安徽省繁昌县2015届九年级数学下学期第一次模拟考试试题
- 格式:doc
- 大小:4.33 MB
- 文档页数:12
2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答不给分. 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是A .3B .31C .3-D .31-2.下列运算正确的是 A . 523x x x =+ B .x x x =-23C .623x x x=⋅ D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是 A .①③ B .②④ C .③④ D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x 1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --=二、填空题(本大题共8小题,每小题3分,共24分)①正方体 ②圆锥体 ③球体7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分) 三、(本大题共4小题,每小题6分,共24分)15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值 ()xx x x x 224422+÷+++ ,其中 x = 2(第12题图) BA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l2交于点E, BD 与l4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2). 根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);FE A(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少? 六、(本大题共2小题,每小题10分,共20分)23. 已知抛物线22232y x mx m m =-++. (1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁7%21~30岁 39% 31~40岁 20% 16~20岁16%61~65岁3%41~50岁 15%图(1)24.已知:如图(1),△OAB 是边长为2的等边三角形,0A 在x 轴上,点B 在第一象限内;△OCA 是一个等腰三角形,OC =AC ,顶点C 在第四象限,∠C =120°.现有两动点P 、Q 分别从A 、O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A →O →B 运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围; (2)在OA 上(点O 、A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图(2),现有∠MCN =60°,其两边分别与OB 、AB 交于点M 、N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M 、N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b 10、25゜ 11、8 12、7413、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分)15、解:原式=1212222+⨯-+ …………………………………………………3分=222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1 ……………………………………………4分 将2=x 代入得: 221=x………………………………………………………6分17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r.∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C=90° ∴OD ∥AC ∴△OBD ∽△ABC. …………………………2分∴OD AC = OBAB,即12128r r-=解得:524=r∴⊙O 的半径为524………………………4分(2)四边形OF DE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF=∠B. ∵∠DEF=12∠DOB ∴∠B=12∠DOB.∵∠ODB=90° ∴∠DOB+∠B=90° ∴∠DOB=60°∵DE ∥AB ,∴∠ODE=60°.∵OD=OE ,∴△ODE 是等边三角形∴OD=DE ∵OD=OF ∴DE=OF ∴四边形OFDE 是平行四边形 ………7分 ∵OE=OF ∴平行四边形OFDE 是菱形. …………………………………8分 20、(1) ∵l2∥l4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分A∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分 (2)(批改时注意若学生用计算器计算,中间答案会有 少许不同,但最终答案一样) 过A 作AG ⊥l4,交l2于H ∵α=25° ∴∠ABE=25°∴sin 0.42AHABE AB∠=≈解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜∴91.0cos ≈=∠AD AGDAG 解得:AD ≈43.96 ………………7分∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈ …………………………………8分∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分 根据题意,得⎩⎨⎧x+y=53(x+1)+2(2y-1)=19 