Symmetry Breaking using Fluids II Velocity Potential Method
- 格式:pdf
- 大小:121.60 KB
- 文档页数:13
Humphrey Field Analyzer 3 from ZEISSN E WH F A3w i t hL i q ui d Le n s T e c hn o l og yThe best just got betterKey bene fi tsHFA3 provides a streamlined and faster work fl ow with an array of new features designed to:Reduce errors with a single trial lens. Using liquid pressure, the new Liquid Trial Lens ™ instantly delivers each patient’s refractive correction with the touch of a button.*Save time with an intuitive new SmartTouch ™ interface that helps to shorten chair time.Accelerate clinic flow with equipment that can be learned quickly and operated easily.Improve confidence in test results with RelEYE ™.Instantly review the patient’s eye position, at any stimulus point.Gain peace of mind with seamless transferability of legacy data from the HFA II and HFA II-i to the HFA3.The new ZEISS Humphrey Field Analyzer 3featuring Liquid Lens technology* Available correction range is -8 to +8 diopters sphere. Spherical correction only. Liquid Trial Lens available on the HFA3 model 860.The new Humphrey ®Field Analyzer 3 (HFA3) combines everything you’ve always valued in a Humphrey with more than you could imagine to make it faster, easier and more reliable than ever.The best just got better.Faster, easier, more reliable than everLiquid Trial LensSmartTouch interfaceLiquid Lens technology: One lens, fewer mistakes The new automatic Liquid Trial Lens reduces patientsetup time by automatically loading each patient’s refrac-tive correction from the previous exam. The result is faster patient fl ow and reduced chance of error when selecting a lens during test setup.SmartTouch interface: Ready, set, test!The new HFA3 platform gets you up and running with fewer touches. Simply select the patient’s name and press start, all using an all-new color graphic user interface.Exclusive gaze tracking: On track? Know right now Save time with improved gaze tracking initialization.Kinetic Perimetry: Signi fi cant advancementsEasy to use kinetic graphical user interface with full 180°testing range.• Review quantitative and qualitative information from all standard HFA analyses, in an easy-to-read format • Change baselines and capture, track and measure progression simply and easily with Guided Progression Analysis ™ (GPA ™)• Use RelEYE to preserve an image of the patient’s eye at every stimulus presentation during a SITA ™ Standard test• Assess patient’s compliance with RelEYE in both GPA and single-fi eld analysis modes • Work with either Mean Deviation (MD) or Visual Field Index ™ (VFI ™)—or both• Generate HFA reports using a MAC or a PCHFA review report with RelEYE and GPA* RelEYE is available on both the instrument and through FORUM Glaucoma Workplace.HFA review with FORUMGlaucoma Workplace from ZEISSExample of a report using RelEYE *Everything you expect from a HumphreyThe advances in HFA3 from ZEISS only add to the reliable standard that thousands of practices already depend on for critical diagnoses. The new model still delivers the interactive analysis you need, when and where you need it.Visual Field IndexVFI is a simple and intuitive global index. Its most powerful application is GPA, which trends VFI over time.GPA AlertA message in simple language that indicates whether statistically signi fi cant deterioration was identi fi ed in consecutive visits.STATPAC ™The language of perimetry, STATPAC compares results to proprietary age normative and glaucoma databases.SITA Strategies Unsurpassed in ef fi ciency, SITA is patient responsive: It learns to perform as fast as the patient wants to go.ConnectivityHFA3 connects to other HFA3 and HFA II-i perimeters. For comprehensive connectivity, HFA3 can be connected to FORUM with FORUM Glaucoma Workplace. HFA3 also supports common fi le folder sharing used by mostElectronic Medical Record Systems (EMRs).For years, the Humphrey Field Analyzer has brought certainty to glaucoma diagnosis. The HFA3 preserves everything that made its predecessors the gold standard in perimetry—then takes that standard to new heights with innovations that enhance reliability and ef fi ciency.Certainty for years with the ZEISS Glaucoma SuiteA broad range of innovative diagnostic and imaging solutions are transforming your point of care. Today, your ZEISS Glaucoma Suite delivers a ZEISS solution that can either stand alone or seamlessly integrate into a comprehensive all-practice solution through FORUM that puts critical information at your fi ngertips —in an instant .Partnering with reliable expertiseZEISS is dedicated to enhancing the long-term value of your investment through a highly skilled fi eld and technical support organization. ZEISS service agreements encompass the full range of support offerings to ensure optimal system uptime and work fl ow convenience. You can count on ZEISS to support your needsfor high productivity and cost containment while delivering the optimum in customer care.Humphrey FDT®CIRRUS ™HD-OCT Humphrey ® FieldAnalyzer 3 (HFA3™)VISUCAM®Humphrey Matrix ® 800FORUM®CIRRUS ™ photoSpeci fi cations HumphreyFDT Humphrey Matrix 800HFA3840850860Test specificationsMaximum temporal range (degrees)3030808080Stimulus duration200-400 ms 300 ms 200 ms 200 ms 200 ms Visual field testing distance Infinity Infinity 30 cm 30 cm 30 cm Background illumination 100 cd/m 2100 cd/m 231.5 ASB31.5 ASB31.5 ASBThreshold test library N-30••C-20•24-2, 30-2, 10-2, Macula ••••60-4, Nasal step •••Threshold test strategies MOBS ••ZEST•SITA Standard, SITA Fast, Full Threshold, FastPac •••SITA-SWAP••Suprathreshold test library C40, C76, C80•••C64, C-Armaly •••C-20•N-30••24-2•Peripheral test patterns •••Suprathreshold test modes Age corrected•••••Threshold related, Single intensity •••Specialty test librarySocial Security Disability, monocular, binocular •••Esterman monocular, binocular, superior 36, 64•••Kinetic testing ••Custom Kinetic testing ••Custom Static testing•••Technical data Speci fi cationsThe HFA3 that’s right for you• The HFA3 Model 840, like all models, performs custom static testing with custom static patterns for stimulus sizes I through V, and features Guided Progression Analysis (GPA) to assist in care management over time. In addition, it includes improved gaze tracking and head tracking.• The HFA3 Model 850 adds vertex monitoring, blue-on-yellow (SWAP) and the new RelEYE monitor.