高二年级期末考试数学试题
- 格式:doc
- 大小:293.50 KB
- 文档页数:5
北京市西城区2023—2024学年度第二学期期末试卷高二数学第1页(共5页)北京市西城区2023—2024学年度第二学期期末试卷高二数学2024.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在等差数列{}n a 中,13a =,35a =,则10a =(A )8(B )10(C )12(D )14(2)设函数()sin f x x =的导函数为()g x ,则()g x 为(A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )非奇非偶函数(3)袋中有5个形状相同的乒乓球,其中3个黄色2个白色,现从袋中随机取出3个球,则恰好有2个黄色乒乓球的概率是(A )110(B )310(C )15(D )35(4)在等比数列{}n a 中,若11a =,44a =,则23a a =(A )4(B )6(C )2(D )6±(5)投掷2枚均匀的骰子,记其中所得点数为1的骰子的个数为X ,则方差()D X =(A )518(B )13(C )53(D )536北京市西城区2023—2024学年度第二学期期末试卷高二数学第2页(共5页)(6)设等比数列{}n a 的前n 项和为n S ,若11a =-,1053231S S =,则6a =(A )132-(B )164-(C )132(D )164(7)设函数()ln f x x =的导函数为()f x ',则(A )(3)(2)(3)(2)f f f f ''<<-(B )(3)(3)(2)(2)f f f f ''<-<(C )(2)(3)(3)(2)f f f f ''<<-(D )(2)(3)(2)(3)f f f f ''<-<(8)设等比数列{}n a 的前n 项和为n S ,则“{}n a 是递增数列”是“{}n S 是递增数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)如果()e x f x ax =-在区间(1,0)-上是单调函数,那么实数a 的取值范围为(A )1(,][1,)e -∞+∞ (B )1[,1]e(C )1(,]e-∞(D )[1,)+∞(10)在数列{}n a 中,12a =,若存在常数(0)c c ≠,使得对于任意的正整数,m n 等式m n m n a a ca +=+成立,则(A )符合条件的数列{}n a 有无数个(B )存在符合条件的递减数列{}n a (C )存在符合条件的等比数列{}n a (D )存在正整数N ,当n N >时,2024n a >北京市西城区2023—2024学年度第二学期期末试卷高二数学第3页(共5页)第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
江苏省2024届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,半焦距为c ,过点2F 作一条渐近线的垂线,垂足为P ,若12PF F △的面积为22c ,则该双曲线的离心率为()A.3B.2D.2.如图,样本A 和B 分别取自两个不同的总体,它们的平均数分别为A x 和B x ,标准差分别为A S 和B S ,则()A .A B A B x x S S >>B.,A B A Bx x S S <>C.A B A Bx x S S ><D.,A B A Bx x S S <<3.变量x ,y 满足约束条件10,1,1,x y y x -+⎧⎪⎨⎪-⎩则65z x y =+的最小值为()A.6- B.8-C.1- D.54.函数()210x y x x+=>的值域为()A.[1,)+∞ B.(1,)+∞C.[2,)+∞ D.(2,)+∞5.已知等差数列{}n a 的公差0d <,若3721a a =,2810a a +=,则该数列的前n 项和n S 的最大值为()A.30B.35C.40D.456.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为()A.120B.84C.56D.287.设x ∈R ,则x <3是0<x <3的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.某一电子集成块有三个元件a ,b ,c 并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为45,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A.1231 B.48125C.1625 D.161259.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-= ,点P 是OC 上一点,则当PA PB ⋅ 取得最小值时,点P 的坐标为()A.114,,333⎛⎫ ⎪⎝⎭ B.11,,222⎛⎫ ⎪⎝⎭C.11,,144⎛⎫ ⎪⎝⎭ D.()2,2,810.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合{1,2,3}中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1B.2C.3D.411.下面四个条件中,使a b >成立的充分而不必要的条件是A.1a b +> B.1a b ->C.22a b > D.33a b >12.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1OO ,2OO ,3OO ,4OO 分别是大星中心点与四颗小星中心点的联结线,16α≈o ,则第三颗小星的一条边AB 所在直线的倾斜角约为()A.0B.1C.2D.3 二、填空题:本题共4小题,每小题5分,共20分。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
2023-2024学年北京市海淀区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.椭圆y 22+x 2=1的焦点坐标为( ) A .(﹣1,0),(1,0)B .(0,﹣1),(0,1)C .(−√3,0),(√3,0)D .(0,−√3),(0,√3) 2.抛物线y 2=x 的准线方程是( )A .x =−12B .x =−14C .y =−12D .y =−143.直线3x +√3y +1=0的倾斜角为( )A .150°B .120°C .60°D .30°4.已知点P 与A (0,2),B (﹣1,0)共线,则点P 的坐标可以为( )A .(1,﹣1)B .(1,4)C .(−12,−1)D .(﹣2,1) 5.已知P 为椭圆C :x 24+y 2b 2=1上的动点,A (﹣1,0),B (1,0),且|P A |+|PB |=4,则b 2=( ) A .1 B .2 C .3 D .46.已知三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1⊥底面ABC ,则“CB ⊥BB 1”是“CB ⊥AB “的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.在空间直角坐标系O ﹣xyz 中,点P (﹣2,3,1)到x 轴的距离为( )A .2B .3C .√5D .√10 8.已知双曲线C :x 2−y 2b 2=1的左右顶点分别为A 1,A 2,右焦点为F ,以A 1F 为直径作圆,与双曲线C 的右支交于两点P ,Q .若线段PF 的垂直平分线过A 2,则b 2的数值为( )A .3B .4C .8D .910.如图,已知菱形ABCD 的边长为2,且∠A =60°,E ,F 分别为棱AB ,DC 中点.将△BCF 和△ADE 分别沿BF ,DE 折叠,若满足AC ∥平面DEBF ,则线段AC 的取值范围为( )A .[√3,2√3)B .[√3,2√3]C .[2,2√3)D .[2,2√3]二、填空题共5小题,每小题4分,共20分。
2023-2024学年江苏省苏州市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,直线l :x +√3y +1=0的倾斜角为( ) A .π6B .π3C .2π3D .5π62.在平面直角坐标系xOy 中,已知双曲线C :x 24−y 2=1的左焦点为F ,点A 在C 的右支上,A 关于O的对称点为B ,则|AF |﹣|BF |=( ) A .−2√5B .2√5C .﹣4D .43.若{a →,b →,c →}构成空间的一个基底,则下列向量不共面的是( )A .b →+c →,b →,b →−c →B .a →,a →+b →,a →−b →C .a →+b →,a →−b →,c →D .a →+b →,a →+b →+c →,c →4.已知{a n }是等比数列,若a 2a 4=a 3,a 4a 5=8,则a 1=( ) A .14B .12C .2D .45.在平面直角坐标系xOy 中,直线l :mx +y ﹣m =0被圆M :x 2+y 2﹣4x ﹣2y +1=0截得的最短弦的长度为( ) A .√2B .2C .2√2D .46.已知平面α={P |n →•P 0P →=0},其中点P 0(1,2,3),法向量n →=(1,1,1),则下列各点中不在平面α内的是( ) A .(3,2,1)B .(﹣2,5,4)C .(﹣3,4,5)D .(2,﹣4,8)7.