解得⎩⎨⎧x=2y=3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分 n=(1-m)(50+10×m 0.2)+(5-3-m)(20+10×m0.2)F E GH即 n=-100m2+80m+90 =-100(m-0.4)2+106. ……………………………7分 ∴当m=0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分)23、解:∵()m m m x m m mx x y 222322222++-=++-= ∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分当m=0时,顶点坐标为(0,0)当m=32-时,顶点坐标为(32-,94-) ……………………………………3分∵第三象限的平分线所在的直线为y=x∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分(2)∵m>0时,m m222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m m n∴当21-=m 时,n 有最小值21-…………………………………10分24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-;过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t∆=⋅=-⋅=-+. 即23142S t t=-+ .………………………………………2分 (图①) (2)当23t <≤时,(如图②)OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒.∴2113(32)222OPQ S OQ OP t t t t∆=⋅=⋅-=-. 即232S t t=-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t=-(2),0)或2(,0)3 …………………6分(3)BMN ∆的周长不发生变化.延长BA 至点F ,使AFOM =,连结CF .(如图③) ∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分 ∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。
九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。
2015年安徽省初中毕业学业考试模拟卷一数 学一、选择题(本大题共10小题,每小题4分,满分40分) 1.-2的绝对值是 【 】 A.-2B.12-C.12D.22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 【 】 A.7.5510⨯B.7.5510-⨯C.0.47510-⨯D.67510-⨯3.下列运算正确的是 【 】A.235a a a +=B.842a a a ÷=C.235a b ab +=D.235a a a ⋅=4.不等式组2139x x -≥-,⎧⎨>⎩的解集在数轴上可表示为【 】5.如图,下列水平放置的几何体中,主视图不是长方形的是【 】6.一个袋中装有1个红球,2个白球,3个黄球,它们除颜色外完全相同.小明从袋中任意摸出1个球,摸出的是白球的概率是【 】 A.16 B.13 C.12 D.17.为创建园林城市,宜城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是【 】A.5(x +21-1)=6(x -1)B.5(x +21)=6(x -1)C.5(x +21-1)=6xD.5(x +21)=6x8.若点123(2)(1)(1)A y B y C y -,,-,,,在反比例函数1y x=-的图象上,则【 】 A.12y y > 3y > B.3y > 2y 1y > C.2y 1y > 3y > D.1y 3y >> 2y 9.如图,在Rt △ABC 中(90),C ∠=放置边长分别是3,4,x 的三个正方形,则x 的值为【 】 A.5B.6C.7D.1210.如图,AB 为半圆O 的直径,AD ,BC 分别切O 于A ,B 两点,CD 切圆O 于点E ,AD ,CD 交于点D ,BC ,CD 交于点C ,连接OD ,OC ,对于下列结论:①2OD DE CD =∙,②AD +BC =CD ,③OD =OC ,④12ABCD S CD OA =∙,梯形⑤90DOC ∠=. 其中正确的结论有 【 】 A.①②⑤B.②③④C.③④⑤D.①④⑤二、填空题(本大题共4小题,每小题5分,满分20分) 11.在函数y ,自变量x 的取值范围是 . 12.分解因式:32242x x x -+= .13.如图,过正方形ABCD 的顶点B 作直线l ,过A ,C 作l 的垂线,垂足分别为E ,F .若AE =1,CF =3,则AB 的长度为 .14.如图,在Rt △ABC 中90ACB ,∠=,AC =4,BC =3,D 为斜边AB 上一点,以CD ,CB 为边作平行四边形CDEB ,当AD = 时,平行四边形CDEB 为菱形.三、(本大题共2小题,每小题8分,满分16分)15.计算:2014)452-⎛⎫⎪⎝⎭.16.先化简后求值:当1x =时,求代数式221121111x x x x x -+-∙+-+的值.四、(本大题共2小题,每小题8分,满分16分) 17.如图,在97⨯的小正方形网格中,△ABC 的顶点A ,B ,C 在网格的格点上.将△ABC 向左平移3个单位、再向上平移3个单位得到△A ′B ′C ′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90得到△323A B C ,依次旋转下去.(1)在网格中画出△A ′B ′C ′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A ′B ′C ′.18.