• The HFA3 Model 860 delivers all these features and adds the automated Liquid Trial Lens.Features HumphreyFDTHumphreyMatrix 800HFA3840850860Fixation controlHeijl-Krakau blind spot monitor•••••Video eye monitor••••Gaze tracking•••Head tracking•••Vertex monitoring••Operator interfaceDisplay LCD LCD Touch-screen LCD Keyboard••••StimulusFrequency doubling••White-on-white•••Red- or blue-on-white•••Blue-on-yellow (SWAP)••General testing featuresStimulus sizes10°2°, 5°, 10°GoldmannI-V GoldmannI-VGoldmannI-VFoveal threshold testing•••Automatic pupil measurement•••Liquid Trial Lens (AutoTLC)•RelEYE eye review••Test storageUser-defined••••Software featuresSingle Field Analysis (SFA)•••Glaucoma Hemifield Test (GHT)••••Visual Field Index (VFI)•••Guided Progression Analysis (GPA)•••Serial field overview••••Networking••••FORUM Connectivity••••DICOM Connectivity••••PrinterThermal printer•Native generic PCL 3, PCL 5 and postscript printer support forlocal, shared and networked printersOptionalNative postscript printer support for network capable printers Optional Optional Optional Data storage, retrieval and analysisHard drive250 GB500 GB500 GB500 GB USB••••CD-R/W drive•DimensionsHeight17” (43 cm)17” (43 cm)23” (58 cm)Width10” (25 cm)12.2” (31 cm)20” (51 cm)Depth19” (48 cm)33.5” (85 cm)18” (46 cm)Weight19 lbs (8.6 kg)37.5 lbs (17.4 kg)63 lbs (28.7 kg) Electrical requirements100-120V, 50/60Hz 230V, 50/60Hz 100-240V~, 50/60Hz,200VA max100-120V~, 50/60Hz, 4.0A230V~, 50/60Hz, 1.8AStandardsMeets UL, CSA and CE standards•••••H F A .6613 R e v .C P r i n t e d i n U S A 1M C Z -02/2015 N O T I N T E N D E D F O R U S E O U T S I D E T H E U N I T E D S T A T E S .T h e c o n t e n t s o f t h e b r o c h u r e m a y d i f f e r f r o m t h e c u r r e n t s t a t u s o f a p p r o v a l o f t h e p r o d u c t i n y o u r c o u n t r y . P l e a s e c o n t a c t y o u r r e g i o n a l r e p r e s e n t a t i v e f o r m o r e i n f o r m a t i o n . S u b j e c t t o c h a n g e i n d e s i g n a n d s c o p e o f d e l i v e r y a n d a s a r e s u l t o f o n g o i n g t e c h n i c a l d e v e l o p m e n t . H u m p h r e y , H F A , L i q u i d T r i a l l e n s , S m a r t T o u c h , R e l E Y E , F O R U M , C I R R U S , G u i d e d P r o g r e s s i o n A n a l y s i s , G P A , S I T A , V i s u a l F i e l d I n d e x , V F I , S T A T P A C , V I S U C A M , H u m p h r e y F D T a n d H u m p h r e y M a t r i x a r e e i t h e r t r a d e m a r k s o r r e g i s t e r e d t r a d e m a r k s o f C a r l Z e i s s M e d i t e c , I n c . i n t h e U n i t e d S t a t e s a n d /o r o t h e r c o u n t r i e s . A l l o t h e r b r a n d r e f e r e n c e s a r e t r a d e m a r k s o r r e g i s t e r e d t r a d e m a r k s o f t h e i r r e s p e c t i v e c o m p a n i e s i n t h e U n i t e d S t a t e s a n d /o r o t h e r c o u n t r i e s .© 2015 b y C a r l Z e i s s M e d i t e c , I n c . A l l c o p y r i g h t s r e s e r v e d .Humphrey Field AnalyzerCarl Zeiss Meditec, Inc. Carl Zeiss Meditec AG5160 Hacienda Drive Goeschwitzer Str. 51-52Dublin, CA 94568 07745 JenaUSAGermanyToll Free: +1 800 341 6968 Phone: +49 36 41 22 03 33 Phone: +1 925 557 4100 F ax: +49 36 41 22 01 12 Fax: +1 925 557 4101 info @ ******************.com /HFA3。
0引言钢筋混凝土框架结构在实际工程中应用广泛,中国的多次震害调查显示,强震作用下钢筋混凝土框架结构往往易于发生较严重的损伤破坏甚至倒塌,因此,提高建筑物抗震能力,尽量降低地震所造成的破坏,显得尤为重要。
在具体方法上,除沿袭传统的抗震思路提高结构自身的抗震性能外,也可以采用消能减震技术,通过在建筑物的抗侧力体系中设置消能部件,由消能部件的相对变形和相对速度提供附加阻尼,来消耗输入结构的地震能量,减小结构的地震响应,提高建筑物抗震水平。
工程减震设计中常采用粘滞阻尼器作为消能减震部件,粘滞阻尼器(Viscous Fluid Damper ,简称VFD )是一种速度相关型阻尼器,阻尼器中的液体在运动过程中产生的阻尼力总是与结构速度方向相反,从而使结构在运动过程中消耗能量,达到耗能减震的目的,然而,一些阻尼器生厂商生产的产品中含有摩擦力,阻尼器在地震作用下并不能按照其所给结构参数工作,据此,本文进行了试验研究,并提出了考虑摩擦力影响的黏滞阻尼器的阻尼力计算公式。
1粘滞流体阻尼器的传统力学模型根据粘滞阻尼器产生阻尼力的原理的不同,可将阻尼器分为:利用封闭填充材料流动阻抗的“流动阻抗式”和利用粘滞体剪切阻抗的“剪切阻抗式”两类。
文中采用的是流动阻抗式粘滞阻尼器。
流动阻抗式粘滞阻尼器是一种典型的速度相关型阻尼器,根据阻尼指数α的取值可将粘滞阻尼器分为两类:当α=1时,为线性粘滞阻尼器;当α≠1时,为非线性粘滞阻尼器。
其表达式为F=CV α(1)式中C 为阻尼系数,V 为结构的速度,α为阻尼指数,其中阻尼指数α是粘滞阻尼器消能减振性能的重要指标之一。
α越小,表现出的非线性越强,阻尼器对速度的敏感性越高,即在很小的相对速度下就能输出较大的阻尼力,且阻尼力-位移曲线也越饱满,更能有效地减少结构振动。
因此,为了保证减震效果,需要对粘滞阻尼器进行性能试验研究,通过试验判断阻尼器实际的结构参数是否与厂家提供的一致,如果有误差,则应针对该类阻尼器提出新的力学计算模型,以供减震结构的分析和参考。
G-5The FV-200 Series meter utilizes vortex-shedding technology to provide a repeatable flowmeasurement accurate to 1% of full scale. The meter has nomoving parts, and any potential for fluid contamination is eliminated by the meter’s corrosion-resistant all plastic construction. The meter includes a compact 2-wire (4 to 20 mA) or 3-wire pulse transmitter (optional), contained within a conveniently replaceable plug-in electronics module. All electronics are housed in a corrosion-resistant enclosure. Unlike meters containing metal or moving parts, the FV-200 is perfect for aggressive or easily contaminated fluids. Applications range from ultra-pure water to highly corrosive chemicals and slurriesOperation of the FV-200 vortex flowmeter is based on the vortex shedding principle. As fluid moves around a body, vortices (eddies) are formed and move downstream. They form alternately, from one side to the other, causing pressure fluctuations. These are sensed by a piezoelectric crystal in the sensor tube, and are converted to a 4 to 20 mA, or pulse signal. The frequency of the vortices is directly proportional to the flow rate. This results in extremely accurate and repeatable measurements using no moving parts.Another advantage of utilizing aFV-200 vortex flowmeter is that there are no gaskets or elastomers in themeter. Therefore, one need only be concerned with the thermoplasticmaterial used in body construction.In a thermoplastic piping system, the material chosen for the flowmeter should match that of the pipe wherever possible.Many factors may affect the capability of a meter to measurethe flow of specific fluids accurately. Different solutions have varying ef-fects on meters. For instance, heavy particle suspension will wear down internal parts on some meters or cause sensing inaccuracies for non-obtrusive metering systems. For vortex flowmeters, high viscosities tend to dampen the formation of vortices and reduce the effective range. Particles and internal bubbles do not usually affect vortex meters. Slurries containing grit can wear down the bluff body over a period of time. Also, long fibers can catch and build up on the bluff,decreasing accuracy. Standard factory calibration is for tap water at32 SSU (1 CST) viscosity and ambient temperature. Viscosityabove 1 CST will raise the minimum readable flow rate, reducing SpecificationSMeasured: Liquidsconnection: 1⁄4 to 2 NPT threadWetted Material: PVC, CPVC or PVDF depending on model number turndown Ratio: 12.1 (except 1⁄4" meter size; 8.1)accuracy: ±1% of full scale, 4 to 20 mA or ±2% of full scale, frequency pulse (“-p” option)Repeatability: ±0.25% actual flow output Signal: 4 to 20 mA orfrequency pulse (source-sink driver; 1A source/ 1.5A sink; typical output resistance 10 Ω)power Supply: 13 to 30 Vdc enclosure: NEMA 4X (IP 66)Response time: 2 seconds minimum, step change in flowrangeability. The effect is linear toviscosity. No adjustments are required for specific gravities up to 2.0. Liquids with high specific gravities will adversely affect the permissible amount and duration of over range flow.Uno Moving parts U corrosion Resistant U 6 to 51 mm (1⁄4 to 2") Sizes UH igh temperature [95°c (203°f)] Models available U niSt certificatefV-211, shown smaller than actual size.ALL PLASTIC VorTex FLowMeTer For CorroSIVe LIquIdSfV-200 SeriesG-6GP O R D E R U S S E R P )r a b i l l i M (For units with a pulse output add a “-P” to the model number, no additional charge.