在平面直角坐标系xOy 中,已知一动圆P 经过A (﹣1,0),且与圆C :(x ﹣1)2+y 2=9相切,则圆心P 的轨迹是( ) A .直线B .椭圆C .双曲线D .抛物线8.2020年7月23日,“天问一号”在中国文昌航天发射场发射升空,经过多次变轨后于2021年5月15日头现软着陆火星表面.如图,在同一平面内,火星轮廓近似看成以O 为圆心、R 1为半径的圆,轨道Ⅰ是以M 为圆心、R 2为半径的圆,着陆器从轨道Ⅰ的A 点变轨,进入椭圆形轨道Ⅱ后在C 点着陆.已知直线AC 经过O ,M ,与圆O 交于另一点B ,与圆M 交于另一点D ,若O 恰为椭圆形轨道Ⅱ的上焦点,且R 1R 2=35,AB =3CD ,则椭圆形轨道Ⅱ的离心率为( )A .13B .23C .25D .35二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在平面直角坐标系xOy 中,已知曲线C :x 2m−1+y 2=m ,则下列说法正确的有( )A .若m >1,则C 是椭圆B .若m >2,则C 是椭圆C .若m <0,则C 是双曲线D .若m <1,则C 是双曲线10.已知数列{a n }满足a 1=1,a n +1=pa n +q (p ,q ∈R ,n ∈N *),设{a n }的前n 项和为S n ,则下列说法正确的有( )A .若p =﹣1,q =3,则a 10=2B .若p =﹣1,q =3,则S 10=30C .若p =2,q =1,则a 10=1024D .若p =2,q =1,则S 10=203611.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,已知AB =AD =AA 1=1,∠A 1AD =∠A 1AB =∠BAD =60°,E 为棱CC 1上一点,且C 1E →=2EC →,则( )A .A 1E ⊥BDB .A 1E ⊥平面BDD 1B 1C .BD 1=√2D .直线BD 1与平面ACC 1A 1所成角为π412.在平面直角坐标系xOy 中,已知抛物线C :y 2=2x 的焦点为F ,点A ,B 为C 上异于O 不同两点,故OA ,OB 的斜率分别为k 1,k 2,T 是C 的准线与x 轴的交点.若k 1k 2=﹣4,则( ) A .以AB 为直径的圆与C 的准线相切B .存在k 1,k 2,使得|AB |=52C .△AOB 面积的最小值为34D .|AF||BF|=|AT||BT|三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知菱形ABCD 的边长为2,一个内角为60°,顶点A ,B ,C ,D 均在坐标轴上,以A ,C 为焦点的椭圆Γ经过B ,D 两点,请写出一个这样的Γ的标准方程 . 14.在平面直角坐标系xOy 中,已知点A (2,2),记抛物线C :y 2=4x 上的动点P 到准线的距离为d ,则d ﹣|P A |的最大值为 .15.已知圆台的高为2,上底面圆O 1的半径为2,下底面圆O 2的半径为4,A ,B 两点分别在圆O 1、圆O 2上,若向量O 1A →与向量O 2B →的夹角为60°,则直线AB 与直线O 1O 2所成角的大小为 . 16.函数y =[x ]被广泛应用于数论、函数绘图和计算机领域,其中[x ]为不超过实数x 的最大整数,例如:[﹣1]=﹣1,[4.2]=4.已知数列{a n }的通项公式为a n =[log 2(2n +1)],设{a n }的前n 项和为S n ,则使得S n ≤300的最大正整数n 的值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,已知四边形ABCD 为平行四边形,A (﹣1,﹣1),B (2,0),D (0,1).(1)设线段BD 的中点为E ,直线l 过E 且垂直于直线CD ,求l 的方程; (2)求以点C 为圆心、与直线BD 相切的圆的标准方程.18.(12分)已知数列{a n }的前n 项和为S n ,且4S n =(2n +1)a n +1(n ∈N *). (1)求{a n }的通项公式; (2)记b n =1a n a n+1,求数列{b n }的前n 项和T n . 19.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知∠BAC =90°,AB =AC =2,点E ,F 分别为线段AB ,AC 上的动点(不含端点),且AF =BE ,B 1F ⊥C 1E . (1)求该直三棱柱的高;(2)当三棱锥A 1﹣AEF 的体积最大时,求平面A 1EF 与平面ACC 1A 1夹角的余弦值.20.(12分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,焦距为4√3. (1)求C 的标准方程;(2)若斜率为12的直线l (不过原点O )交C 于A ,B 两点,点O 关于l 的对称点P 在C 上,求四边形OAPB 的面积.21.(12分)已知数列{a n }满足a 1=1,a n +1=a n +1+cos n π(n ∈N *). (1)求a 2,a 3及{a n }的通项公式;(2)若数列{b n }满足b 2=2且b 2k ﹣1=a 2k ﹣1,b 2k +2=3b 2k (k ∈N *),记{b n }的前n 项和为S n ,试求所有的正整数m ,使得S 2m =2S 2m ﹣1成立.22.(12分)如图,在平面直角坐标系xOy 中,已知双曲线C 1:x 2a 2−y 2a 2+2=1的右焦点为F (2,0),左、右顶点分别为A 1,A 2,过F 且斜率不为0的直线l 与C 的左、右两支分别交于P 、Q 两点,与C 的两条渐近线分别交于D 、E 两点(从左到右依次为P 、D 、E 、Q ),记以A 1A 2为直径的圆为圆O . (1)当l 与圆O 相切时,求|DE |;(2)求证:直线A 1Q 与直线A 2P 的交点S 在圆O 内.2023-2024学年江苏省苏州市高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,直线l :x +√3y +1=0的倾斜角为( ) A .π6B .π3C .2π3D .5π6解:由于直线l :x +√3y +1=0的斜率为−√33,故它的倾斜角为5π6,故选:D .2.在平面直角坐标系xOy 中,已知双曲线C :x 24−y 2=1的左焦点为F ,点A 在C 的右支上,A 关于O的对称点为B ,则|AF |﹣|BF |=( ) A .−2√5B .2√5C .﹣4D .4解:设双曲线C 的右焦点为F ', 由双曲线的对称性可知,|BF |=|AF '|,所以由双曲线的定义知|AF |﹣|BF |=|AF |﹣|AF '|=2a =4. 故选:D .3.若{a →,b →,c →}构成空间的一个基底,则下列向量不共面的是( )A .b →+c →,b →,b →−c →B .a →,a →+b →,a →−b →C .a →+b →,a →−b →,c →D .a →+b →,a →+b →+c →,c →解:由共面向量的充要条件可得:对于A 选项,b →=12(b →+c →)+12(b →−c →),所以b →+c →,b →,b →−c →三个向量共面;对于B 选项,同理:a →,a →+b →,a →−b →三个向量共面; 对于D 选项,a →+b →+c →=(a →+b →)+c →,所以三个向量共面; 故选:C .4.已知{a n }是等比数列,若a 2a 4=a 3,a 4a 5=8,则a 1=( ) A .14B .12C .2D .4解:根据题意,{a n }是等比数列,设其公比为q ,若a 2a 4=a 3,则有a 32=a 3,又由a 3>0,则a 3=1,又由a 4a 5=8,则(a 3q )(a 3q 2)=q 3=8,解可得q =2,所以a 1=a 3q 2=14. 故选:A .5.在平面直角坐标系xOy 中,直线l :mx +y ﹣m =0被圆M :x 2+y 2﹣4x ﹣2y +1=0截得的最短弦的长度为( ) A .√2B .2C .2√2D .4解:直线l :mx +y ﹣m =0过定点A (1,0),圆M :x 2+y 2﹣4x ﹣2y +1=0化为圆M :(x ﹣2)2+(y ﹣1)2=4,可知圆的圆心M (2,1),半径R =2, 因为点A (1,0)在圆M 内,如图, 由圆的几何性质可知,当AM ⊥直线l 时, 弦长最短为2√R 2−|MA|2=2√4−2=2√2. 故选:C .6.已知平面α={P |n →•P 0P →=0},其中点P 0(1,2,3),法向量n →=(1,1,1),则下列各点中不在平面α内的是( ) A .(3,2,1)B .(﹣2,5,4)C .(﹣3,4,5)D .(2,﹣4,8)解:对于A ,P 0P →=(2,0,﹣2),n →⋅P 0P →=1×2+1×0+1×(﹣2)=0,故选项A 在平面α内; 对于B ,P 0P →=(﹣3,3,1),n →⋅P 0P →=1×(﹣3)+1×3+1×1=1≠0,故选项B 不在平面α内; 对于C ,P 0P →=(﹣4,2,2),n →⋅P 0P →=1×(﹣4)+1×2+1×2=0,故选项C 在平面α内; 对于D ,P 0P →=(1,﹣6,5),n →⋅P 0P →=1×1+1×(﹣6)+1×5=0,故选项D 在平面α内. 故选:B .7.