同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道:011223⨯+⨯+⨯+…1(1)(1)(1)3n n n n n +-⨯=+-时,我们可以这样做: (1)观察并猜想:2212(10)1(11)2101212(12)(0112)+=+⨯++⨯=+⨯++⨯=++⨯+⨯;222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯ =(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+ =(1234)++++( ); …(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯=( )+[ ] = +=16⨯ . (3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y =kx -2的图象与x ,y 轴分别交于点A ,B ,与反比例函数3(0)2y x x=-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A ,B 两点的坐标;(2)设点P 是一次函数y =kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A 点处测得俯角为30正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有 名; (2)中位数落在 分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC 中,矩形DEFG 的边DE 在AB 上运动,点F ,G 分别在边BC ,AC 上.(1)若AB =8,DE =2EF ,求GF 的长;(2)若90ACB ∠=,如图2,线段DM ,EN 分别为△ADG 和△BEF 的角平分线,求证:MG =NF ; (3)求出矩形DEFG 的面积的最大值.2015年安徽省初中毕业学业考试模拟卷一1.D 【解析】本题考查了绝对值的定义及其性质.正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值就是0,所以-2的绝对值是2.2.B 【解析】本题考查用科学记数法表示较小的数.科学记数法的一般形式为10n a ⨯,其中1≤|a |<10,n 为整数,所以0.000075=7.5510-⨯.3.D 【解析】本题考查整式的运算,解答本题的关键是掌握整式的运算法则.对于选项A 2a ,与3a 不是同类项,不能直接合并;对于选项B,同底数幂相除,底数不变,指数相减,则844a a a ÷=;对于选项C,2a 与3b 不是同类项,不能直接合并;对于选项D,同底数幂相乘,底数不变,指数相加,则235a a a ⋅=,计算正确.4.D 【解析】本题考查一元一次不等式组的解集的求解及其在数轴上的表示方法.由21x -≥-得1x ≥,由3x >9得x >3,所以不等式组的解集为x >3,观察选项知,D 项正确.5.B 【解析】本题考查了三视图的知识.主视图是从物体的正面观看得到的视图.选项A,C,D 的主视图都是长方形,选项B 的主视图是三角形.6.B 【解析】本题考查概率的求解.一般地,如果在一次试验中,有n 种可能的结果,并且这些结果发生的可能性相等,其中事件A 发生的结果共有()m m n ≤种,那么事件A 发生的概率P(A )=m n .由于球除颜色外均相同,故每个球被摸到的可能性是相同的,根据概率公式可得所求概率211233P ++==. 7.A 【解析】本题考查由实际问题抽象出一元一次方程.根据公路的长度不变列出方程.由每间隔5米栽一棵,可知这一段公路长为5(x +21-1);由每隔6米栽1棵,可知这一段公路长为6(x -1),从而可得方程5(x +21-1)=6(x -1).8.C 【解析】本题考查利用反比例函数的增减性判断其图象上点的坐标特征.由题意可画出反比例函数1x y =-的图象,如图所示,由反比例函数的性质与图象易知213y y y ,>>.9.C 【解析】本题主要考查相似三角形的判定和性质、正方形的性质.解题的关键在于找到相似三角形.如图所示,根据已知条件可知,△CME ∽△PNM ,△CME ∽△GEF ,∴△PNM ∽△GEF ,∴PN MP GE GF =,∵PN =3,MP =x -3,GE =x -4,GF =4,∴3344x x -=-,解得x =0(舍去)或x =7,∴x =7.10.A 【解析】本题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质以及梯形的面积公式,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.连接OE ,∵AD ,CD ,BC 都为圆O 的切线,∴AD AB BC AB OE CD ⊥,⊥,⊥,且ED =AD ,EC =BC .由CD =DE +EC 得CD =AD +BC ,结论②正确;∵AD =ED ,OD 为公共边,∴Rt △ADO ≌Rt △EDO ,AOD EOD ∠=∠,同理得EOC BOC ∠=∠,又∵这四个角之和为平角,∴90DOC ∠=,结论⑤正确;∵90DOC DEO ∠=∠=CDO ODE ,∠=∠,∴△DEO ∽△DOC ,∴OD DE OD DC=,即2OD DE CD =⋅,结论①正确;又四边形ABCD 为直角梯形, ∴ABCD S =梯形12()AB AD BC ⋅+,又∵AD +BC =CD ,∴12ABCD S AB CD =⋅,梯形结论④错误;而OD 不一定等于OC ,结论③错误.11.32x ≥ 【解析】本题考查了二次根式有意义的条件.要使函数式子有意义,必须满足二次根式的被开方数是非负数,即2x -30≥,解得32x ≥.12.22(1)x x - 【解析】本题考查了提公因式法、公式法分解因式.原式222(21)2(1)x x x x x =-+=-.【解析】本题考查了三角形内角和定理、正方形的性质、全等三角形的性质与判定以及勾股定理的应用.∵四边形ABCD 是正方形, ∴A B=90BC BAD ABC ,∠=∠=. ∵AE ⊥直线l CF ,⊥直线l,∴90CFB AEB ∠=∠=,∴90BAE ABE ABE CBF ∠+∠=∠+∠=,∴BAE CBF ∠=∠.