*For high temperature CPVC or PVDF add suffix “-HT” to model number, for additional cost.Ordering Examples: FV-213, 3⁄4 NPT, PVC vortex flowmeter and DPi32, 1⁄32 DIN digital display. FV-226-P, 2 NPT, CPVC vortex with pulse output.FV-231-P-HT, 1⁄4 NPT, PVC vortex with pulse output and high temperature option.。
液滴撞击疏水/超疏水表面运动特性的数值模拟张磊;李小磊;马晓雯;张会臣【摘要】采用计算流体动力学对液滴撞击疏水/超疏水表面的过程进行数值模拟,分析液滴滴落高度、表面润湿性和表面倾斜角度3个因素对液滴运动的影响。
结果表明,随着液滴滴落高度的增大,液滴铺展系数增大,回弹系数减小,滴落高度对液滴铺展系数和回弹系数的影响随表面静态接触角的增大而增大;表面疏水性增强,液滴铺展系数减小,回弹系数增大,滴落高度的增大会减弱表面润湿性对液滴铺展系数和回弹系数的影响;表面倾斜角度增大,液滴铺展系数和回弹系数减小,液滴内部最大速度增大。
%The drop impacting on thehydrophobic/superhydrophobic surface was simulated by computational fluid dy-namics method.Influences of drop dripping height,wettability and surface’s incline angle on droplet moving were analyzed. The results show that,with the increasing of dripping height,the spreading coefficientis increased,the rebounding coeffi-cient is decreased,and the influence of dripping height on spreading coefficient and rebounding coefficient willbe stronger when the hydrophobicity is enhanced.With the enhancementof surface hydrophobicity, the spreading coefficient is de-creased but the rebounding coefficient is increased,and the influence of hydrophobicity on spreading coefficient and re-bounding coefficient will be weakened by the increasing dripping height.The larger the incline angle is,the smaller the spreading coefficient and the rebounding coefficient,and the bigger the maximum velocity inside the droplet.【期刊名称】《润滑与密封》【年(卷),期】2016(041)009【总页数】6页(P63-68)【关键词】液滴撞击;疏水表面;超疏水表面;铺展系数;回弹系数【作者】张磊;李小磊;马晓雯;张会臣【作者单位】大连海事大学交通运输装备与海洋工程学院辽宁大连116026;大连海事大学交通运输装备与海洋工程学院辽宁大连116026;大连海事大学交通运输装备与海洋工程学院辽宁大连116026;大连海事大学交通运输装备与海洋工程学院辽宁大连116026【正文语种】中文【中图分类】TH117.1在化学工程和航空航天等领域经常涉及到液滴撞击固体壁面的现象[1-3],如化工生产中液滴溅射到容器壁面、柴油机气腔内油粒撞击燃烧室壁面以及雨滴对飞机机翼的撞击等等。
二氟尼柳/水滑石插层组装结构、氢键及水合特性的分子动力学模拟潘国祥倪哲明*王芳王建国李小年(浙江工业大学化学工程与材料学院,杭州310032)摘要:采用分子动力学方法模拟二氟尼柳插层水滑石(DIF/LDHs)的超分子结构,研究复合材料主客体间形成的氢键以及水合膨胀特性.结果表明,当水分子总数与DIF 分子总数之比N w ≤3时,层间距d c 保持基本恒定,约1.80nm;当N w ≥4时,层间距逐渐增大,且符合d c =1.2611N w +13.63线性方程.随着水分子个数增加,水合能ΔU H逐渐增大.当N w ≤16时,由于ΔU H <-41.84kJ ·mol -1,LDHs -DIF 可以持续吸收水,从而使材料层间距不断膨胀.但当N w ≥24时,ΔU H >-41.84kJ·mol -1,此时LDHs -DIF 层间不能再进一步水合,因此LDHs -DIF 在水环境中膨胀具有一定的限度.水滑石层间存在复杂的氢键网络.DIF/LDHs 水合过程中,水分子首先同步与层板和阴离子构成氢键;当阴离子趋于饱和后,水分子继续与层板形成氢键,并逐步发生L -W 型氢键取代L -A 型氢键,驱使阴离子向层间中央移动,与层板发生隔离;最后水分子在水滑石羟基表面形成有序结构化水层.关键词:分子动力学模拟;二氟尼柳/水滑石;氢键;水合中图分类号:O641Molecular Dynamics Simulation on Structure,Hydrogen -Bond and Hydration Properties of Diflunisal Intercalated Layered DoubleHydroxidesPAN Guo -Xiang NI Zhe -Ming *WANG Fang WANG Jian -Guo LI Xiao -Nian(College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou310032,P.R.China )Abstract :The supramolecular structure of diflunisal intercalated layered double hydroxides (DIF/LDHs)wasmodeled by molecular dynamics (MD)methods.Hydrogen bonding,hydration and swelling properties of DIF/LDHs wereinvestigated.The interlayer spacing d c was found to be constant (ca 1.80nm)when N w (the ratio of the numbers of watermolecule to DIF)≤3.The interlayer spacing d c gradually increases as N w ≥4and this increase follows the linearequation d c =1.2611N w +13.63.The hydration energy gradually increases as the water content increases.LDHs/DIFhydrates when N w ≤16because hydration energy ΔU H <-41.84kJ ·mol -1.At N w ≥24the hydration of LDHs/DIF doesnot occur because ΔU H >-41.84kJ ·mol -1.Swelling of LDHs/DIF is thus limited in an aqueous environment.Theinterlayer of DIF/LDHs contains a complex hydrogen bonding network.The hydration of DIF/LDHs occurs as follows:water molecules initially form hydrogen bond with layers and anions.While the anions gradually reach a saturationstate and water molecules continue to form hydrogen bonds with the hydroxyls of the layers.The L -W type hydrogenbond gradually substitutes the L -A type hydrogen bond and the anions move to the center of an interlayer and thenseparate with the st,a well -ordered structural water layer is formed on the surface hydroxyls of DIF/LDHs.Key Words :Molecular dynamics simulation;Diflunisal/layered double hydroxide;Hydrogen -bond;Hydration [Article] 物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .,2009,25(2):223-228Received:August 1,2008;Revised:October 8,2008;Published on Web:November 26,2008.*Corresponding author.Email:jchx@;Tel:+86571-88320373.浙江省自然科学基金(Y406069)资助项目鬁Editorial office of Acta Physico -Chimica Sinica February 223Acta Phys.-Chim.Sin.,2009Vol.25水滑石(简写为LDHs)为典型的阴离子型层状材料,其化学式为[M2+1-x M3+x(OH)2]x+A n-x/n·m H2O(其中, M2+和M3+分别代表二价和三价金属阳离子,下标x 为M3+/(M2++M3+)金属离子摩尔比,A n-代表层间阴离子)[1].由于LDHs具有特殊的层状结构和层间离子的可交换性,可向层间引入新的客体阴离子,从而组装得到系列新型有机/无机复合材料,在催化、吸附、离子交换、药物缓释和功能助剂等领域得到广泛应用[2-5].水滑石作为新型的药物传输载体,可增强药物分子的扩散性能、热稳定性以及控制药物分子的释放速率[6,7].此外,水滑石呈碱性(pH值(10%悬浮液): 7-9),具有较强的抗酸作用.其作为抗酸剂与非甾体抗消炎镇痛药(NSAIDs)联用,可以减少该类药物对十二指肠的损害,提高NSAIDs的溶解度,甚至还可以缓解其对胃的刺激.二氟尼柳(DIF)作为一种新型的非甾体抗消炎镇痛药,具有抗炎、镇痛作用强,不良反应少等优点[8],与同类的消炎镇痛药(如布洛芬、阿斯匹林)相比疗效要好.因此,将二氟尼柳与水滑石复合后,既能提高抗炎、镇痛效果,又能减少药物带来的副反应,可以说是一举两得,对治疗风湿等病症具有重要的意义.前期工作中,我们采用共沉淀法和离子交换法成功将二氟尼柳嵌入Mg-Al水滑石,得到一种新型的二氟尼柳插层水滑石(DIF/LDHs)[9].并采用X射线粉末衍射(XRD)、红外光谱(IR)、热重-差热分析(TG-DTA)等表征手段得到了DIF/LDHs复合材料的部分结构信息.然而,目前采用实验仪器表征方法仍无法准确得到水滑石层间客体药物分子以及水分子的排布形态.因此需要结合计算机模拟技术,对药物/LDHs复合材料层间复杂结构进行确认[10-16].我们曾采用密度泛函理论(DFT)研究了简单客体阴离子(如Cl-和CO2-3等)在LDHs的排布形态、主客体作用以及水合情况[17-19].但是药物/LDHs复合材料体系庞大、原子类型多样,因此本文采用分子动力学模拟方法研究DIF/LDHs的超分子结构、氢键及水合膨胀特性,为药物/LDHs的微观结构确认与特性研究提供理论依据.1计算模型与方法1.1模型建立LDHs具有类似水镁石(Mg(OH)2)的层状构型,由于层板中部分Mg被Al取代而带有正电荷,所以本文层板计算模型取4个Mg3Al(OH)+8结构单元,层板结构见图1(a).模型中,Al3+离子是均匀分布且没有相邻的情况存在,与Sideris等[20]采用NMR表征研究结果相一致.二氟尼柳分子属于水杨酸类药物,p Ka值相对较低.其插入水滑石中,羧基官能团被认为是去质子化的,因此其模拟结构设为单价阴离子,结构见图1 (b).