在平面直角坐标系xOy 中,已知一动圆P 经过A (﹣1,0),且与圆C :(x ﹣1)2+y 2=9相切,则圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线解:根据题意,可知点A (﹣1,0)位于圆C :(x ﹣1)2+y 2=9的内部, 所以圆P 与圆C 内切,且圆P 在圆C 的内部,作出圆C 过切点Q 的半径CQ ,则根据两圆内切的关系,得到点P 在CQ 上, 因为QC =PQ +PC =3,且P A =PQ ,所以P A +PC =3,根据AP +PC =3>AC =2,可知点P 轨迹是以A 、C 为焦点的椭圆.故选:B .8.2020年7月23日,“天问一号”在中国文昌航天发射场发射升空,经过多次变轨后于2021年5月15日头现软着陆火星表面.如图,在同一平面内,火星轮廓近似看成以O 为圆心、R 1为半径的圆,轨道Ⅰ是以M 为圆心、R 2为半径的圆,着陆器从轨道Ⅰ的A 点变轨,进入椭圆形轨道Ⅱ后在C 点着陆.已知直线AC 经过O ,M ,与圆O 交于另一点B ,与圆M 交于另一点D ,若O 恰为椭圆形轨道Ⅱ的上焦点,且R 1R 2=35,AB =3CD ,则椭圆形轨道Ⅱ的离心率为( )A .13B .23C .25D .35解:不妨设R 1=3,R 2=5,CD =m ,则AB =3m ,MB =R 2﹣AB =5﹣3m ,OM =R 1﹣MB =3m ﹣2, 所以MD =R 2=OM +OC +CD =3m ﹣2+R 1+m =4m +1=5⇒m =1,所以a ﹣c =OC =R 1=3①,2a =AC =MA +OM +OC =R 2+3m ﹣2+R 1=9②,联立①②解得a=92,c=32,所以椭圆离心率e=ca=13.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在平面直角坐标系xOy中,已知曲线C:x2m−1+y2=m,则下列说法正确的有()A.若m>1,则C是椭圆B.若m>2,则C是椭圆C.若m<0,则C是双曲线D.若m<1,则C是双曲线解:当m>1时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,若m=2,曲线为圆,故A错误;当m>2时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,曲线为椭圆,故B正确;当m<0时,曲线C:x2m−1+y2=m化为x2m(m−1)+y2m=1,此时m(m﹣1)>0,m<0,曲线为双曲线,故C正确;当m<1时,若m=0,曲线C:x2m−1+y2=m化为y2﹣x2=0,即y=±x,曲线为两条直线,故D错误.故选:BC.10.已知数列{a n}满足a1=1,a n+1=pa n+q(p,q∈R,n∈N*),设{a n}的前n项和为S n,则下列说法正确的有()A.若p=﹣1,q=3,则a10=2B.若p=﹣1,q=3,则S10=30C.若p=2,q=1,则a10=1024D.若p=2,q=1,则S10=2036解:对于选项AB,若p=﹣1,q=3,则a n+1+a n=3,a n+2+a n+1=3,两式相减可得a n+2=a n,∴{a n}为周期2的周期数列,a1=1,a2=2,则a10=a2=2,故A正确;S10=5(a1+a2)=5×3=15,故B错误;对于CD,若p=2,q=1,则a n+1=2a n+1,可得a n+1+1=2(a n+1),∵a1+1=2,∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,则a n=2n−1,∴a10=210−1=1023,故C错误;S10=2(1−210)1−2−10=2036,故D正确.故选:AD.11.如图,在平行六面体ABCD﹣A1B1C1D1中,已知AB=AD=AA1=1,∠A1AD=∠A1AB=∠BAD=60°,E 为棱CC 1上一点,且C 1E →=2EC →,则( )A .A 1E ⊥BDB .A 1E ⊥平面BDD 1B 1C .BD 1=√2D .直线BD 1与平面ACC 1A 1所成角为π4解:在平行六面体ABCD ﹣A 1B 1C 1D 1中,AB =AD =AA 1=1,∠A 1AD =∠A 1AB =∠BAD =60°, E 为棱CC 1上一点,且C 1E →=2EC →,对于A ,由题意知△A 1AB ≌△A 1AD ,∴A 1D =A 1B , 设AC ∩BD =O ,O 为BD 中点,连接A 1O ,则A 1O ⊥BD , ∵四边形ABCD 为菱形,∴BD ⊥AC ,∴BD ⊥平面A 1ACC 1, ∵A 1E ⊂平面A 1ACC 1,∴A 1E ⊥BD ,故A 正确;对于B ,∵A 1E →=−23AA 1→+AB →+AD →,∴A 1E →⋅AA 1→=(−23AA 1→+AB →+AD →)⋅AA 1→−23AA 1→2+AB →⋅AA 1→+AD →⋅AA 1→=−23+12+12=13≠0,∴A 1E →与AA 1→不垂直,即A 1E →与BB 1→不垂直,∴A 1E 与平面BDD 1B 1不垂直,故B 错误; 对于C ,BD 1→=BA →+AA 1→+A 1D 1→=−AB →+AA 1→+AD →, ∴|BD 1→|2=|−AB →+AA 1→+AD →|2=(AB →)2+(AA 1→)2+(AD →)2−2AB →⋅AA 1→−2AB →⋅AD →+2AA →1⋅AD →=3−2×12−2×12+2×12=2⇒BD 1=√2,故C 正确对于D ,由A 知BD ⊥平面A 1ACC 1,∴直线BD 1与平面ACC 1A 1所成角即为直线BD 1与BD 所成角的余角, BD →=AD →−AB →,∵|BD →|=1,BD →⋅BD 1→=(AD →−AB →)⋅(−AB →+AA →1+AD →)=1 ∴|cos〈BD →,BD 1→〉|=|BD →⋅BD 1→|BD →|⋅|BD 1→||=11×√2=√22,∴直线BD 1与BD 所成角为π4,∴直线BD 1与平面ACC 1A 1所成角为π4,故D 正确.故选:ACD .12.在平面直角坐标系xOy 中,已知抛物线C :y 2=2x 的焦点为F ,点A ,B 为C 上异于O 不同两点,故OA ,OB 的斜率分别为k 1,k 2,T 是C 的准线与x 轴的交点.若k 1k 2=﹣4,则( ) A .以AB 为直径的圆与C 的准线相切 B .存在k 1,k 2,使得|AB |=52C .△AOB 面积的最小值为34D .|AF||BF|=|AT||BT|解:抛物线C :y 2=2x 的焦点为F (12,0),p =1,设A (x 1,y 1),B (x 2,y 2),则k 1k 2=y 1y 2x 1x 2=4y 1y 2=−4,得:y 1y 2=−1=−p 2,故直线AB 过焦点F ,点T 和点F 重合,选项D 正确; 由抛物线的性质得|AF |=x 1+12,|BF |=x 2+12,|AB |=x 1+x 2+1,线段AB 的中点M 到准线的距离为|AF|+|BF|2=x 1+x 2+12=|AB|2,所以以AB 为直径的圆与C 的准线相切,选项A 正确; |AB |≥2p =2,故选项B 正确; 设直线AB 的倾斜角为θ,则S △AOB =p 22sinθ=12sinθ≥12,选项C 错误. (或当AB 为通径时,S △AOB =p 22=12<34,故选项C 错误). 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知菱形ABCD 的边长为2,一个内角为60°,顶点A ,B ,C ,D 均在坐标轴上,以A ,C 为焦点的椭圆Γ经过B ,D 两点,请写出一个这样的Γ的标准方程: x 24+y 2=1(答案不唯一) .解:根据题意,顶点A ,B ,C ,D 均在坐标轴上,则该菱形对角线的交点为坐标原点,如图:假设A 、C 在x 轴上,B 、D 在y 轴上,∠BCD =60°, 由菱形的性质,∠BCA =30°,又由菱形ABCD 的边长为2,则OB =1,则BC =2,OC =√3, 即b =1,c =√3,则a 2=b 2+c 2=4, 故该椭圆的一个方程为x 24+y 2=1.故答案为:x 24+y 2=1(答案不唯一).14.在平面直角坐标系xOy 中,已知点A (2,2),记抛物线C :y 2=4x 上的动点P 到准线的距离为d ,则d ﹣|P A |的最大值为 √5 .解:抛物线C :y 2=4x 的焦点F (1,0),由抛物线的定义知d =|PF |,所以d ﹣|P A |=|PF |﹣|P A |≤|AF |=√(2−1)2+(2−0)2=√5, 当点P 位于射线F A 与抛物线交点时,取最大值√5.答案为:√5.15.已知圆台的高为2,上底面圆O 1的半径为2,下底面圆O 2的半径为4,A ,B 两点分别在圆O 1、圆O 2上,若向量O 1A →与向量O 2B →的夹角为60°,则直线AB 与直线O 1O 2所成角的大小为 π3.解:作出示意图形,如下图所示,向量O 1A →与向量O 2B →的夹角为60°,结合O 1A ∥O 2C ,得∠BO 2C =60°, 所以△BO 2C 为等边三角形,设点A 在圆O 2所在平面内的射影为D ,连接AD 、BD , 则AD 与O 1O 2平行且相等,且D 为O 2C 中点,∠BAD (或其补角)就是异面直线AB 与直线O 1O 2所成角, Rt △BCD 中,BD =√42−22=2√3, 在Rt △ADB 中,AD =O 1O 2=2,得tan ∠BAD =BD AD =√3,所以∠BAD =π3, 即直线AB 与直线O 1O 2所成角为π3.故答案为:π3.16.函数y =[x ]被广泛应用于数论、函数绘图和计算机领域,其中[x ]为不超过实数x 的最大整数,例如:[﹣1]=﹣1,[4.2]=4.已知数列{a n }的通项公式为a n =[log 2(2n +1)],设{a n }的前n 项和为S n ,则使得S n ≤300的最大正整数n 的值为 59 . 