∵在△ABE 和△BCF 中, BAE CBF AEB BFC AB BC ∠=∠,⎧⎪∠=∠,⎨⎪=,⎩∴△ABE ≌△BCF ,∴BE =CF =3.在Rt △ABE 中,由勾股定理得AB =.14.75 【解析】本题考查了菱形的判定与性质.如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=,AC =4,BC =3,∴5AB ==.若平行四边形CDEB 为菱形,则CE BD ⊥,且OD =OB ,CD =CB . ∵1122ABC S AB OC AC BC ∆=⋅=⋅,∴125OC =.在Rt △BOC 中,根据勾股定理得95OB ,==,∴752AD AB OB =-=. 15.解:()20124)45-431=-+ 6分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分当1x =时,原式=1. 8分17.解:(1)△A ′B′C ′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A ′B ′C ′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分(2)1+2+3+…+n 011223⨯+⨯+⨯+…(1)n n +-⨯ 12(1)n n + ()13(1)1n n n +- n (n +1)(2n +1) 6分 (3)338350 8分19.解:(1)∵点()3M n -,在反比例函数32(0)x y x =-<的图象上. ∴n =1,∴()321M -,. 2分 ∵一次函数y =kx -2的图象经过点()321M -,,∴3212k =--,解得k =-2,∴一次函数的解析式为y =-2x -2. 5分 ∴A (-1,0),B (0,-2). 6分12(2)(34)(14)P P -,,,-. 10分 20.解:如图,过点C 作CE DE ⊥,交A B 的延长线于F ,交DE 于E .∵60FBC ∠=30BAC ,∠=,∴BAC BCA ∠=∠, ∴BC =AB =3000. 3分在Rt △BCF 中,BC =3000,60FBC ∠=,∴sin60CF BC =⋅= 7分∴500CE =. 9分答:海底黑匣子C 点处距离海面的深度为500)米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯2071217.25==, 11分所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x =4000. 2分经检验,x =4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分 (2)设购进甲种电脑x 台,则购进乙种电脑(15-x )台.由题意可得不等式4800035003000(15)50000x x ≤+-≤, 解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分 (3)设总获利为W 元,W =(4000-3500)x +(3800-3000-a )(15-x ) =(a -300)x +12000-15a , 10分 当a =300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分 23.解:(1)∵△ABC 的面积为24,AB =8, ∴△ABC 边AB 上的高h =6. 1分 设EF =x ,则GF =DE =2x . ∵GF ∥A B,∴△CGF ∽△CAB , ∴GFh EF ABh -=,即2686x x-=,解得x =2.4. 3分∴GF =4.8. 4分(2)过点G 作GP ∥BC ,过点D 作DP ∥EN ,GP ,DP 交于点P ,在DM 的延长线上截取DQ =DP ,连接QG . ∵DP ∥EN ,∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠=,∴GDP FEN ∠=∠. 同理可得DGP EFN ∠=∠.又∵GD =FE ,∴△GPD ≌△FNE ,∴45PG NF GDP FEN =,∠=∠=. 6分∵45GDQ GDP ∠=∠=,∴△GQD ≌△GPD ,∴QG PG GQD GPD =,∠=∠. 7分 ∵90MGP MDP ∠=∠=,∴180GMD GPD ∠+∠=.又∵180GMQ GMD ∠+∠=,∴GMQ GPD GQM ∠=∠=∠. 9分 ∴MG =QG . ∴MG =NF . 10分(3)作CH AB ⊥于点H ,交GF 于点I .设AB =a ,AB 边上的高为h ,DG =y ,GF =x ,则CH =h ,CI =h -y ,ah =48. 由(1)知,△CGF ∽△CAB , ∴GFCI ABCH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24hx =时,S 取得最大值为5765764812ah ==. ∴矩形DEFG 的面积的最大值为12. 14分。
2015年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。
其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。
安徽省繁昌县2015届中考数学模拟试题(二)2015年中考模拟试题 数学参考答案 一、选择题(本大题共10小题,每小题4分,满分40分)1-5 BDDDA 6-10 ABCCA二、填空题(本大题共4小题,每小题5分,满分20分)11. 3(m-n)2;12. 8 13. -3,-2 14. 221±三、(本大题共2小题,每小题8分,满分16分).15. x x 42-÷(x 2―1)=x x x )2)(2(-+÷x x-2………………2分=x x x )2)(2(-+×(-2-x x)…………4分=-x-2……………………………………….6分当x=23-时,原式=-(23-)-2=-2-23-=-4+3 ……….8分16.(1)(如下图)(4分); (2)49π (4分)。
