5210b a a x y z +--++=是一个三元一次方程,那么a =_______,b =________.8.已知2234x y y z x z +++===-,则x+2y+z =________. 9.当a =________时,方程组352,2718x y a x y a -=⎧⎨+=-⎩的解x 、y 互为相反数. 10.已知303340x y z x y z -+=⎧⎨--=⎩,则x :y :z =________. 11.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元;购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需________元钱.12. 方程x+2y+3z =14 (x <y <z)的正整数解是 .三、解答题13.解方程组:(1):3:2:5:466x y y z x y z =⎧⎪=⎨⎪++=⎩ (2)3222311410x y x x y z x y z ++=⎧⎪++=⎨⎪--=-⎩14. 已知等式(27)(38)810-+-=+对于一切有理数x都成立,求A,B的值.A B x A B x15.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完,此时厂家需付甲、丙成,厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由.。
三元一次方程组的解法 例题与讲解1.三元一次方程及三元一次方程组 (1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程.(2)三元一次方程组:①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如:⎩⎨⎧ x +y =1,y +z =3,x -2z =5,⎩⎨⎧x +3y +2z =2,3x +2y -4z =3,2x -y =7等都是三元一次方程组.②拓展理解:a.构成三元一次方程组中的每一个方程都必须是一次方程;b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数.【例1】 下列方程组中是三元一次方程组的是( ).A.⎩⎨⎧x 2-y =1,y +z =0,xz =2B.⎩⎪⎨⎪⎧1x +y =1,1y +z =2,1z +x =6C.⎩⎨⎧a +b +c +d =1,a -c =2,b -d =3D.⎩⎨⎧m +n =18,n +t =12,t +m =0解析:A ,B 选项中有的方程不是三元一次方程,C 中含有四个未知数,只有D 符合三元一次概念内涵,故选D.答案:D2.三元一次方程组的解(1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,叫做三元一次方程的解.和二元一次方程一样,一个三元一次方程也有无数个解.(2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数.(3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解.释疑点 检验三元一次方程组的解三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解.【例2】 判断⎩⎨⎧x =2,y =-3,z =-3是不是方程组⎩⎨⎧x +y -2z =5,2x -y +z =4,2x +y -3z =10的解.答:__________(填是或不是).解析:把⎩⎨⎧x =2,y =-3,z =-3代入方程组的三个方程中检验,能使三个方程的左右两边都相等,所以是方程组的解.答案:是3.三元一次方程组的解法(1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程.(2)步骤:①观察方程组中每个方程的特点,确定消去的未知数;②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;③解二元一次方程组,求出两个未知数的值;④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;⑤写出三元一次方程组的解.(3)注意点:①三元一次方程组的解法多种多样,只要逐步消元,解出每一个未知数即可;②解三元一次方程组时,每一个方程都至少要用到一次,否则解出的结果也不正确.【例3】 解方程组⎩⎨⎧ x +3y +2z =2,3x +2y -4z =3,2x -y =7.①②③分析:观察方程组中每个方程的特征可知,方程③不含有字母z ,而①,②中的未知数z 的系数成倍数关系,故可用加减消元法消去字母z ,然后将所得的方程与③组合成二元一次方程组,求这个方程组的解,即可得到原方程组的解.解:①×2+②,得5x +8y =7,④ 解③,④组成的方程组 ⎩⎨⎧2x -y =7,5x +8y =7.解这个方程组,得⎩⎨⎧x =3,y =-1.把x =3,y =-1代入①,得z =1,所以原方程组的解为⎩⎨⎧x =3,y =-1,z =1.4.