解:a n =[log 2(2n +1)],可得a 2k−1=[log 2(2k +1)]=k ,a 2k =[log 2(2k+1+1)]=k +1, 故2k ﹣1≤n <2k 时,a n =k ,共2k ﹣2k ﹣1=2k﹣1项,其和为k •2k ﹣1=(k ﹣1)•2k ﹣(k ﹣2)•2k ﹣1,S 2k −1=0⋅21−(−1)⋅20+1⋅22−0⋅21+⋅⋅⋅+(k −1)⋅2k −(k −2)⋅2k−1=(k −1)⋅2k +1, 则S 63=(6﹣1)×26+1=321>300,又32≤n ≤63时,a n =6,故S 60=303,S 59=297, 因此,所求正整数n 的最大值为59. 故答案为:59.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,已知四边形ABCD 为平行四边形,A (﹣1,﹣1),B (2,0),D (0,1).(1)设线段BD 的中点为E ,直线l 过E 且垂直于直线CD ,求l 的方程; (2)求以点C 为圆心、与直线BD 相切的圆的标准方程. 解:(1)根据B (2,0),D (0,1),可得BD 的中点为E(1,12).由A (﹣1,﹣1)、B (2,0),得k AB =0+12+1=13, 因为四边形ABCD 为平行四边形,所以AB ∥CD ,得k CD =k AB =13,而直线l ⊥CD ,可知直线l 的斜率为−113=−3,所以直线l 的方程为y −12=−3(x −1),整理得6x +2y ﹣7=0. (2)设C (m ,n ),根据A (﹣1,﹣1),B (2,0),D (0,1), 可得BC →=(m −2,n),AD →=(1,2),结合BC →=AD →,得{m −2=1n =2,,m =3,n =2,即C (3,2),根据k BD =1−00−2=−12,k BC =2−03−2=2,得k BD •k BC =﹣1,即BC ⊥BD , 所以点C 到BD 的距离为BC =√(3−2)2+(2−0)2=√5,因此,以点C 为圆心且与直线BD 相切的圆的标准方程为(x ﹣3)2+(y ﹣2)2=5. 18.(12分)已知数列{a n }的前n 项和为S n ,且4S n =(2n +1)a n +1(n ∈N *). (1)求{a n }的通项公式; (2)记b n =1a n a n+1,求数列{b n }的前n 项和T n . 解:(1)因为4S n =(2n +1)a n +1. 令n =1得a 1=1, 因为4S n =(2n +1)a n +1,所以4S n ﹣1=(2n ﹣1)a n ﹣1+1(n ≥2),两式相减得4a n =(2n +1)a n ﹣(2n ﹣1)a n ﹣1(n ≥2),即(2n ﹣3)a n =(2n ﹣1)a n ﹣1. 所以a n a n−1=2n−12n−3(n ≥2), 所以a 2a 1⋅a 3a 2⋅⋅⋅⋅⋅⋅a n a n−1=31⋅53⋅⋅⋅2n−12n−3,即a na 1=2n −1, 所以当n ≥2时,a n =2n ﹣1, 又a 1=1,所以a n =2n ﹣1. (2)由(1)可得b n =1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),所以T n =12[(11−13)+(13−15)+⋅⋅⋅+(12n−1−12n+1)]=12(1−12n+1)=n2n+1.19.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知∠BAC =90°,AB =AC =2,点E ,F 分别为线段AB ,AC 上的动点(不含端点),且AF =BE ,B 1F ⊥C 1E . (1)求该直三棱柱的高;(2)当三棱锥A 1﹣AEF 的体积最大时,求平面A 1EF 与平面ACC 1A 1夹角的余弦值.解:(1)在直三棱柱ABC ﹣A 1B 1C 1中,∵∠BAC =90°,∴AB ,AC ,AA 1两两垂直, 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AB =AC =2,则A (0,0,0),B (2,0,0),C (0,2,0), 设AA 1=a (a >0),则A 1(0,0,a ),B 1(2,0,a ),C 1(0,2,a ), 设AF =BE =λ(0<λ<2),则E (2﹣λ,0,0),F (0,λ,0), ∴B 1F →=(−2,λ,−a),C 1E →=(2−λ,−2,−a),∵B 1F ⊥C 1E ,∴B 1F →⋅C 1E →=0,即2λ﹣4﹣2λ+a 2=0,解得:a =2, 即该直三棱柱的高为2;(2)在直三棱柱ABC ﹣A 1B 1C 1中,有AA 1⊥平面AEF , 又∠BAC =90°,由(1)知AA 1=2,AE =BE =λ(0<λ<2),∴V A 1−AEF =13S △AEF ⋅AA 1=13λ⋅(2−λ)≤13,当且仅当λ=1时取“=”,即点E ,F 分别为线段AB ,AC 的中点时,三棱锥A 1﹣AEF 的体积最大, 此时E (1,0,0),F (0,1,0),A 1(0,0,2), ∴A 1E →=(1,0,−2),A 1F →=(0,1,−2),设平面A 1EF 的法向量为n 1→=(x ,y ,z), 则{A 1E →⋅n 1→=0A 1F →⋅m 1→=0,即{x −2z =0y −2z =0,取z =1,则n 1→=(2,2,1), 又平面ACC 1A 1的一个法向量为n 2→=(1,0,0),所以|cos〈n 1→,n 2→〉|=|n 1→⋅n 2→|n 1→|⋅|n 2→||=23×1=23, 因为平面A 1EF 与平面ACC 1A 1的夹角θ为锐角,所以cosθ=23.20.(12分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,焦距为4√3. (1)求C 的标准方程;(2)若斜率为12的直线l (不过原点O )交C 于A ,B 两点,点O 关于l 的对称点P 在C 上,求四边形OAPB 的面积.解:(1)由题意2c =4√3,所以c =2√3=√a 2−b 2,又因为a =2b ,所以a =4,b =2, 所以C 的标准方程为x 216+y 24=1.(2)设直线l :y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2),P (x 3,y 3).将y =12x +m 代入C :x 216+y 24=1中,化简整理得x 2+2mx +2m 2﹣8=0,于是有{Δ=32−4m 2>0,x 1+x 2=−2m ,x 1x 2=2m 2−8,所以|AB|=√1+(12)2|x 1−x 2|=√52√(x 1+x 2)2−4x 1x 2=√52√(−2m)2−4(2m 2−8)=√5√8−m 2, 因为点O 关于l 的对称点为P ,所以{y 3−0x 3−0=−2,y 3+02=12⋅x 3+02+m ,解得{x 3=−45my 3=85m,即P(−45m ,85m), 因为P 在C 上,所以(−45m)216+(85m)24=1,解得m 2=2517. 又因为点O 到直线l 的距离d =|m|√1+(12)=2√5, 所以由对称性得S 四边形OAPB =2S △OAB =|AB|⋅d =√5√8−m 2⋅√5=2|m|√8−m 2=25√17×√8−2517=1017√111.21.(12分)已知数列{a n }满足a 1=1,a n +1=a n +1+cos n π(n ∈N *). (1)求a 2,a 3及{a n }的通项公式;(2)若数列{b n }满足b 2=2且b 2k ﹣1=a 2k ﹣1,b 2k +2=3b 2k (k ∈N *),记{b n }的前n 项和为S n ,试求所有的正整数m ,使得S 2m =2S 2m ﹣1成立.解:(1)将n =2,3代入a n +1=a n +1+cos n π,得a 2=1,a 3=3, 令n =2k ,2k ﹣1,得a 2k +1=a 2k +2,a 2k =a 2k ﹣1,所以a 2k +1=a 2k ﹣1+2,又a 1=1,从而a 2k ﹣1=1+2(k ﹣1)=2k ﹣1, 所以a 2k =a 2k ﹣1=2k ﹣1,从而a n ={n ,n 为奇数,n −1,n 为偶数.;(2):由b 2k ﹣1=a 2k ﹣1=2k ﹣1,又b 2=2,b 2k +2=3b 2k , 所以{b 2k }是以2为首项,3为公比的等比数列, 所以b 2k =2⋅3k−1,所以b n ={n ,n =2k −1(k ∈N ∗),2⋅3n2−1,n =2k(k ∈N ∗), 因为S 2m =2S 2m ﹣1,所以b 2m =S 2m ﹣1.因为S 2m ﹣1=b 1+b 2+•+b 2m ﹣1=(b 1+b 3+•+b 2m ﹣1)+(b 2+b 4+•+b 2m ﹣2) =m(1+2m−1)2+2(3m−1−1)3−1=3m−1+m 2−1,所以2•3m ﹣1=3m ﹣1+m 2﹣1,即3m ﹣1=m 2﹣1当m =1时,3m ﹣1=m 2﹣1无解;当m >1时,因为(m+1)2−13m−m 2−13m−1=−2m 2+2m+33m<0,所以当且仅当m =2时,m 2−13m−1取最大值1,即3m ﹣1=m 2﹣1的解为m =2.综上所述,满足题意的m 的值为2.22.(12分)如图,在平面直角坐标系xOy 中,已知双曲线C 1:x 2a 2−y 2a 2+2=1的右焦点为F (2,0),左、右顶点分别为A 1,A 2,过F 且斜率不为0的直线l 与C 的左、右两支分别交于P 、Q 两点,与C 的两条渐近线分别交于D 、E 两点(从左到右依次为P 、D 、E 、Q ),记以A 1A 2为直径的圆为圆O . (1)当l 与圆O 相切时,求|DE |;(2)求证:直线A 1Q 与直线A 2P 的交点S 在圆O 内.