(2)S 扫=S 扇A 1C 1A 2+ S △A 1B 1C 1-(S 扇B 1C 1B 2+ S △A 2B 2C 1)= S 扇A 1C 1A 2- S 扇B 1C 1B 2=14πA 1C 12-14πB 1C 12=14π( A 1C 12- B 1C 12)= 14π( A 1B 12+B 1C 12- B 1C 12)=14π×A 1B 12=14π×32=49π四、(本大题共2小题,每小题8分,满分16分)yxA OB 1C 1A 2B 2 A 117.(1)20% 列出方程3分,正确解出后5分,答后6分;2)计算并正确判断后共2分18. 周长:12+3π,面积:9π-123.求出周长得4分;求出面积得4分。
五、(本大题共2小题,每小题10分,满分20分) 19.解:延长BA 交CE 于D 点,则BD ⊥CE 在Rt △ACD 中,tan ∠ACD=AD CD =13=33,故∠ACD=30o 由cos ∠ACD=C CD A 知,CD=AD ·c os ∠A CD=10×cos30o =53 由sin ∠ACD=C AD A 知AD=AC ·sin ∠ACD=10×12=5 ∴BD=BA+AD=3+5=8在Rt △BCD 中BC=22D B CD +=22(53)8+=7564+=139∴125<139<144∴BC ≈1220.151六、(本题满分12分)21.(1)(6分)证明:在正方形ABCD 中,AD=CD, ∠BAD=∠ADC=90o ∴∠ADG=180 o -∠ADC=90o ∴∠CDE=∠ADG又∵EF ⊥AC ∴∠AEF=90o -∠CAD=45o ∴∠DEG =∠AEF=45o 在Rt △EDG 中,∠DGE=90o -∠DEG=45o ∴∠DGE=∠DEG ∴ED=GD △ADG ≌△CDE ;(2)∵CE 平分∠ACD ∴∠ACE=∠ECG 又∵EF ⊥AC AD ⊥CD ∴ED=E F结果易知 EF=AF=DE=DG 故设DG 为k 则ED=k AE=2k AD=AE+ED=(2+1)ktan ∠AGD=2+1七、(本题满分12分)22.(1)y=-83 (x+1)2+827或y=-83x 2-43x+3; (2)-2≤x ≤0; 共有(-9,0);(4,0);(1,0)和(-87,0)共四个点。
2015年九年级数学模拟试卷一一、选择题(本大题共有8个小题,每小题3分,共24分.).1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B . 2个C . 3个D . 4个2.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x 2作如下平移( )A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位3.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的概率为( ) A.31B.52 C.21 D.53 4.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( ) A.168(1+x)2=108B.168(1-x)2=108C.168(1-2x)=108D.168(1-x 2)=1085.若方程0132=--x x 的两根为1x 、2x ,则2121x x x x +的值为( )A .-3B . 3C .31D . 31-6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是( )A.4πB.3πC.22πD.2π7.如图☉O 中,半径OD ⊥弦AB 于点C,连接AO 并延长交☉O 于点E,连接EC,若AB=8,CD=2, 则EC 的长度为( ) A.25B.8C.210D.2138.在同一平面直角坐标系中,函数y=mx+m 和函数y=-mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )二、填空题(每小题3分,共24分) 9.若方程032)1(12=-+-+mx xm m 是关于x 的一元二次方程,则m= .10.函数c bx x y -+=2的图象经过点(1,2),则b-c 的值为 .11.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 。
2015年安徽省初中毕业学业考试模拟卷一数学时间120分钟满分150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.|-2|的倒数是()A.12B.-12C.2D.-22.下列运算正确的是()A.6a-5a=1B.a2·a3=a5C. (a2)3=a5D.a6÷a3=a23.从2011年秋季起,国务院启动实施农村义务教育学生营养改善计划,切实改善农村义务教育学生营养膳食状况,惠及这些地区约2 600万名在校学生.用科学记数法表示2 600万,正确的是()A.2 600×104B.26×106C.2.6×107D.2.6×1084.一个几何体的三视图如图,其中主视图和左视图都是长为3、宽为2的矩形,俯视图是直径为2的圆,则这个几何体的侧面展开图的面积为()A.2πB.4πC.6πD.8π5.A市中考理科实验加试有物理、化学、生物三个科目,B市中考理科实验加试只有物理、化学两个科目,每位考生都是随机任意抽取一科参加考试.在A市考试的表哥小明和在B市考试的表弟小亮所抽取的科目相同的概率是()A. 12B.13C.25D.166.定义运算a⊗b=a(a-b).当x⊗5=6时,x的值为()A.-1或6B. 1或-6C.-3或2D. 3或-27.如图,A,B是公路l两旁的两个村庄,A村到公路l的距离AC=1 km,B村到公路l的距离BD=2 km,且C,D之间的距离为4 km.则A,B两村之间的距离为()A.4 kmB.5 kmC.6 kmD.7 km8.如图,AB是⊙O的直径,C,D是⊙O上的两个点,BC=BD.若∠BDC=35°则∠OCD=()A.20°B.25°C.30°D.35°9.如图,将菱形ABCD的对角线BD向上平移至AE,连接AC和DE立的是()A.DA=DEB.BD=CEC.∠EAC=90°D.∠ABC=2∠E10.