研究DIF/LDHs超分子结构时,以Mg12Al4(OH)4+32作为主体层板,以2H堆积模式(晶胞参数a为层板相邻金属离子平均间距,晶胞参数c=2dc)构建LDHs 周期性模型(图1(c)).初始构型中,药物DIF以羧基垂直指向水滑石(111)晶面,并且羧基以交错的方式与层板羟基相结合(计算表明,相比层间药物的羧基一致朝向,交错方式能量更低);而水分子采用随机的方式添加入水滑石层间.模拟的超胞模型(supercell)由4×4个单元晶胞组成,每个超胞模型包含两个金属氢氧化物层,每个夹层含4个二氟尼柳阴离子和不定数量的水分子4Nw,其中0≤N w≤32(N w为水分子总数与二氟尼柳药物分子总数之比).模拟体系应用三维周期性边界条件,初始结构参数:α=β=90°,γ=120°.c值随层间阴离子种类与水含量变化而变化.1.2模拟方法UFF(universal force field)[21]是具有普适性的力场,它可以模拟的元素几乎覆盖了整个元素周期表,所有的力场参数按照一套元素杂化连接性的规则产生,其合理性已被许多结构类型所证实.目前,UFF 已被应用于金属-有机骨架材料中吸附与扩散[22]以及层状粘土材料[23,24]的分子模拟研究与预测.力场选择是一个体系模拟成败的关键点之一.因此我们首先尝试UFF[21]、COMPASS[25]和DREIDING[26]三种方法,对Mg3Al-Cl体系(Mg24Al8(OH)64Cl8,与LDHs-DIF结构类似)进行前期分子动力学模拟实验,然后将模拟得到的材料结构形态以及晶胞参数与实验测定值进行对比.计算结果表明,使用DREIDING 力场,优化失败(其不包含Mg的力场参数);用COMPASS力场得到的优化结构中,层板结构对称性差,且上下层板存在交错现象,层间距为0.72 nm;而使用UFF,优化得到材料结构原子排列规则、有序,层间距为0.80nm.三种力场相比,使用UFF 得到材料的层间距0.80nm与实验值[27,28]0.78nm比较接近,因此UFF对于药物/水滑石体系结构模拟是适用的.224No.2潘国祥等:二氟尼柳/水滑石插层组装结构、氢键及水合特性的分子动力学模拟药物/水滑石体系主客体间存在复杂分子间作用力(静电、氢键和范德华力),但是UFF 的力场选项没有包含氢键描述.王三跃等[22]将UFF 用于柔性金属-有机骨架材料体系的模拟,并对所形成的氢键情况进行探讨.而UFF 对于LDHs 主客体间存在的氢键数量模拟统计是否适用?我们采用密度泛函理论对LDHs -Cl 的计算结果[19]与分子动力学模拟结果进行对比,结果列为表1.在LDHs -Cl 体系中存在的O —H …Cl 型氢键,由DFT -LDA 得到的l (H …Cl)约为0.2297-0.2311nm,θ(O —H …Cl)约为152.06°-152.81°;而由MD -UFF 计算得到的l (H …Cl)约为0.2390-0.2617nm,θ(O —H …Cl)约为150.70°-160.79°,两者计算得到的氢键键长和键角相当接近,因此本文使用UFF 力场优化计算结果用于统计药物/LDHs 体系中的氢键数量是可信的.药物/LDHs 模拟计算采用Materials Studio 4.1(Accelrys,San Diego,CA)材料模拟软件.体系进行能量最小化和动力学模拟采用forcite 模块,选用UFF,电荷计算运用电荷平衡法(Qeq).选用smart 算法,用不同的迭代步数进行能量最小化计算.长程静电作用采用Ewald 加和方法计算,范德华力选用atom based 方法[25],截断半径为0.85nm.采用forcite模块分别对层间水分子数目(4N w )在0-128之间的二氟尼柳插层水滑石体系进行能量优化,由能量优化后得到的最低能量结构作为MD 模拟的初始结构.首先选择等温等压系综(NPT)模拟得到体系的平衡结构,温度T =300K,压力p =105Pa,时间步长0.5fs,模拟时间为50ps [29],温度控制方法选择Nose -hoover [30],压力控制方法选择Berendsen 法[31].模拟图1(a)层板、(b)二氟尼柳和(c)二氟尼柳/水滑石复合材料的计算模型Fig.1The calculation models of (a)layer,(b)DIF and (c)DIF/LDHs The color scheme used is white for hydrogen,red for oxygen,green for magnesium,peachblow for aluminum,grey for carbon,and sky blue for fluorin.N w =4N w =8N w =12N w =24图2Mg 3Al -DIF -n H 2O -LDHs 模型动力学模拟结果Fig.2The dynamics simulation results of Mg 3Al -DIF -n H 2O -LDHsbond length in nm,bond angel in degree表1不同计算方法得到的Mg 24Al 8(OH)64Cl 8材料中氢键Table 1The hydrogen bond existed in Mg 24Al 8(OH)64Cl 8with different calculation methodsDFT -LDA [19]MD -UFF d c0.760.80l (H …Cl)0.2306;0.2307;0.2472;0.2482;0.2311;0.2297;0.2617;0.2491;0.2308;0.23110.2390;0.2572θ(O —H …Cl)152.06;152.39;158.47;151.55;152.10;152.81;156.98;153.24;152.37;152.15150.70;160.79225Acta Phys.-Chim.Sin.,2009Vol.25周期中最初的30ps用于平衡结构[29,32],在剩余的20 ps内计算晶胞参数和水合能.然后选择正则系综(NVT)模拟统计体系的结构和动力学信息,以NPT系综模拟得到的最后平衡结构作为NVT系综模拟的初始结构,温度T=300K,时间步长0.5fs,模拟时间200ps,其中最初的50ps 用于平衡结构,模拟结果用于详细氢键分析.2结果与讨论2.1结构参数分子动力学模拟可得二氟尼柳插层水滑石的晶胞参数a(层板相邻金属离子平均间距)为0.2781 nm,略小于文献报道值0.3046nm[33].结构中二氟尼柳阴离子主要以垂直于层板的方式存在于LDHs层间,层间距dc为1.7785nm.图2中绘出了水含量变化所得的复合材料优化结果.从图2中可得,①当层间引入水分子后,因水合膨胀作用使层间距变大,且水分子越多,层间距越大;②水分子较少时,阴离子主要以接近于垂直状态与层板结合,水分子填充于阴离子之间的空隙;③当引入的水分子个数较多时,阴离子逐渐发生倾斜,水分子倾向于结合层板,形成有序排列的结构化水层,且水分子的氧原子朝向层板,与层板羟基形成氢键.将层间水分子含量变化与水滑石晶胞参数的关系绘入图3中.从图3可以看出,水分子对层板晶胞参数a影响不大,基本维持在0.2766-0.2890 nm,而对层间距d c影响比较大.当N w≤3时,层间距的变化缓慢,基本保持在1.7859-1.7975nm;当N w≥4时,随着引入的水分子个数增多,层间距逐渐增大,基本呈线性变化.我们采用线性方程进行拟合,得到方程:dc=1.2611N w+13.63(4≤N w≤32,相关系数R2=0.9893).在水合程度较小时,水分子有部分填充于层间阴离子间的空隙中,所以对层间距影响相对较小.随着水合程度增加,由于水分子与层板具有更强的亲合性,致使药物阴离子逐渐与层板隔离,削弱了两者间的静电作用,导致材料层间距逐渐呈线性增加.我们采曾用共沉淀法[9]制备得到DIF/LDHs样品的两种构型层间距分别为2.14和1.85nm,和本文模拟结果中N w=7(d c=2.18nm)和N w= 4(d c=1.85nm)相接近.离子交换法对应的层间距为1.96nm,这与分子动力学模拟结果中当N w=5(d c=1.98 nm)相接近.理论计算的N w值与实验测定的H2O/DIF 相比,两者有一定的差别,可能与层板中Mg/Al比及层间DIF伴随OH-的差异有关.2.2水合能层间水分子对于水滑石结构以及膨胀性能具有重要影响,所以本文采用水合能来分析引入水分子对水滑石结构与性能产生的影响.水合能定义[32]如下:ΔU H(N w)=(U(N w)-U(0))/n(1)其中,n是水分子的总数,U(Nw)是系统的总势能,U(0)是系统无水分子时的总势能.该公式能够简便并有效地计算出层间水的亲和能.Mg3Al-DIF-n H2O-LDHs的水合能U H与其水合程度(Nw)的关系见图4.从图4中可看出,在低水含量时,水合能是最负的;随着引入水分子个数增多,水合能以较快速率增加;当Nw≥12时,增大的趋势变缓.在整个水合过程中,水合能并没有发现局域最大值,这一现象与先前有关简单无机阴离子插层水滑石(如LDHs-Cl-)图4Mg3Al-DIF-n H2O-LDHs的水合能U H和N w的关系Fig.4Relationship of hydration energy U H and N w ofMg3Al-DIF-n H2O-LDHs图3Mg3Al-DIF-n H2O-LDHs的d c、a和N w的关系Fig.3Relationship of d c and a versus N w for Mg3Al-DIF-n H2O-LDHs226No.2潘国祥等:二氟尼柳/水滑石插层组装结构、氢键及水合特性的分子动力学模拟的模拟结果截然相反[34].从图中还可以发现,当N w ≤16时,ΔU H <-41.84kJ ·mol -1(体相水(bulk SPC water)的势能[29,32]约-41.84kJ ·mol -1(-10kcal ·mol -1)),这说明在此区间LDHs -DIF 可以持续吸收水,从而使材料层间距不断膨胀.但当N w ≥24时,ΔU H >-41.84kJ ·mol -1,此时LDHs -DIF 层间不能再进一步水合,因此LDHs -DIF 在水环境中膨胀具有一定的限度.2.3氢键分析为了从本质上理解DIF/LDHs 复合材料水合膨胀特性,对水滑石主客体间存在的氢键进行统计分析,结果如图5所示.将与氢原子成键的原子称为给体(donor),以D 表示;与氢原子形成氢键的原子称为受体(acceptor),以A 表示.本文所统计的氢键定义[35]为:r (AH)<0.25nm,θ(AHD)>90°.其中,r (AH)表示氢原子与受体间的距离;θ(AHD)表示受体-氢-给体间的夹角.将模拟体系中存在的氢键分为以下四类:层板-阴离子(L -A)、层板-水分子(L -W)、阴离子-水分子(A -W)以及水分子-水分子(W -W).文中表示的氢键数量都为单个给体(受体)所对应氢键数.对于二氟尼柳阴离子而言,其羧基和氟原子作为纯的氢键受体,可接受水分子中的氢以及层板羟基中的氢而形成氢键.另外,其本身含有的羟基与羧基形成分子内氢键,对体系主客体作用影响不大.图5(a)中,DIF 与层板M —OH 形成的L -A 型氢键随着层间水分子含量增加,呈线性减少趋势;且当N w =7-8时,L -A 型氢键基本保持恒定.图2中,水滑石在水合程度增加时,二氟尼柳阴离子逐渐向层间中央迁移,直到药物分子与层板间几乎被水分子所隔离,这与L -A 型氢键数量在水合过程中呈减少趋势相一致.A -W 型氢键在N w =1-3时,两者间形成的氢键数量逐步增加;当N w >3时,A -W 型氢键数量基本保持在4个左右.此外,还可以发现由阴离子接受的总氢键数量随着水合程度增加,先增加后减少.水滑石层板羟基(M —OH)作为纯的氢键给体,与水分子和阴离子分别形成L -W 和L -A 型氢键.图5(b)中,随着层间水分子含量增加,L -W 型氢键与L -A 型氢键数量呈相反的变化趋势,前者逐渐替代后者而占主导优势.从层板羟基接受的氢键总数来看,单个层板羟基的氢键饱和值在1.3左右,与文献[29]报道的0.9略有差异,主要是对统计氢键的定义不同所致.层间水分子既可作为氢键给体,又可作为氢键受体.从图5(c)中可以发现水分子作为氢键受体要比作为给体形成的氢键更占优势.随着水分子含量增加,单位水分子给予的氢键数量先增加后减小,主要是由于其与阴离子形成的氢键数量达到饱和所致.当N w =3,给体型和受体型氢键数量相当;随着水合程度进一步增加,水作为受体型氢键要完全占优势.而W -W 型氢键开始随着水合程度增加而增加,而当N w >4之后,趋向于恒定,约0.5个氢键/水分子.综合以上分析,可以推断DIF/LDHs 水合过程如下:首先水分子将同步与层板和阴离子形成氢键;当阴离子趋于饱和后,水分子继续与层板形成氢键,并逐步发生L -W 型氢键取代L -A 型氢键,驱使阴离子向层间中央迁移;而水分子在水滑石表面形成有序结构化水层.3结论采用分子动力学模拟方法研究了二氟尼柳插图5Mg 3Al -DIF -n H 2O -LDHs 模型中氢键分析Fig.5Hydrogen bond analysis of Mg 3Al -DIF -n H 2O -LDHsN w =1-8;(a)the average number of H -bonds accepted by DIF from LDHs and water,(b)the average number of H -bonds donated by the LDHs to DIFand water,(c)the average number of H -bonds accepted/donated by water molecules from/to other species as well as themselves;L:LDHs,A:acceptor,W:water(a)(b)(c)227。
82在马来西亚Betam油田某井中,按照作业者要求,设计8-1/2”储层钻井液为无固相钻开液体系,且在完井程序中,需要在井底泵入破胶液,延迟井底工作液和泥饼反应时间。
主要目的是由于在水基钻开液体系中,加入了高分子提粘剂PF-VIS150,该处理剂分子量长达200-300万,体积大,粘度高。
PF-VIS150经钻头水眼高速喷射剪切后,以低分子量滤液液相的形式进入油气孔隙通道,且由于在地层孔隙中界面张力的影响,滤液容易吸附和滞留在油气缝隙中,造成油气流通通道受阻,导致油田产能降低。
因此,在钻井液设计中,需要在裸眼段中替入破胶液对泥饼进行破坏,以恢复近井壁渗透率,达到提高产能的目的[1]。
但如果实施专门的破胶程序,即:在下完筛管后,用完井液顶替出井中钻井液,再将裸眼段替入破胶液,等待破胶,时间较长[2],这必将增加钻机时间,加大甲方作业日费。
同时,完井周期时间长,储层也会受到更多潜在的污染,导致产能降低。
因此,作业者h要求破胶液在最初的8h内,失水小于8mL,且在8d内完全移除泥饼,且岩心渗透率恢复值达到85%。
因此,针对作业者要求,专门设计并混配了一种延时破胶液,在最初8h内,在淀粉酶的催化下,消耗包裹在产酸剂外部的表面活性剂,并逐渐释放出H +,延缓泥饼破坏程度。
并将破胶液滤液失水控制在5ml之内,8d后岩心渗透率恢复值达到114%。