解:(1)因为F (2,0),所以a 2+(a 2+2)=4,所以a 2=1, 所以圆O 的半径r =1,由题意知l 的斜率存在,设l :y =k (x ﹣2)(k ≠0),当l 与圆O 相切时,O 到l 的距离d =r ,即√1+k 2=1,解得k =±√33,由{y =k(x −2),x 2−y 23=0,得(k 2﹣3)x 2﹣4k 2x +4k 2=0,即2x 2+x ﹣1=0,解得x D =﹣1,x E =12, 所以|DE|=√1+k 2|x D −x E |=√3.(2)证明:设P (x 1,y 1),Q (x 2,y 2),由{y =k(x −2),x 2−y 23=1,得(k 2﹣3)x 2﹣4k 2x +4k 2+3=0, 此时k ≠0,Δ>0,x 1x 2=4k 2+3k 2−3<0,解得0<k 2<3,且{x 1+x 2=4k 2k 2−3=4+12k 2−3,x 1x 2=4k 2+3k 2−3=4+15k 2−3,所以x 1x 2=54(x 1+x 2)−1, 因为A 1(﹣1,0),A 2(1,0),所以A 1Q :y =y 2x 2+1(x +1),A 2P :y =y1x 1−1(x −1),联立A 1Q ,A 2P 方程,消去y 得x+1x−1=(x 2+1)y 1(x 1−1)y 2=k(x 2+1)(x 1−2)k(x 1−1)(x 2−2)=x 1x 2+x 1−2x 2−2x 1x 2−x 2−2x 1+2.所以x 1x 2+x 1−2x 2−2x 1x 2−x 2−2x 1+2=54(x 1+x 2)−1+x 1−2x 2−254(x 1+x 2)−1−x 2−2x 1+2=94x 1−34x 2−3−34x 1+14x 2+1=−3,即x+1x−1=−3,所以x =12.将x=12代入A2P方程,得y=−y12(x1−1),即S(12,−y12(x1−1)).因为x1<﹣1,所以(−y12(x1−1))2=3(x12−1)4(x1−1)2=3(x1+1)4(x1−1)=34[1+2x1−1]∈(0,34),所以(12)2+(−y12(x1−1))2<1,即直线A1Q,A2P的交点S在圆O内.。
2024北京海淀高二(下)期末数 学本试卷共6页,共两部分。
19道题,共100分。
考试时长90分钟。
试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 5(1)x −的展开式中,所有二项式的系数和为A.0B.52C. 1D.622. 已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1−D.π3. 若等比数列{}n a 的前n 项和21n n S =−,则公比q =A.12B.12−C.2D.2−4. 下列函数中,在区间[]1,0−上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D. 2x y =5. 将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D. 246. 小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X =B. () 4.8E X =C. ()0.48D X =D. ()0.96D X =7. 已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23 C .34D .568. 已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9. 设函数()()ln 1sin f x x a x =−+.若()()0f x f ≤在()1,1−上恒成立,则 A.0a = B.1a ≥C.01a <≤D.1a =10. 在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=− (注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论: ①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ; ③当销量从500件增加到501件时,总收益改变量的近似值为500. 其中正确结论的个数为 A.0 B.1C.2D.3第二部分(非选择题 共60分)二、填空题共5小题,每小题4分,共20分。
2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。
2023-2024学年广西桂林市高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在空间直角坐标系O−xyz 中,点(1,1,2)到坐标原点O 的距离为( )A.2B.3C.6D.112.一个科技小组中有4名女同学、5名男同学,现从中任选1名同学参加学科竞赛,则不同的选派方法数为( )A. 4 B. 5C. 9D. 203.椭圆x 29+y 24=1的长轴长是( )A. 2B. 3C. 4D. 64.已知在10件产品中有2件次品,现从这10件产品中任取3件,用X 表示取得次品的件数,则P(X =1)=( )A. C 12C 310B. C 12C 28C 310C. C 23C 18C 310D. C 12C 13C 3105.圆C 1:x 2+y 2=1与圆C 2:(x−3)2+y 2=9的位置关系是( )A. 外切B. 内含C. 相交D. 外离6.已知m =(1,2,4),n =(2,1,x)分别为直线a ,b 的一个方向向量,且a ⊥b ,则x =( )A. 1B. −1C. 2D. −27.设小明乘汽车、火车前往某目的地的概率分别为0.6,0.4.汽车和火车正点到达目的地的概率分别为0.7,0.9,则小明正点到达目的地的概率为( )A. 0.78B. 0.82C. 0.87D. 0.498.已知点P(3,4),A ,B 是圆C :x 2+y 2=4上的两个动点,且满足|AB|=2,M 为线段AB 的中点,则|PM|的最大值为( )A. 5−3B. 5+3C. 3D. 7二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
9.某服装公司对1−5月份的服装销量进行了统计,结果如下: 月份编号x12345销量y(万件)5096142185227若y 与x 线性相关,其线性回归方程为y =bx +7.1,则下列说法正确的是( )A. 线性回归方程必过(3,140)B. b=44.3C. 相关系数r<0D. 6月份的服装销量一定为272.9万件10.某市对历年来新生儿体重情况进行统计,发现新生儿体重X~N(3.5,0.25),则下列结论正确的是( )A. 该正态分布的均值为3.5B. P(X>3.5)=12C. P(4<X≤4.5)≥12D. P(X>4.5)=P(X≤3)11.已知双曲线M:x24−y29=1,则下列说法正确的是( )A. M的离心率e=132B. M的渐近线方程为3x±2y=0C. M的焦距为6D. M的焦点到渐近线的距离为312.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为DD1,BB1的中点,则下列选项正确的是( )A. 直线FC1与直线AE平行B. 直线FC1与底面ABCD所成的角为30°C. 直线FC1与直线AE的距离为2305D. 直线FC1到平面AB1E的距离为23三、填空题:本题共4小题,每小题5分,共20分。
高二年级调研测试数学本试卷共4页,19小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.将条形码横贴在答题卡上“条形码粘贴处”.2.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新答案.不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算012456C C C ++=( )A. 20B. 21C. 35D. 36【答案】B 【解析】【分析】利用组合数计算公式计算可得结果.【详解】由组合数计算公式可得01245665C C C 152112×++=++=×. 故选:B2. 已知样本数据121x +,221x +,…,21n x +的平均数为5,则131x +,231x +,…,31n x +的平均数为( ) A. 6 B. 7C. 15D. 16【答案】B 【解析】【分析】根据平均数的性质即可得12,,,n x x x …的平均数为2,则可得到新的一组数据的平均数. 【详解】由题意,样本数据121x +,221x +,…,21n x +的平均数为5,设12,,,n x x x …的平均数为x , 即215+=x ,解得2x =,根据平均数性质知131x +,231x +,…,31n x +的平均数为317x +=. 故选:B3. 下表是大合唱比赛24个班级的得分情况,则80百分位数是( ) 得分 7 8 9 10 11 13 14 频数 4246242A. 13.5B. 10.5C. 12D. 13【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】因为00248019.2×=,24个班级的得分按照从小到大排序, 可得80百分位数是第20个数为13. 故选:D4. 