如图,直线y=-x+4与两坐标轴分别相交于A,B点,点M是线段AB上任意一点(A,B两点除外),过点M分别作MC⊥OA于点C,MD⊥OB于点D.当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD 与△AOB重叠部分的面积为S.则S关于a的函数关系图象的大致形状是()二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:23x x --1-1x1-=.12.4,…,当n≥1时,猜想并写出第n个等式:.13.如图,锐角△ABC内接于半径为2的⊙O,BD⊥AC于D点.若CD=1,BC=3,则圆心O到弦AB的距离为.14.如图,在四边形ABCD中,有以下五个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;⑤∠B=∠D.从这五个条件中任选两个,能推出四边形ABCD为平行四边形的是. (请把所有正确选法的序号以组合的形式都填写在横线上)三、(本大题共2小题,每小题8分,满分16分)15.计算:2 0120tan45°+112-⎛⎫⎪⎝⎭.16.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,此时两杯口的边缘重合于点A,甲杯与水平面的倾斜角为30°,求乙杯中的液面与图中点P的距离. (,计算结果保留整数)四、(本大题共2小题,每小题8分,满分16分)17.如图,直线y1=kx(k>0)与双曲线y2=4x交于A (m1,n1),B(m2,n2)两点,(1)观察图象,比较当x<0时,y1与y2的大小;(2)求m1n2+m2n1的值.18.如图,方格纸中每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的三个顶点均在格点上.(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,写出对称轴的解析式;若不成轴对称图形,请简要分析原因.五、(本大题共2小题,每小题10分,满分20分)19.创新初级中学2011年招收七年级新生500人,计划在今后的连续两年里逐年增加七年级新生的招生数,到2013年计划七年级新生招生数达到800人.(1)求2012年、2013年计划招收七年级新生的平均增长率(26);(2)照此计划,2013年创新初级中学在校学生数能否超过2 000人?请说明理由.20.如图,△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.(1)求证:EC=EA=EB;(2)写出图中两对相似三角形,并证明其中的一对.六、(本题满分12分)21.今年三月份,育人中学开展了学雷锋知识竞赛.九(1)班对本班成绩(成绩取整十数,满分为100分)作了统计分析,绘制成如图频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)求出频数、频率分布表中a,b的值并补全频数分布直方图;(2)求出这次知识竞赛成绩的众数、中位数和平均数;(3)学校准备从100分的学生中抽选1人介绍雷锋事迹,那么取得了100分的小锋被选上的概率是多少?七、(本题满分12分)22.某公司生产并销售A,B两种品牌新型节能设备,第一季度共生产两种品牌设备20台,每台的成本和售价如下表:设销售A种品牌设备x台,20台A,B两种品牌设备全部售完后获得利润y万元.(利润=销售价-成本)(1)求y关于x的函数关系式;(2)若生产两种品牌设备的总成本不超过80万元,那么公司如何安排生产A,B两种品牌设备,售完后获利最多?并求出最大利润;(3)公司为营销人员制定奖励促销政策:第一季度奖金=公司总利润×销售A种品牌设备台数×1%,那么营销人员销售多少台A种品牌设备,获得奖励最多?最大奖金数是多少?八、(本题满分14分)23.(1)在四边形ABCD中,AB=2BC,E为AB的中点,分别连接DE,CE.①如图1,当四边形ABCD是矩形时,求证:∠DEC=90°;②如图2,当四边形ABCD是平行四边形时,∠DEC=90°还成立吗?为什么?(2)如图3,在四边形ABCD中,AD∥BC,AD<BC,∠A=90°,∠ADC的平分线DE交AB边于点E,连接CE.当∠DEC=90°时,求证:AE=EB.2013年安徽省初中毕业学业考试模拟卷一1.A2.B3.C4.C5.B6.A7.B8.A9.B 10.D 11.2x +112.n +1n +2=(n +1)n +2n +213.23 14.①与②,①与③,①与⑤,②与④,③与④,③与⑤15.解:原式=1-6+1+2=-2.16.解:过点P 作PH ⊥AB 于点H . 在Rt △APD 中,AP =AD ·sin30°=12×12=6 cm.在Rt △APH 中,AH =AP ·cos30°=6×32=3 3 cm.设乙杯中液面的高度为h ,则π·62·h =π·32·16, 解得h =4 cm.所以乙杯中的液面与图中点P 的距离为AB -AH -h =16-33-4=12-33≈7 cm. 17.解:(1)观察图象,得当x ≤m 2时,y 1≤y 2;当m 2<x <0时,y 1>y 2. (2)∵直线y 1=kx (k >0)与双曲线y 2=4x 都关于原点O 对称,∴A (m 1,n 1),B (m 2,n 2)两点也关于原点O 对称, ∴m 2=-m 1,n 2=-n 1, ∴m 1n 2+m 2n 1=-2m 1n 1, 又4m 1=n 1,则m 1n 1=4, ∴m 1n 2+m 2n 1=-8. 18.解:(1)如图. (2)如图.(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形,对称轴的解析式为y =-x .19.解:(1)设创新初级中学2012年、2013年计划招收七年级新生的平均增长率为x . 由题意得500(1+x )2=800,解得x 1=-1+ 1.6≈-1+1.26=0.26,x 2=-1- 1.6(不合题意,舍去).故创新初级中学2012年、2013年计划招收七年级新生的平均增长率约为26%.(2)2011年招收新生500人,2012年招收新生500(1+x )人,2013年招收新生800人, 则500+500(1+x )+800≈1 930<2 000.