使用该体系破胶后,产量超出作业者配产预期。
1 地质与工程概况1.1 地质概况Betam-A15ST2井位于西马PM307区块,水深74.7m。
设计斜深5325.36m,垂深1653.3m,储层段为浅棕色、破碎性疏松粉沙岩。
井底温度92℃,井底压力为1700 psia/6.2ppge.1.2 工程概况本井在13-3/8”套管内下入斜向器开窗,并在12-1/4”井段使用合成基泥浆造斜钻进至4831m,并在K10.1层位中着陆。
储层8-1/2”井段采用水基钻开液钻井,并下入5-1/2”筛管进行完井作业。
Geology,fluid inclusions,isotope geochemistry,and geochronology of the Paishanlou shear zone-hostedGold Deposit,North China CratonXiao-Hui Zhang *,Qing Liu,Ying-Jun Ma,Hui WangKey Laboratory of Lithosphere Tectonic Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,P .O.Box 9825,Beijing 100029,People’s Republic of ChinaReceived 12February 2004;accepted 26March 2005Available online 1June 2005AbstractThe Paishanlou gold deposit lies along the northern margin of North China Craton gold province,the third largest Au province in China.The deposit is mainly hosted in Archean metamorphic rocks of the Jianping Group and is structurally controlled by two sets of ductile shear zones.Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones,with a typical greenschist facies alteration assemblage of sericite +chlorite +calcite +biotite+quartz and a distinct alteration zoning of inner pyrite-sericite zone,middle carbonate zone,and outer epidote-biotite-chlorite zone from orebody to wall rock.Fluid inclusion petrography and microthermometric results suggest that four types of fluid inclusions are present at the deposit.Type 1CO 2-rich inclusions have homogenization temperatures of 22.4–27.98C.Type 2H 2O–CO 2inclusions show salinities of 4.6–12.3wt.%NaCl equivalent and Th-tot of 242to 3378C.Type 3a primary aqueous inclusions have salinities of 5.9–11.2wt.%NaCl equivalent and Th-tot of 187–2898C,while Type 3b secondary aqueous inclusions have salinities of 3.1–8.3wt.%NaCl equivalent and Th-tot of 128–2398C.Type 4multiphase inclusions have salinities ranging from 31.4to 35.2wt.%NaCl equivalent and Th-tot of 370–4478C.The close association of CO 2-rich inclusions and H 2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility.Estimated P –T values range from 1.4to 1.9kbar at 322–4178C.The d 18O values of the ore-forming fluids are calculated to range from 3.8x to 7.4x and the d D values from À87.3to À116.2x ,indicating a mixed source of deep-seated magmatic water and shallower meteoric water.The d 34S values (0.3–7.5x )of sulfide ore minerals are similar to those of both pyrite from metamorphic country rocks and whole rock sulfur of metamorphic country rocks.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb of sulfide ores range within 16.40–17.0,15.21–15.37,and 36.69–37.38,respectively,with the model ages of 397–727Ma,consistent with those of Late Mesozoic granites and lying between Archean metamorphic rock lead and the Proterozoic dolomitic marble lead.These sulfur and lead features reflect the fact that the ore-forming materials originated mainly from multiple wall-rock sources.0169-1368/$-see front matter.Published by Elsevier B.V .doi:10.1016/j.oregeorev.2005.03.001*Corresponding author.Tel.:+861062007397;fax:+861062007389.E-mail address:zhangxh@ (X.-H.Zhang).Ore Geology Reviews 26(2005)325–348/locate/oregeorevThe well-defined Ar/Ar plateau age(126.6F1.1Ma)of biotite from the NNE ductile shear zone provides a possible temporal link between Au mineralization,magmatism and deformation at the Paishanlou deposit.The concordance of the biotite age with other well-constrained mineralization ages for the deposit,and the intrusion age of the granite,suggests that Au mineralization was essentially contemporaneous with late Mesozoic granitic magmatism and the second stage of mylonitization. In terms of its genetic linkage with the subduction process at the leading northern edge of the North China Craton,the Paishanlou deposit can be favored as an orogenic gold deposit.Its formation benefited from the combined action of protracted activity of ductile fault zones,hydrothermal circulation associated with granitoid intrusion and preferred structural setting favoring gold deposition.The major geodynamic switch towards generalized extensional tectonics that occurred during uplift, and thinning of the upper crust after the collisional stages in the northern edge of the North China Craton,may be the key factors controlling Au concentration and enrichment in the Paishanlou deposit.Published by Elsevier B.V.Keywords:Fluid inclusions;Isotopes;Geochronology;Ductile shear zone;North China Craton1.IntroductionAbundant gold deposits distributed along the Northern margin of the North China Craton (NNCC)constitute one of the most important gold metallogenic belts in China(e.g.,Nie,1997;Hart et al.,2002;Zhai et al.,2002;Zhou et al.,2002;Yang et al.,2003).Geological features,ages and geody-namic mechanisms in these gold deposits are Pre-cambrian high-grade metamorphic host rocks,main NE-ENE trending Mesozoic ore-controlling faults, spatial-temporal associations with Late Mesozoic magmatism,quartz lode or disseminated ores with extensive wall rock alteration.The deposits were formed during a very short metallogenic episode of 110–130Ma,and have genetic links to a large-scale Mesozoic tectonic inversion and lithospheric thinning (Nie,1997;Trumbull et al.,1996;Yao et al.,1999; Miao,2000;Goldfarb et al.,2001;Hart et al.,2002; Zhai et al.,2002;Zhou et al.,2002;Mao et al.,2003; Yang et al.,2003).The second-largest open pit mine in China along the NNCC,the Paishanlou Au deposit is located about 22km SE of Fuxin City,Liaoning Province(Fig.1).It was discovered in1989and constitutes one of a series of important Au deposits in western Liaoning Prov-ince(Zhu et al.,2002).Up until1995,a total resource of about1,400,000oz Au with a mean gold grade of 3.88–4.44g/t was proven based on detailed explora-tion.Open-pit mining has been under way since1993. The deposit is hosted in Late Archean metamorphic rocks,and structurally controlled by two sets of duc-tile shear zones.This paper(1)provides the first systematic description of the geology and mineraliza-tion,(2)characterizes the hydrothermal ore-forming systems through detailed fluid inclusion petrography and microthermometry,(3)deduces information on possible sources of the mineralizing fluids and mate-rials through comprehensive stable isotope study,and (4)establishes possible temporal linkage between magmatism,deformation and Au mineralization based on40Ar/39Ar geochronology,and(5)probes the genesis of the Paishanlou shear zone-hosted Au deposit.2.Regional geological settingTectonically,the western Liaoning represents the eastern segment of the Yanshan belt along the north-ern margin of the Archean North China Craton(NCC, also known as the Sino-Korean Craton).The NCC is the oldest cratonic block in China,with an area of more than1,500,000km2containing rocks as old as 3.8Ga(Liu et al.,1992).This craton is separated from the Yangtze Craton in the south by the Qinling-Dabie orogenic belt,and from the Angara Craton in the north by the Paleozoic–Late Mesozoic Tianshan–Inner Mongolia–Xingan orogenic belt(Fig.1).The Yanshan belt lies within the suture-dominated tectonic collage of eastern Asia and is a complicated assemblage of varying ages of folds,thrust and reverse faults,exten-sional faults,and Mesozoic plutons(Chen,1998; Davis et al.,1998,2001;Meng,2003).This wide-spread and intense Phanerozoic tectonic reactivation feature is termed Yanshanian movement and also hasX.