已知a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列说法正确的是( ) A. 若a b ∥,b α⊂,则//a α B. 若//a α,b α⊂,则//a b C. //αγ,//βγ,则//αβ D. 若αγ⊥,βγ⊥,则//αβ【答案】C 【解析】【分析】由线线、线面、面面的位置关系即可求得本题. 【详解】若//a b ,b α⊂,则//a α或a α⊂,则A 错; 若//a α,b α⊂,则//a b 或a 与b 异面,则B 错;//αγ,//βγ,由平行的传递性可知,//αβ,则C 对;若αγ⊥,βγ⊥,则//αβ或相交.,D 错, 故选:C.5. 已知,,A B C 三点不共线,O 为平面ABC 外一点,下列条件中能确定,,,M A B C 四点共面的是( )的.A. OM OA OB OC =++B. 3OM OA OB BC =−−C. 1123OM OA OB OC =++D. 32OM OA OB BC =−−【答案】D 【解析】【分析】根据空间向量基本定理对选项逐个进行验证即可得出结论.【详解】由空间向量基本定理可知,若,,,M A B C 四点共面,则需满足存在实数,,x y z 使得OM xOA yOB zOC =++,且1x y z ++=, 显然选项A ,C 不成立;对于选项B ,由3OM OA OB BC =−−可得()33OM OA OB OC OB OA OC =−−−=− ,不合题意,即B 错误;对于D ,化简32OM OA OB BC =−−可得()323OM OA OB OC OB OA OB OC =−−−=−− ,满足()()3111+−+−=,可得D 正确; 故选:D6. 已知随机事件A ,B ,3()10P A =,1()2P B =,1(|)3P B A =,则(|)P A B =( ) A.15B.16 C.320D.110【答案】A 【解析】【分析】根据题意,由乘法公式代入计算可得()P AB ,再由条件概率公式,代入计算,即可得到结果. 【详解】因为3()10P A =,1()2P B =,1(|)3P B A =, 则()()131(|)31010P B A P A P AB ×=×==, 则()()1110(|)152P AB P A BP B ===. 故选:A7. 已知9290129(21)x a a x a x a x +=+++⋅⋅⋅+,则682424682222a a a a +++的值为( )A. 255B. 256C. 511D. 512【答案】A 【解析】【分析】利用二项式定理写出展开式的通项,令0x =求出0=1a ,分别令12x =、12x =−,再两式相加可得8202825622a a a +++=,再减去0a 即可. 【详解】令0x =,得0=1a , 令12x =,得93891202389251222222a a a a a a ++++++== , 令12x =−,得38912023********a a a a a a −+−++−= , 两式相加得82028251222a a a+++=, 得8202825622a a a +++= , 则682424682552222a a a a +++=. 故选:A.8. 某工厂有甲、乙、丙3个车间生产同一种产品,其中甲车间的产量占总产量的20%,乙车间占35%,丙车间占45%.已知这3个车间的次品率依次为5%,4%,2%,若从该厂生产的这种产品中取出1件为次 ) A.331000B.1033C.1433D.311【答案】C 【解析】【分析】根据题意,由全概率公式可得抽取到次品的概率,再由条件概率公式代入计算,即可求解. 【详解】记事件A 表示甲车间生产的产品, 记事件B 表示乙车间生产的产品, 记事件C 表示丙车间生产的产品, 记事件D 表示抽取到次品,则()()()0.2,0.35,0.45P A P B P C ===, ()()()0.05,0.04,0.02P D A P D B P D C ===,取到次品的概率为()()()()()()()P D P A P D A P B P D B P C P D C =++0.20.050.350.040.450.020.033=×+×+×=,若取到的是次品,此次品由乙车间生产的概率为:()()()()()()0.350.040.014140.0330.03333P B P D B P BD P B D P D P D ×=====.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列选项中叙述正确有( )A. 在施肥量不过量的情况下,施肥量与粮食产量之间具有正相关关系B. 在公式1xy=中,变量y 与x 之间不具有相关关系C. 相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度D. 某小区所有家庭年收入x (万元)与年支出y (万元)具有相关关系,其线性回归方程为ˆˆ0.8ybx =+.若20x =,16y =,则ˆ0.76b =. 【答案】ACD 【解析】【分析】AB 的正误,根据相关系数的性质可判断C 的正误,根据回归方程的性质可判断D 的正误.【详解】对于A ,在施肥量不过量的情况下,施肥量越大,粮食产量越高, 故两者之间具有正相关关系,故A 正确.对于B ,变量y 与x 之间函数关系,不是相关关系,故B 错误. 对于C ,因为210.80.6r r =>=,故相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度,故C 正确.对于D ,因为回归直线过(),x y ,故ˆ16200.8b=×+,故ˆ0.76b =,故D 正确. 故选:ACD.10. 已知点(2,3,3)A −−,(2,5,1)B ,(1,4,0)C ,平面α经过线段AB 的中点D ,且与直线AB 垂直,下列选项中叙述正确的有( ) A. 线段AB 的长为36的是B. 点(1,2,1)P −在平面α内C. 线段AB 的中点D 的坐标为(0,4,1)−D. 直线CD 与平面α【答案】BCD 【解析】【分析】由空间两点间的距离公式即可得到线段AB 的长,判断A ;由AB ⊥平面α,垂足为点D ,PD AB ⊥,即可判断B ;由中点坐标公式可得点D 的坐标,判断C ;设直线CD 与平面α所成的角为β,sin cos ,AB CD AB CD AB CDβ⋅==,通过坐标运算可得,判断D.【详解】因为点(2,3,3)A −−,(2,5,1)B , 所以6AB =,故A 错误;设D 点的坐标为(),,x y z ,因为D 为线段AB 的中点,所以2235310,4,1222x y z −++−+======−, 则D 的坐标为(0,4,1)−,故C 正确;因为点(1,2,1)P −,则()1,2,0PD =− ,又()4,2,4AB =,则()()1,2,04,2,40PD AB ⋅=−⋅=,所以PD AB ⊥,即PD AB ⊥, 又AB ⊥平面α,垂足为点D ,即D ∈平面α,所以PD ⊂平面α,故B 正确;由(1,4,0)C ,(0,4,1)D −,得()1,0,1CD =−−,设直线CD 与平面α所成的角为β,则sin cos ,ABβ= ,故D 正确.故选:BCD.11. 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为()E X 、()E Y ,方差为()D X 、()D Y ,则下列结论正确的是( )A. ()()5E X E Y +=B. ()()E X E Y <C. ()()D X D Y <D. ()()D X D Y =【答案】ABD 【解析】【分析】依题意可知不管如何交换红球个数始终只有5个,易知5X Y +=,利用期望值和方差性质可得A ,D 正确,C 错误;易知随机变量X 的所有可能取值为0,1,2,3,4,写出对应的概率并得出分布列,可得() 2.4E X =,()()5 2.6E Y E X =−=,可得B 正确.【详解】根据题意,记甲、乙两个袋子中红球个数分别为,X Y , 不管如何交换红球个数始终只有5个,易知5X Y +=,对于A ,由期望值性质可得()()()55E X E Y E Y =−=−,即()()5E X E Y +=,所以A 正确; 对于B ,易知随机变量X 的所有可能取值为0,1,2,3,4; 当从甲袋中取出2个红球,乙袋中取出2个黄球后交换,可得()()22222255C C 105C C 100P X P Y ====×=, 当从甲袋中取出1个红球,1个黄球,乙袋中取出2个黄球后交换,或者从甲袋中2个红球,乙袋中取出1个红球,1个黄球后交换,可得()()1111223232222555C C C C C 12314C C C 10025P X P Y ====+×==;当从甲袋中取出1个红球,1个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出2个红球,乙袋中取出取出2个红球;或者从甲袋中取出2个黄球,乙袋中取出取出2个黄球后交换,可得()()1111222223233322222222555555C C C C C C C C 422123C C C C C C 10050P X P Y ====×+×+×==; 当从甲袋中取出2个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出1个红球,1个黄球,乙袋中取出取出2个红球后交换,可得()()21111232323322225555C C C C C C 36932C C C C 10025P X P Y ====×+×==;当从甲袋中取出2个黄球,乙袋中取出2个红球后交换,可得()()22332255C C 941C C 100P X P Y ====×=,随机变量X 的分布列为所以期望值()132******** 2.4100255025100E X =×+×+×+×+×=, 可得()()5 2.6E Y E X =−=,即()()E X E Y <,可得B 正确; 对于C ,D ,由方差性质可得()()()()()251D Y D X D X D X =−=−=,即可得()()D X D Y =,所以C 错误,D 正确. 