所以2013年创新初级中学在校学生数不会超过2 000人. 20.解:(1)∵EC ⊥BD ,∠BDC =60°, ∴∠ECD =30°,DE =12CD .∵CD =2DA ,∴DE =DA ,∴∠DAE =∠DEA =12∠EDC =∠ECA =30°,∴EC =EA .又∠EBA =∠BDC -∠BAC =15°, ∠EAB =∠DAB -∠DAE =45°-30°=15°, ∴∠EAB =∠EBA , ∴EA =EB , 即EC =EA =EB .(2)△ADE ∽△AEC ,△BCD ∽△ACB . 证明△ADE ∽△AEC :由(1)可知∠DAE =∠EAD =30°,∠DEA =∠ECD =30°, ∴△ADE ∽△AEC .21.解:(1)由频数、频率分布表知九(1)班共有学生50人,故80分的频数为50×0.10=5,即a =5.又100分的人数为25人,故频率为25÷50=0.50,即b =0.50. 补图如下:(2)100分的人数为25,人数最多,故知识竞赛成绩的众数是100分;将50人的成绩由低到高排列,最中间的两人的成绩分别是90分和100分,故这次知识竞赛成绩的中位数是90+1002=95分;平均数为60×2+70×4+80×5+90×14+100×2550=91.2分. (3)因为获100分的学生共有25人,所以小锋被选上的概率是125.22.解:(1)y =(4-3)x +(8-5)×(20-x ), 即y =-2x +60(0≤x ≤20). (2)3x +5×(20-x )≤80, 解得x ≥10.结合(1)可知,当x =10时,y 最大=40万元. (3)设营销人员第一季度奖金为ω,则ω=xy ×1%, 即ω=x (-2x +60)×1%=-150(x -15)2+4.5,故当x=15时,ω取最大值,为4.5.故营销人员销售15台A种品牌设备,获得第一季度奖金最多,最大奖金数为4.5万元.23.解:(1)①由题易知△ADE和△BEC是两个全等的等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°.②还成立.易得△ADE和△BEC是两个等腰三角形,由AD∥BC,得∠A+∠B=180°.又∠A+∠B+2(∠AED+∠BEC)=360°,∴∠AED+∠BEC=90°,∴∠DEC=90°.(2)如图,过点E作EF⊥CD,垂足为F.∴AE=EF.∵∠AED+∠ADE=90°,∠DCE+∠CDE=90°,∠ADE=∠CDE,∴∠AED=∠DCE.∵AD∥BC,∠A=90°,∴∠B=∠BCE+∠BEC=90°,又∠AED+∠BEC=90°,∴∠AED=∠DCE=∠BCE,∴CE是∠DCB的平分线,∴EB=EF,∴AE=EB.。
第9题图2015级九年级(下)一诊模拟考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卷上,不得在试卷上直接作答.2.答题必须使用黑色碳素笔书写,字体工整、笔迹清楚,按照题号顺序在各题的答题区内作答,超出答题区域的答案无效,在草稿纸上、试卷上答题无效。
一、选择题:(本大题10个小题,每小题4分,共40分)1.9的平方根是( ) A .3 B .-3 C .±3 D .812.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .235x x x +=B .()246xx =C .623x x x ÷= D .()4520xx -=4.如图,//AB CD ,BD 平分ABC ∠,若DCB ∠=100︒, 则∠D 的度数是( ).A .040 B .050 C .030 D .045 5.不等式组2251x x >-⎧⎨-≤⎩的解集在数轴上表示正确的是( )6.下列调查中,适合采用全面调查(普查)方式的是( )A .了解一批节能灯泡的使用寿命B .了解某班同学“跳绳”的成绩C .了解全国每天丢弃的塑料袋的数量D .了解上海卫视“今晚80后”栏目的收视率 7.分式方程3211x x =-+的解是( ) A .5x =- B .5x = C .3x =- D .3x =8. 如图,点A 、B 、C 为⊙O 上的三点,连接AC ,若∠ABC =130°,则∠OCA 的度数为( ) A .030 B .050 C .040 D .0459. 如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC,若D F C B D F S S ∆∆:=1:4,则D C A B D F S S ∆∆:=( ) A.1:16 B.1:18 C.1:20 D.1:2410.一艘轮船往返于重庆、上海两地.轮船先从重庆顺流而下航行到上海,在上海停留一段时间后,又从上海逆流而上航行返回重庆(轮船在静水中的航行速度始终保持不变).设轮船从重庆出发后所用时间为t (h ),(第4题图)ABCD轮船离重庆的距离为s (km ),则s 与t 的函数图象大致是( )B .C积为2 cm 2,第2个图案面积为4 cm 2,第3个图案面积为7 cm 2…,依此规律,第8个图案面积为( )cm 2.坐标为(0 A .(3,2) B.()33,332 C.(23,4) D.()235,534二、填空题:(本大题共6个小题,每小题4分,共24分)13.据重庆市旅游局统计,2014年“十月黄金周”累计到重庆游玩的人数为2310000,这个数用科学记数法表示为___________. 14.使函数11-+=x x y 有意义的x 的取值范围是____________. 15则这个队队员年龄的中位数是_________岁.16.如图,⊙O 的半径为4,PC 切⊙O 于点C ,交直径AB 延长线于点P ,若CP 长为4, 则阴影部分的面积为 .17.小红准备了五张形状、大小完全相同的不透明卡片,正面分别写-3、-1、0、1、3,将这五张卡片的正面朝下放在桌面上,从中任意抽取一张,将卡片上的数字记为a ,再从剩下的卡片中任取一张卡片并把数字记为b ,恰好使得关于x 、y 的二元一次方程组⎩⎨⎧=+=-12y mx n y x 有整数解,且点(m ,n )落在双曲线x y 3-=上的概率为 .18.如图,正方形ABCD 的边长为3,延长CB 至点M ,使23=∆ABM S ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连接ON ,则ON 的长为 .三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.19. 计算:()303201421330sin 271-⎪⎭⎫ ⎝⎛---+--+-π 20. 如图,在Rt △ABC 中,∠C =90°,点D 是AC 边上一点, sin ∠DBC =54,且BC =6,AD =4.求cos A 的值. 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答卷中对应的位置上。