运用三元一次方程组解实际问题(1)方法步骤:①审题:弄清题意及题目中的数量关系; ②设:设三个未知数;③列:找出实际问题中的已知数和未知数,分析它们之间的数量关系,用式子表示,列出三个方程,组成三元一次方程组;④解:解这个方程组,并检验解是否符合实际; ⑤答:回答说明实际问题的答案. 析规律 列三元一次方程组同二元一次方程组的实际应用相类似,运用三元一次方程组解决实际问题要设三个未知数,寻找三个等量关系,列出三个一次方程,组成三元一次方程组.【例4】 某个三位数是它各位数字和的27倍,已知百位数字与个位数字之和比十位数字大1,再把这个三位数的百位数字与个位数字交换位置,得到一个新的三位数,新三位数比原三位数大99,求原来的三位数.解:设百位数字为a 、十位数字为b ,个位数字为c ,则这个三位数为100a +10b +c ,由题意,得⎩⎨⎧a +c =b +1,27a +b +c =100a +10b +c ,100a +10b +c +99=100c +10b +a .化简,得⎩⎨⎧a -b +c =1,-73a +17b +26c =0,a -c =-1.解这个方程组,得⎩⎨⎧a =2,b =4,c =3.答:原来的三位数是243.。
三元一次方程组知识讲解a₁x+b₁y+c₁z=d₁a₂x+b₂y+c₂z=d₂a₃x+b₃y+c₃z=d₃其中,a₁,a₂,a₃,b₁,b₂,b₃,c₁,c₂,c₃为系数,d₁,d₂,d₃为常数。
解方程组的目标是找到x,y,z的值,使得方程组中的每个方程都得到满足。
解三元一次方程组的方法有很多种,下面将介绍其中的两种常用方法。
1.消元法:消元法是通过变换方程组中的方程,逐步去除未知数的系数,从而得到最终结果。
首先,我们可以使用第一个方程来消去x,方法是将第一个方程乘以a₂/a₁,再与第二个方程相减,得到一个新的方程,其未知数中x的系数为0。
这样,我们得到了一个新方程组:a₁x+b₁y+c₁z=d₁(0)x+(b₂-(a₂/a₁)b₁)y+(c₂-(a₂/a₁)c₁)z=d₂-(a₂/a₁)d₁a₃x+b₃y+c₃z=d₃接下来,我们可以使用第三个方程再次消去x,方法是将第三个方程乘以a₁/a₃,再与第一个方程相减,得到一个新的方程,其未知数中x的系数为0。
这样,我们得到了一个新方程组:a₁x+b₁y+c₁z=d₁(0)x+(b₂-(a₂/a₁)b₁)y+(c₂-(a₂/a₁)c₁)z=d₂-(a₂/a₁)d₁(0)x+(b₃-(a₃/a₁)b₁)y+(c₃-(a₃/a₁)c₁)z=d₃-(a₃/a₁)d₁在这个新的方程组中,已经消去了x,我们可以将其简化为两元一次方程组,然后使用二元一次方程组的解法来求解y和z的值。
最后,再将y和z的值带入原方程组中的任一方程,求解x的值。
2.矩阵法:矩阵法是通过将方程组转化为矩阵的形式来求解。
将方程组表示为如下的增广矩阵:┌┐a₁b₁c₁,d₁a₂b₂c₂,d₂a₃b₃c₃,d₃└┘首先,我们对矩阵进行初等行变换,使得矩阵的左上角的元素为1,其它行的第一列元素为0。
得到一个新的矩阵:┌┐1**,*0**,*0**,*└┘接下来,我们使用行变换将矩阵的左下角和右上角的元素变为0。
七年级下册数学三元一次方程组及其解法一、方程组的概念和特点1.什么是方程组?数学中的方程组是由两个或多个方程组成的一组联立方程。
通常用来描述多个未知数之间的关系。
2.三元一次方程组的特点?三元一次方程组是由三个未知数和三个一次方程联立组成的方程组。
每个方程中的未知数的最高次数都是1。
解三元一次方程组的方法有多种,下面将逐一介绍。
二、三元一次方程组的解法1.三元一次方程组的解法一:代入法通过代入法将一组方程中的一个未知数表示出来,然后代入另外两个方程中解得其他未知数的值。
举例说明:已知方程组:2x + y - z = 6x - 3y + z = 83x + 2y + 2z = 17第一步:从第一个方程中解出x,得到x = 6 - y + z第二步:将x的值代入第二个和第三个方程中,得到两个关于y 和z的方程x - 3y + z = 8 => 6 - y + z - 3y + z = 8,整理得到-4y + 2z = 23x + 2y + 2z = 17 => 18 - 3y + 3z + 2y + 2z = 17,整理得到y + 5z = -1第三步:解决两个关于y和z的方程,最终得到y和z的值解得y = -7,z = 1最后代入x = 6 - y + z,求得x的值x = 6 - (-7) + 1 = 14因此,方程组的解为x = 14, y = -7, z = 12.三元一次方程组的解法二:消元法通过适当的加减消去未知数,将三个方程联立的问题化成二元一次方程组,并使用二元一次方程组的解法解出未知数的值。