-H.Zhang et al./Ore Geology Reviews26(2005)325–348 326been applied to all Jurassic–Cretaceous deformation events throughout China.Various hypotheses have been proposed to explain Phanerozoic tectonic reactivation of the NCC,such as a long-distance effect of the Pacific plate (Hu et al.,1994),the interactions between Tethyan,paleo-Asian,and Pacific tectonic systems (Davis et al.,2001),strong sinistral strike-slip (Ma and Wang,1999),plume upwelling,delamination of lithosphere,and continental root-plume tectonics (Deng et al.,1996),and the combined effects of the breakoff of the sub-ducted Mongol–Okhotsk oceanic slab and thegravi-Fig.1.Simplified geological map of the Yiwulu ¨Shan,western Liaoning province (adopted from Darby et al.,2004),showing major structures,plutons and location of the Paishanlou Au deposit.The inset shows the distribution of Au deposits in Chifeng-Chaoyang district district of the Northern margin of the North China Craton (after Yang et al.,2003).Faults:!Chifeng-Kaiyuan Fault;"Tan-Lu Fault;#Xiaotian-Mozitan Fault;$Xingyang-Kaifeng-Shijiangzhuang-Jianping Fault;%Huashan-Lishi-Datong-Duolun Fault;&Wulian-Mishan Fault.FX=Fuxin,YX=Yixian,WZ=Waziyu,BZ=Beizhen,JZ=Jinzhou;MCC=Metamorphic Core Complex.X.-H.Zhang et al./Ore Geology Reviews 26(2005)325–348327tational collapsing and spreading of the previously overthickened crust(Meng,2003).One prominent result of lithosphere evolution was a strong litho-sphere thinning during the Phanerozoic(Menzies et al.,1993;Menzies and Xu,1998;Fan et al.,2000;Xu, 2001;Zhang et al.,2003a),as corroborated by Os isotope studies of Gao et al.(2002)and Wu et al. (2003).Consistent with the global tectonic evolution of the Yanshan belt,western Liaoning experienced a compound evolutionary history of contractional and normal faulting,folding,and contemporaneous ter-restrial sedimentation and magmatism during the Mesozoic.Middle to early Late Jurassic contractional deformation is evidenced by well-developed thin-skinned thrusts(Davis et al.,2001;Yang et al., 2001;Zhang et al.,2002a).In the Cretaceous,the area underwent large-scale extensional deformation, resulting in the development of a series of fault-and rift-related basins such as Fuxin basin(Li et al., 1987;Xu et al.,2000)and Waziyu metamorphic core complex(MCC)(Darby et al.,2004),wide-spread alkali volcanism(Chen and Chen,1997; Zhang et al.,2003a)and plutonism(Liu et al., 2002).Specifically,on the basis of the first kinematic description of Ma et al.(1999)and preliminary geochronological study of Zhang et al.(2002b), Darby et al.(2004)recently recognized an early Cretaceous MCC-style extensional structure in the Yiwulu¨Shan of western Liaoning and termed it the Waziyu MCC(Fig.1).The core consists predomi-nantly of Mesozoic granitoid plutons and their coun-try rocks,which include migmatite,epidote-amphibolite facies paragneiss and orthogneiss of the Archean crystalline basement.Plutons are grano-dioritic to granitic and grade outward into augen gneiss or migmatite(Zhang et al.,2003c).A master, W-dipping,low-angle normal fault,named the Waziyu detachment,separates a hanging wall of dominantly Early Cretaceous sedimentary and volca-nic units from a footwall of mylonitic and non-mylonitic units(Darby et al.,2004).The timing of extension and metamorphic core complex develop-ment in the Yiwulu¨Shan is broadly constrained as Early Cretaceous by published and unpublished U–Pb geochronology,40Ar/39Ar thermochronology,and biostratigraphic age determinations(Darby et al., 2004).3.Deposit geology3.1.Host rocks and magmatismThe Paishanlou Au deposit mainly is hosted by Late Archean Jianping Group(Figs.2and3),which consists of2.6–2.5Ga tonalitic-trondhjemitic-grano-dioritic(TTG)gneisses,~2.5Ga syntectonic granites, as well as minor mafic to felsic volcanic and sedi-mentary supracrustal rocks metamorphosed to upper-greenschist to amphibolite facies(Wang et al.,1996; Luo and Zhao,1997),corresponding well to the classical model of Archean greenstone belts.The available isotopic data indicate a regional metamor-phic age of~2.5Ma in this area(Luo and Zhao, 1997;Kro¨ner et al.,1998),consistent with the time of the last regional metamorphic event in the Eastern and Western Blocks of the NCC(Zhao et al.,2001).These host rocks have been strongly fractured and sheared, varying from proto-mylonite and mylonite to ultra-mylonite.Uncomfortably overlying these Archean metamorphic host rocks is the middle–late Proterozo-ic Changcheng System that consists of relatively unmetamorphosed marine clastic and carbonate plat-formal successions.The Mesozoic granitic intrusions and dikes are common throughout the deposit,with the largest body,Dashitougou granitoid,cropping out to the north of the deposit(Fig.3).They show little sign of mineralization.The Dashitougou biotite monzogra-nite is flesh pink,with coarse-grained to porphyritic texture and massive structure,and consists of plagio-clase,K-feldspar,quartz,biotite,and minor horn-blende.A SHRIMP U–Pb zircon dating gives an age of124F2Ma(Luo et al.,2001).Numerous dikes spatially associated with gold lodes include diorite-porphyry with SHRIMP U–Pb zircon ages of 124–126Ma(Luo et al.,2001),granite-porphyry with a SHRIMP U–Pb zircon age of124F1Ma(Luo et al.,2001),and minor lamprophyre.These dikes show different degrees of deformation.3.2.StructuresLineaments are well developed in the Paishanlou ore area and are typified by two sets of ore-hosting ductile shear zones,the NEE-to EW-trending Paishanlou-Majiahuang ductile shear zone(PMDSZ)X.