九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20°B .40°C .60°D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 75.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a -,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类 16. 750a ,n n an 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分)17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD =……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD ,∴tan ∠CBD = tan ∠BAD . 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE=. …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).图1设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
安徽省繁昌县2015届九年级数学下学期第一次模拟考试试题
2015年中考模拟试题
数学参考答案
二、填空题(本大题共4小题,每小题5分,满分20分) 11.a 2a 2
(答案不唯一) 12. 5 13.2 14.①②③④
三、(本大题共2小题,每小题8分,满分16分)
(2)1
15.12x x x x x
x -+⋯=∙+=-⋯⋯⋯⋯⋯3分
解:原式..5分
x x x x x x ≠≠∴≠≠∴⋯⋯⋯⋯⋯⋯+10,且0-1且0=16分
当=1时,原式=1-2=-.1.8分
b =2
五、(本题共2小题,每小题10分,满分20分)
19.解:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=60°.
,……………3分 BE=AB•cos60°=30×
1
2
=15(米),……………5分 在Rt △ADE 中,∠ADB=45°,∴DE=AE=1(米),……………6分 ∴DB=DE ﹣BE=≈11.0(米).……………9分 故此时应将坝底向外拓宽大约11.0米.……………10分
20.解:(1)∵双曲线y= 经过点A (1,3),
∴2
k=3,∴双曲线的解析式为:y = x
3
.……………………2分
∵点B (m ,﹣1)在双曲线y =
x
3
上,
∴m =﹣3,则B 点坐标为(﹣3,﹣1).
由点A (1,3),B (﹣3,-1)在直线y =k 1x +b 上,
得,
{11331
k b k b +=-+=-……………………………4分
解得,
{
112
k b ==∴直线的解析式为:y =x +2.…………………………………6分
(2)由图可知,301x x -<<>或…………………………………8分 (3)过点A 作AD ⊥OC 于点D , ∵AO=AC , ∴OD=DC , ∵点A 在双曲线y=
x
3
图象上, ∴ OD×AD=1.5,∴ CD×AD=1.5,∴
AOC
S
=3…………………………………10分
六、(本题满分12分)
……………………4分 )本次测试的优秀率是
与直方图频数有矛盾,因此有部分40%表示王刚,意画树状图如下:共有七、(本题满分12分)
22.解:(1)设商家一次购买这种产品x 件,由题意得:
3000﹣10(x ﹣10)=2600,
解得x=50,
答:商家一次购买这种产品50件时,销售单价恰好为2600元;……………4分 当0≦x ≦10时,y=(3000﹣2400)x=600x ,
当10<x ≦50时,y =[3000﹣10(x ﹣10)﹣2400]x ,即y=﹣10x2+700x
当x >50时,y=(2600﹣2400)x=200x 为整数)
为整数)且且为整数)且x x x x x x x x x x y ⎪⎩⎪⎨⎧>≤<+≤≤=∴,50(200,5010(70010-,100(6002……………9分
(3)由y =﹣10x2+700x ,﹣10<0可知抛物线开口向下,
时,当35)10(2700=-⨯-=x 利润y 有最大值,
此时,销售单价为3000﹣10(x ﹣10)=2750元,……………11分
答:公司应将最低销售单价调整为2750元.……………12分
八、(本题满分14分)
23.(1)过C 作CH AB H EF=,GF=EF=.x x ⊥于,设则
由题意得AB=10,CH=
245 ……1分
测试成绩(分) 50 60 70 80 90 100 0
AB CGF CAB 24-
5=,24105
120120
=EF=3737.2.4x G x F x
∴⋯∴⋯⋯⋯,
,解得,即分
分
(2)能…………5分
.BEF FCG BEF FCG EF=CG BE=FC BF=FG EF=CG=GD=,AG=8-.
ADG=ACB=90A=A
ADG ACB CB 8-106
3EF=39.6.7.AG DG
AB y y y
y
y ≅∴∠⋯⋯⋯⋯⋯⋯⋯⋯∠∠∠∴∴=⋯==当与全等时,只能是,,分设则,即解得即分
分
(3)不能.………..10分
第23题图。