举例说明:已知方程组:2x + y - z = 6x - 3y + z = 83x + 2y + 2z = 17第一步:通过第一个和第二个方程,消去z,得到关于x和y的方程2x + y - z = 6x - 3y + z = 8相减得:x + 4y = -2第二步:再通过第二个和第三个方程,消去z,得到关于x和y的另一个方程x - 3y + z = 83x + 2y + 2z = 17相减得:-5x - 5y = -9第三步:解决得到的两个二元一次方程,求得x和y的值解得x = 14,y = -7最后代入任意一个原方程,求得z的值2*14 - 7 - z = 6,解得z = 1因此,方程组的解为x = 14, y = -7, z = 1三、总结通过上面的介绍,我们了解到了三元一次方程组的解法:代入法和消元法。
三元一次方程组及应用三元一次方程组及应用一、知识体系1、概念:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程。
由三个三元一次方程组成的叫做三元一次方程组。
2、方法:代入消元法、加减消元法。
先消掉一个未知数,化成二元一次方程组。
3、基本关系量:(一)销售问题:·基 本 量:成本(进价)、售价(实售价)、利润(亏损额)、利润率(亏损率)·基本关系:盈利:售价>进价 利润=售价-进价>0亏损:售价<进价 利润=售价-进价<0利润=售价-成本 亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率售价=标价×10折数 售价=进价×(1+利润率) 总价=单价×数量 数量之和=甲商品+乙商品+丙商品(二)增长率或百分比的问题增长(降低)率问题:增长量=原有量×增长率 现有量=原有量+增长量=原有量×(1+增长率) 减少量=原有量×降低率 现有量=原有量-减少量=原有量×(1-降低率)(四)储蓄问题(银行利率问题)利息=本金×利率 本息和=本金+利息=本金×(1+利率) 利息税=利息×利息税率 所得金额=本息和-利息税 %100⨯=成本利润利润率%100⨯=成本亏损额亏损率(五)浓度问题:溶质=溶液×浓度百分数 溶液=溶质+溶剂 m 溶液=m 溶质+m 溶剂m 溶质=m 溶液×m 浓度百分数=(m 溶质+m 溶剂)×浓度百分数二、知识巩固3、已知 ,则x ∶y ∶z =___________.4、若x +2y +3z =10,4x +3y +2z =15,则x +y +z 的值为( )A 、2B 、3C 、4D 、55、若方程组 的解x 与y 相等,则a 的值等于( )A 、4B 、10C 、11D 、126、已知∣x -8y ∣+2(4y -1)2+3∣8z -3x ∣=0,求x +y +z 的值.7、解方程组(1(2) x -3y +2z =0 3x -3y -4z =04x +3y =1ax +(a -1)y =%100⨯+=溶剂溶质溶质浓度百分数m m m三、知识拓展1、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?2、小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.3、甲、乙、丙三个数的和是35,甲数的2倍比乙数大,乙数的13等于丙数的12,求这三个数.4、体育商店足球打6折出售,是指按原价的 %出售,如果这种足球的原价是80元,则现价是元,比原价便宜____元。
《三元一次方程组》知识清单一、三元一次方程组的定义含有三个未知数,并且含有未知数的项的次数都是 1 的整式方程叫做三元一次方程。
由三个三元一次方程组成的方程组叫做三元一次方程组。
例如:方程组$\begin{cases}x + y + z = 10 \\ 2x y + 3z = 15 \\ 3x + 2y z = 8\end{cases}$就是一个三元一次方程组。
二、三元一次方程组的解一般地,使三元一次方程组中三个方程的左右两边都相等的三个未知数的值,叫做三元一次方程组的解。
三、解三元一次方程组的基本思路解三元一次方程组的基本思路是“消元”,即把“三元”化为“二元”,再把“二元”化为“一元”。
四、解三元一次方程组的方法1、代入消元法(1)选一个系数比较简单的方程进行变形,用含有一个未知数的代数式表示另一个未知数;(2)将变形后的方程代入另两个方程,消去一个未知数,得到一个二元一次方程组;(3)解这个二元一次方程组,求出两个未知数的值;(4)将求得的两个未知数的值代入变形后的方程,求出第三个未知数的值。
例如:解方程组$\begin{cases}x + y + z = 6 \\ x y = 1 \\2x + z = 5\end{cases}$由方程②可得$x = y + 1$,将其代入方程①和③,得$\begin{cases}(y + 1) + y + z = 6 \\ 2(y + 1) + z =5\end{cases}$整理得$\begin{cases}2y + z = 5 \\ 2y + z = 3\end{cases}$此时发现方程矛盾,所以此方程组无解。
2、加减消元法(1)若方程组中有一个未知数的系数的绝对值相等,可直接利用加减法消去这个未知数;(2)若方程组中三个方程中某个未知数的系数成倍数关系,可先把系数较小的方程两边同乘以一个适当的数,使该未知数的系数相等或互为相反数,再利用加减法消去这个未知数;(3)若方程组中三个方程中某个未知数的系数均不成倍数关系,则可先把其中两个方程分别乘以适当的数,使某一个未知数的系数相等或互为相反数,再把所得到的方程相加减,消去这个未知数。