故选:ABD【点睛】关键点点睛:根据题意可得随机变量满足5X Y +=,利用期望值和方差性质可判断出AD 选项,再求出随机变量X 的分布列可得结论.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量X 服从正态分布()295,N σ,若(80)0.3P X <=,则(95110)P X ≤<=______. 【答案】0.2##15【解析】【分析】根据正态分布的对称性结合已知条件求解即可. 【详解】因为随机变量X 服从正态分布()295,N σ,(80)0.3P X <=, 所以(95110)(8095)0.5(80)0.2P X P X P X ≤<=<<=−<=, 故答案为:0.213. 如图,用四种不同颜色给图中的,,,,A B C D E 五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有______种.【答案】72 【解析】【分析】由图形可知点E 比较特殊,所以按照分类分步计数原理从点E 开始涂色计算可得结果.【详解】根据题意按照,,,,A B C D E 的顺序分5步进行涂色,第一步,点E 的涂色有14C 种,第二步,点A 的颜色与E 不同,其涂色有13C 种, 第三步,点B 的颜色与,A E 都不同,其涂色有12C 种,第四步,对点C 涂色,当,A C 同色时,点C 有1种选择;当,A C 不同色时,点C 有1种选择; 第五步,对点D 涂色,当,A C 同色时,点D 有2种选择;当,A C 不同色时,点D 有1种选择;根据分类分步计数原理可得,不同的涂色方法共有()111432C C C 121172×+×=种. 故答案为:7214. 如图,已知三棱锥−P ABC 的底面是边长为2的等边三角形,60APB ∠=°,D 为AB 中点,PA CD ⊥,则三棱锥−P ABC 的外接球表面积为______.【答案】20π3##20π3【解析】【分析】设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接OE , ABC 的外接圆的圆心为G ,连接OG ,OB ,可证四边形OGDE 为矩形,利用解直角三角形可求外接球半径,故可求其表面积.【详解】因为ABC 为等边三角形,D 为AB 中点,故CD AB ⊥, 而PA CD ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以CD ⊥平面PAB . 设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接,OE BE , 设ABC 的外接圆的圆心为G ,连接OG ,OB , 则OE ⊥平面PAB ,OG CD ⊥故//OE CD ,故,,,O G D E 共面,而DE ⊂平面PAB , 故CD DE ⊥,故四边形OGDE 为矩形.又12sinABBEAPB=×∠13OE DG CD===,故外接球半径为OB=,故外接球的表面积为1520π4π93×=,故答案为:20π3四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步聚.15.在()*23,Nnx n n≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)证明展开式中不存在常数项;(2)求展开式中所有的有理项.【答案】(1)证明见解析;(2)7128x,4672x,280x,214x.【解析】【分析】(1)根据题意可求得7n=,利用二项展开式的通项可得展开式中不存在常数项;(2)由二项展开式的通项令x的指数为整数即可解得合适的k值,求出所有的有理项.【小问1详解】易知第2,3,4项的二项式系数依次为123C,C,Cn n n,可得132C+C2Cn n n=,即()()()121262n n n n nn−−−+=×,整理得()()270n n−−=,解得7n=或2n=(舍);所以二项式为72x,假设第1k+项为常数项,其中Nk∈,即可得()1777277C 22C kk k kkk k x x −−−−=为常数项,所以1702k k −−=, 解得14N 3k =∉,不合题意; 即假设不成立,所以展开式中不存在常数项; 【小问2详解】由(1)可知,二项展开式的通项()1777277C22C kk k kk k k x x−−−−=可得, 其中的有理项需满足17Z 2k k −−∈,即37Z 2k −∈,且7k ≤;当30,77Z 2k k =−=∈,此时有理项为707772C 128x x =; 当32,74Z 2k k =−=∈,此时有理项为524472C 672x x =; 当34,71Z 2k k =−=∈,此时有理项为3472C 280x x =; 当36,72Z 2k k =−=−∈,此时有理项为16272142C x x−=; 综上可知,展开式中所有的有理项为7128x ,4672x ,280x ,214x . 16. 某校天文社团将2名男生和4名女生分成两组,每组3人,分配到A ,B 两个班级招募新社员. (1)求到A 班招募新社员的3名学生中有2名女生的概率;(2)设到A ,B 两班招募新社员的男生人数分别为a ,b ,记X a b =−,求X 的分布列和方差. 【答案】(1)35(2)85【解析】【分析】(1)由古典概型的概率求解122436C C 3C 5P ==; (2)由题意,X 的可能取值为2,0,2−,算出对应概率()2P X =−,()0P X =,()2P X =,即可列出X 的分布列,再求出()E X ,进而由公式求出方差.【小问1详解】到A 班招募新社员的3名学生中有2名女生的概率为122436C C 3C 5P ==. 【小问2详解】由题意,X 的可能取值为2,0,2−,则()032436C C 12C 5P X =−==,()122436C C 30C 5P X ===,()212436C C 12C 5P X ===, 所以X 的分布列为则()1312020555E X =−×+×+×=, 所以()()()()22213182000205555D X =−−×+−×+−×=. 17. 如图,正三棱柱111ABC A B C 中,D 为AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)当1AA AB的值为多少时,1AB ⊥平面1ACD ?请给出证明. 【答案】(1)证明见答案. (2 【解析】【分析】(1)连接1AC ,交1AC 于点O ,连接DO ,能证出1//BC DO ,则能证出1BC ∥平面1ACD.(2)先把1AB ⊥平面1ACD 当做条件,得出11AB A D ⊥,得出1AA AB的值,过程要正面分析. 【小问1详解】连接1AC ,交1AC 于点O ,连接DO , 因为O 是1AC 的中点,D 为AB 的中点, 所以DO 是1ABC 的中位线,即1//BC DO ,1BC ⊄平面1ACD ,DO ⊂平面1ACD , 所以1BC ∥平面1ACD . 【小问2详解】1AA AB =时,1AB ⊥平面1ACD ,证明如下:因为1AA AB =,11tan A AB ∴∠,111tan AA DA B AD ∠= 1111A AB DA B ∴∠=∠,1112DA B AA D π∠+∠= ,1112A AB AA D π∴∠+∠=,即11AB A D ⊥.因为三棱柱111ABC A B C 为正三棱柱,ABC ∴ 为正三角形,且1AA ⊥平面ABC ,1,CD AB CD AA ∴⊥⊥,1AB AA A ∩=,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A ,CD 平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1AB CD ⊥,1A D CD D = ,1,A D CD ⊂平面1ACD , 1AB ∴⊥平面1ACD .1AA AB∴18. 会员足够多的某知名户外健身俱乐部,为研究不高于40岁和高于40岁两类会员对服务质量的满意度.现随机抽取100名会员进行服务满意度调查,结果如下:年龄段满意度合计满意不满意 不高于40岁 50 20 70 高于40岁 25 5 30 合计7525100(1)问:能否认为,会员不高于40岁和高于40岁年龄结构对服务满意度有关;(2)用随机抽取的100名会员中的满意度频率代表俱乐部所有会员的满意度概率.从所有会员中随机抽取3人,记抽取的3人中,对服务满意的人数为X ,求X 的分布列和数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++).参考数据:()20P x χ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010x2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. (2)分布列见解析;94. 【解析】【分析】(1)首先根据列联表中的数据结合公式计算2χ值,然后对照表格得到结论;(2)由表格可知,对服务满意的人的概率为34,且33,4X B∼,根据二项分布公式即可求解. 