-H.Zhang et al./Ore Geology Reviews26(2005)325–348 328and the NNE-trending Jianshangou-Paishoulou Duc-tile shear zone (JPDSZ)(Fig.2).The NEE-to EW-trending ductile shear zones have dextral oblique reverse shearing,and NNE-trending shear zones show sinistral strike-slip and extensional shearing (Liu et al.,1996;Wang et al.,1996;Zhang et al.,2002b ).In addition,there existed three sets of post-ore brittle faults with little controlling influence on orebodies.The PMDSZ constitutes the western part of a regional EW-trending linear structure widely distrib-uted in the western Liaoning,with a length of 5–6km and widths ranging from 1to 2km.The PMDSZ contains a few of higher-strain sub-zones intercalated with the lower-strain domains.The higher-strain sub-zones are lithologically composed of mylonites and ultramylonites,whereas the surrounding lower-strain domains mainly are composed of less-deformed meta-morphic rocks,such as fractured gneisses,amphibo-lites and protomylonites.The PMDSZ strikes east to east-northeast and dips to the north at 30–508,and157816100mNT1Fig.3.Geological map of the Paishanlou Au deposit,modified after Qu and Gao (1995).ErdaolingMajiahuang0500mDashitougouPaishanlou DonggouJ P D S ZPMDSZFig.3Fig.2.Sketch structural map of the Paishanlou area showing the distribution of the ductile shear zones.JPDSZ=Jianshangou-Paishanlou ductile shear zone;PMDSZ=Paishanlou-Majiahuang ductile shear zone.X.-H.Zhang et al./Ore Geology Reviews 26(2005)325–348329contains two generations of superposed lineations that are easily distinguished on the basis of orientation, texture,microstructure and metamorphic mineral as-semblage(Qu and Gao,1990;Li and Han,1995; Wang et al.,1996;Luo and Zhao,1997).The earlier moderately(30–408)NNW-plunging mineral linea-tion is defined by biotite,actinolite,quartz,and feldspar,and shear criteria including d a T type folds, S–C fabrics,asymmetric rotated porphyroclasts and boudins,which consistently indicate a top-to-SE oblique thrusting sense of shear(Li and Han,1995; Wang et al.,1996;Luo and Zhao,1997;Zhang et al., 2002b).Overprinting this earlier fabric is a later penetrative,gently to moderately NE-plunging min-eral lineation,mainly defined by tiny sericite and strongly stretched quartz.S–C fabrics and other shear sense indicators suggest a consistent sinistral strike-slip and extensional ductile shearing(Li and Han,1995;Wang et al.,1996;Luo and Zhao,1997; Zhang et al.,2002b).The JPDSZ is the middle segment of the well-developed regional NNE-trending Waziyu ductile shear zone,which underlines the Waziyu detachment fault and extends along the areas of Fuxin-Jinzhou for a length of more than120km(Wang and Li, 1988;Liu et al.,1996;Wang et al.,1996;Zhang et al.,2003c).The JPDSZ strikes N20–408E and dips 30–508to the northwest with a width of0.5–1km, and mainly is composed of protomylonites of differ-ent protoliths.Stretching lineations defined by tiny sericite and elongated quartz commonly plunge220–2508,with a dip of10–208.Well-defined S–C fab-rics and other sense-of-shear indicators suggest con-sistent sinistral strike-slip and extensional displacement(Liu et al.,1996;Wang et al.,1996; Zhang et al.,2003c).Structural,metamorphic,petrologic,and kinematic data(Wang and Li,1988;Li and Han,1995;Liu et al., 1996;Wang et al.,1996;Zhang et al.,2002b,2003c), coupled with regional correlations,show that the EW-trending PMDSZ and NNE-trending JPDSZ resulted from two different types of mylonitic deformation occurred at different crustal levels.The earlier PMDSZ represents an episode of mid-crustal dextral transpression at epidote-amphibolite facies conditions (450–4908C,0.6–0.7GPa)(Liu et al.,1996;Wang et al.,1996),corresponding to the crustal depth of about 15km(Lin et al.,1994),whereas the later JPDSZ records upper crustal sinistral strike-slip and exten-sional faulting at greenschist facies conditions(Wang et al.,1996;Zhang et al.,2002b,2003c),correspon-ding to ductile–brittle transitional crustal levels of b10 km.The40Ar/39Ar dating on the mylonites suggests a late Triassic age for the earlier ductile thrusting event and an early Cretaceous age for the later extensional ductile shearing(Liu et al.,1996;Zhang et al.,2002b).3.3.Wall rock alteration and zonationAt Paishanlou,gold mineralization is associated with intense hydrothermal alteration mainly con-trolled by ductile shear zones.This alteration can be classified into six major types,based on charac-teristic mineral assemblages and relative time rela-tionships:carbonatization,sericitization,biotitization, chloritization,silicification and pyritization(Qu et al.,1992;Li and Han,1995;Wang et al.,1996). Carbonatization is widespread and can be divided into three stages(Wang et al.,1996).Early-deforma-tional carbonate minerals are present locally as oc-casional disseminated fillings in deformed quartz and albite veins.Syn-to late-deformational carbonate minerals are pervasively present as veinlets and dis-seminations within the mylonitic foliation or dynam-ically recrystallized mantles around quartz and feldspar porphyroclasts,and are later replaced by sericite,biotite and pyrite.Post-deformational carbo-nates are generally euhedral to subhedral crystals within veins and breccia fillings.Sericitization occurs pervasively within relative more felsic host rocks,such as quartzofeldspathic gneisses,and is typically developed along ductile shear zones.Ser-icite and quartz commonly are abundant and charac-teristic alteration minerals.Biotite is more abundant in mafic host rocks,e.g.,biotite-hornblende gneisses, compared to enveloping wall rocks,occurring as recrystallized aggregates in high-strain zones togeth-er with fine-grained quartz,epidote,and hornblende relicts.Chloritization is pervasive and chlorite is typically assembled with greenish biotite and minor amounts of epidote and actinolite.Silicification is common throughout the alteration sequence as veins controlled by fractures and cut by syn-defor-mational carbonate minerals,as dense banding and irregular lenses controlled by schistosity and clea-vages of deformed wall rocks.Quartz is the mostX.