【小问1详解】 由列联表可知:2217100(5052520)100.587255 2.072730630χ××−×<××==≈, 所以不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. 【小问2详解】由表格可知,对服务满意人的概率为34,且33,4X B∼, 则0,1,2,3X =,可得:()303110C 464P X ===,()2133191C 4464P X === , ()22331272C 4464P X ===,()3333273C 464P X === , 故X 的分布列如图:可得()39344EX =×=. 19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥; (2)若π2θ=,求三棱台ABC DEF −的体积; (3)若A 到平面BCFE cos θ的值. 【答案】(1)证明见解析; (2)78(3)3cos 5θ=−的【解析】【分析】(1)利用三棱柱性质,根据线面垂直的判定定理可得AC ⊥平面BMN ,可证明结论; (2)由二面角定义并利用棱台的体积公式代入计算可得结果;(3)建立空间坐标系,求出平面BCFE 的法向量,利用点到平面距离的向量求法即可得出cos θ的值. 【小问1详解】取AC 的中点为M ,连接,NM BM ;如下图所示:易知平面//ABC 平面DEF ,且平面ABC ∩平面DACF AC =,平面DEF ∩平面DACF DF =; 所以//AC DF ,又因为1AD FC ==, 可得四边形DACF 为等腰梯形,且,M N 分别为,AC DF 的中点,所以MN AC ⊥, 因为2AB BC AC ===,所以BM AC ⊥, 易知BM MN M = ,且,BM MN ⊂平面BMN , 所以AC ⊥平面BMN ,又BN ⊂平面BMN ,所以AC BN ⊥; 【小问2详解】由二面角定义可得,二面角D AC B −−的平面角即为BMN ∠, 当π2θ=时,即π2BMN ∠=,因此可得MN ⊥平面ABC ,可知MN 即为三棱台的高,由1,2ADDF FC AC ====可得MN =;易知三棱台的上、下底面面积分别为DEFABC S S =因此三棱台ABC DEF −的体积为1738V =【小问3详解】由(1)知,BM AC ⊥,MN AC ⊥,二面角D AC B −−的平面角即为()0,πBMN θ∠=∈; 以M 为坐标原点,分别以,MA MB 所在直线为,x y 轴,过点M 作垂直于平面ABC 的垂线为z 轴建立如图所示的空间直角坐标系:可得()()()()1,0,0,1,0,0,,,0,0,0A C B N M θθ −,易知11,0,022NF MC==−,可得12F θθ − ;则()1,cos 2CBCF θθ =设平面BCFE 的一个法向量为(),,n x y z =,所以01cos sin 02n CB x n CF x y z θθ ⋅==⋅=++=, 令1y =,则1cos sin x z θθ−=,可得1cos sin n θθ−=; 显然()2,0,0AC =− ,由A 到平面BCFE,可得AC n n ⋅==,可得21cos 4sin θθ− =;整理得25cos 2cos 30θθ−−=,解得3cos 5θ=−或cos 1θ=; 又()0,πθ∈,可得3cos 5θ=−.【点睛】方法点睛:求解点到平面距离常用方法:(1)等体积法:通过转换顶点,利用体积相等可得点到面的距离;(2)向量法:求出平面的法向量,并利用点到平面距离的向量求法公式计算可得结果;。
运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。
答案一律写在答题卡上。
注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4 保持卡面清洁,不折叠,不破损。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。
高二年级期末考试
数学试题
一、选择题:(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项
是符合题目要求的.)
1.已知直线经过点P(2,3),且倾斜角为3π
,则这条直线的方程是( )
A.23)y x -=-
B.32)y x -=-
C.3(2)3y x -=-
D.2(3)3y x -=-
2.已知直线3(1)50x k y +-+=与直线0x y -=平行,则k 的值是( )
A.1
B.2
C.3
D.4
3.直线2x =与直线3y =的夹角为( )
A.30o
B.60o
C.90o
D.一直线的斜率不存在,无法求
4.直线130kx y k -+-=,当k 变动时,所有的直线都经过定点( )
A.(0,0)
B.(3,1)
C.(-3,-1)
D.(3,-1)
5.直线y =与圆22(2)4x y -+=( )
A.相交且过圆心
B.相交不过圆心
C.相切
D.相离
6.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是(
) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)
7.双曲线2
2
1124y x -=的渐近线方程为( )
A.3y x =±
B.2y x =±
C.y =
D.3y x =±
8.抛物线22y px =的焦点与椭圆22
1164x
y
+=的右焦点重合,则p 的值为( )
A. B. C. D.4
9.在空间,两条直线为异面直线是指( )
A.它们不相交
B.它们分别在两个平面内
C.它们不同在任何一个平面内
D.它们不平行
10.如图,在正方体ABCD A B C D ''''-中,直线DA ' 与AC 所在直线的夹角为( )
A.30o
B.45o
C.60o
D.90o
11.如果直线l ∥平面α,直线a α⊂,那么,下列结论正确的是( )
A.l ∥a
B.l 与a 可相交
C.l 与a 异面
D.l 与a 没有公共点
12.设a 、b 是空间两条直线,α是一个平面,则下列命题中,真命题是( )
A.若,,a a b α⊥⊥则b ∥α
B.若a ∥,,a b α⊥则b α⊥
C.若a α⊥,b ∥α,则a b ⊥
D.若a ∥α,b ∥α,则a ∥b
13.设a 、b 是空间两条直线,αβ、是两个平面,则下列命题中,
①若,,a a αβ⊥⊥则α∥β; ②若,a b αα⊂⊂,且a ∥,b β∥β,则α∥β;
③若a α⊥,a β⊂,则αβ⊥; ④若a α⊥,b β⊥,α∥β,则a ∥b .
真命题的个数是( )
A.1
B.2
C.3
D.4
14.已知P 是ABC ∆所在平面外的一点,O 是P 在该平面内的射影,如果PA =PB=PC,那么O 是ABC ∆的( )
A.内心
B.外心
C.垂心
D.重心
15.已知等腰直角ABC ∆中,AB=AC,AD 为斜边上的高,以AD 为折痕使BDC ∠成直角,则
BAC ∠的度数是( )
A.30o
B.45o
C.60o
D.90o
二、填空题:(本大题共5小题,每小题3分,共15分.把答案填在题中横线上.)
16.过点(1,2),且与直线2100x y +-=垂直的直线方程是 .
17.经过点A(3,-1),并且对称轴都在坐标轴上,对称中心在坐标原点的等轴双曲线的方程
是 .
18.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.若定点F 到定直
线l 的距离是1,取经过定点F 且垂直于定直线l 的直线为x 轴, x 轴与直线l 相交于点K,以
线段KF 的垂直平分线为y 轴建立直角坐标系,则抛物线的方程是 .
19.已知平面内的一条直线与平面的一条斜线的夹角为60o ,这条直线与斜线在平面内的射影的夹角为45o ,则平面的斜线与平面所成角的度数是 .
20.下列命题中,
(1)在空间一组对边平行且相等的四边形一定是平行四边形;
(2)对任意两条异面直线a 、b ,存在平面αβ、,使,a b αβ⊂⊂且α∥β;
(3)过直线上一点可以作无数条直线与这条直线垂直,并且这些直线都在同一平面内;
(4)过已知平面的一条斜线的平面一定不会与已知平面垂直.
真命题有 (只填序号).
三、解答题:(本大题共5小题,每小题10分,共50分.解答应写出文字说明,证明过程或演算步骤.)
21.已知两定点A(-2,0),B(2,0),且动点P 使PA ⊥PB,求点P 的轨迹方程.
22.过抛物线2
2y px =的焦点的一条直线和这抛物线相交,两个交点的纵坐标为12y y 、,
求证:212y y p =-.
23. :已知PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.
(1) 求证:MN ∥平面PAD;
(2) 求证:MN ⊥CD;
24.平面α与β相交于直线CD,EA 垂直于α于点A,EB 垂直于β于点B,
(1)求证:CD ⊥AB;
(2)若135AEB ∠=o
,求二面角α-l -β的度数.
25.当α从0º到180º变化时,判定方程x 2+y 2cos α=1表示怎样的曲线?
2004年秋季高二年级期末考试数学试题(参考答案)
一、 选择题:
1.B
2.D
3.C
4.B
5.B
6.A
7.C 8.A 9.C 10.C 11.D 12.C 13.C 14.B 15.C
二、 填空题:
16.x-2y+3=0 17.228x y -= 18.22y x = 19.45o 20.①②③
三、 解答题:
21.224(0)x y y +=≠ 22~25略。