-H.Zhang et al./Ore Geology Reviews26(2005)325–348 330abundant alteration mineral and is closely associated with albite.Pyritization is concentrated within the mineralization zone,and is characterized by three pyrite generations (Wang et al.,1996).Hydrothermal alteration assemblages at Paishan-lou are zoned (Fig.4).From orebody to wall rock,three alteration zones are identified:(1)inner pyrite-sericite zone,with widths of 20–80m,and a char-acteristic mineral assemblage of ankerite +calcite+siderite +sericite +pyrite +green biotite;(2)middle carbonate zone,with widths of 100–200m,and a dominant assemblage of ankerite +calcite +sideri-te +brown biotite +chlorite +green biotite +epidote;and (3)outer epidote-biotite-chlorite zone,with widths of 250–460m,and characterized by brown biotite,epidote,green biotite,chlorite,and sericite.Contacts between the three alteration zones are gen-erally gradational.3.4.Ore bodies and ore mineralogyGold mineralization at Paishanlou is spatially con-fined to structural intersections or along the major EW-trending shear zones,with a strike length of N 1000m,widths varying from 20to 80m,and a down-dip depth in excess of 1000m.Gold orebodies occur mainly as disseminations or network veinlets localized in the inner pyrite-sericite zone,and among them,35orebodies have been delineated,of which the T1,T4,and T5orebodies are the largest.The T1orebody is exemplified below to detail geologic char-acteristics of the ore bodies.The T1orebody is composed of a number of con-tinuous sub-orebodies,which are conformable with the inner alteration zone and have a stratabound occur-rence.It generally strikes EW and dips north at angle of 35–558,with a length of 600m and a thickness of 2–20m (averaging 7m),and a down-dip depth of 100–370m.The orebody has a mean grade of 4.44g/t and a maximum grade of 24.72g/t Au.In accordance with mineral association and ap-pearance,gold ores can be visually divided into two main types,i.e.,light ores and dark ores,indicative of their distinctive protoliths.The light ores are predominately composed of mineralized quartzo-feldspathic gneisses,and characterized by main min-eral assemblage of feldspar +quartz +carbonate +pyr-ite,whereas the dark ones mainly are contained in biotite-plagioclase gneisses and typified with main mineral assemblage of plagioclase +biotite +pyrite.The principal ore minerals include pyrite,chalco-pyrite and pyrrhotite,with minor ilmenite,galena,sphalerite,chalcocite and millerite.Gold minerals are predominantly native gold with trace amounts of electrum and calaverite.Gangue minerals have a var-iable distribution with different ore types.Quartz,feldspar,plagioclase,carbonate,biotite,sericite,and chlorite constitute characteristic gangue mineral as-semblage for both ore types.Ores are texturally characterized by dominant euhe-dral and subhedral,minor cataclastic,metasomatic and pseudomorphic forms,and structurally by dissemina-tions,stockworks and veinlets.Pyrite,the predominant sulfide ore mineral,is texturally diverse.These range from pyrite-1,fine-grained elongated anhedral aggre-gates as disseminations concentrated toward the mar-gins of porphyroclasts,pyrite-2,fine-grained subhedral to euhedral varieties as veinlet-dissemina-tions along cleavages of deformed wall rock and mar-gins of porphyroclasts,to pyrite-3,fine-grained subhedral to anhedral aggregates as small veinlets crosscutting cleavages of deformed wall rock or dis-tributed within the late carbonate vein (Wang et al.,1996).Gold minerals chiefly occur mainly in the matrix between pyrite,ankerite,quartz,and other gangue minerals,or in fractures within pyrite,or as inclusions within pyrite.The native gold generally assumes granular,flaky and dendroid forms,with the grain size predominantly ranging from b 0.01to 0.037mm and fineness generally between 0.884and0.968.Fig.4.Sketch geological cross-section of the exploration line No.0(indicated on Fig.3),showing alteration zoning of the Paishanlou gold deposit,after Qu et al.(1992).X.-H.Zhang et al./Ore Geology Reviews 26(2005)325–3483314.Fluid inclusions4.1.Fluid inclusion petrographyGold quartz stockwork veinlets are notoriously lacking in good material for fluid inclusion studies due to the strong predominance of poorly crystallized quartz containing only very tiny fluid inclusions.The Paishanlou area veinlets are no exception,and sam-pling had to be concentrated on sporadic areas where small quartz crystals or more coarsely crystalline quartz were available.For this reason,systematic sampling of distinct paragenetic stages for detailed study of temperature and salinity variation in space was not feasible.Despite these shortcomings in terms of available material,fluid inclusion examination was carried out on quartz samples from mineralized rocks (i.e.,quartz-mylonite,quartzo-feldspathic mylonite,bio-tite-plagioclase mylonite).Fluid inclusions were stud-ied in 100–200A m-thick,doubly polished thin sections.Four compositional types of fluid inclusions are distinguished:CO 2-rich (Type 1),mixed CO 2–H 2O (Type 2),aqueous (Type 3),and multiphase (Type 4)inclusions,based on their optical character-istics at room temperature,the criteria of Roedder (1984),and on microthermometric results.CO 2-rich inclusions are defined by their lack of clathrate formation during cooling.In general,inclu-sions of this type consist of a single or two (liquid CO 2+vapor CO 2)phases at room temperature.These inclusions,ranging from 3to 12A m,commonly ex-hibit equant to negative crystal morphologies,and occur mainly as trails along healed microfractures (Fig.5a)and occasionally as isolated individuals (Fig.5b).Locally,they also occur with CO 2–H 2O inclusions (Fig.5c).The origin of CO 2-rich inclusions varies from primary to pseudosecondary corresponding to the occurrences of isolated individual and intragra-nular trails.CO 2–H 2O fluid inclusions ,characterized by irreg-ular or negative crystal shapes,are found in most examined samples.Fluid inclusions within this group are generally between 1to 20A m in size and consist of two (liquid water +liquid CO 2)or three (liquid water +liquid CO 2+CO 2-rich vapor)phases at room temperature,showing a Vco 2of 0.10to 0.85(visual estimation at 258C).They occur mainly as irregular,three-dimensional clusters and as trails but generally confined to individual quartz grains (Fig.5c,d),or occasionally as isolated individuals (Fig.5e).All CO 2–H 2O inclusions are generally con-sidered as primary in origin.Aqueous two-phase inclusions ,characterized by a vapor bubble in an aqueous liquid at room temper-ature,are found in most examined samples.They occur as three-dimensional clusters (Fig.5f),isolated individuals coexisting with CO 2–H 2O or CO 2-rich inclusions (Fig.5g,h)and trails in microfractures cutting quartz grains (Fig.5i).Generally,those along microfractures cutting quartz grains are relative-ly small (1–10A m)and rarely exceed 15A m in diameter,with round to ellipsoidal shapes.They are undoubtedly secondary in origin.Aqueous inclusions as three-dimensional clusters and isolated individuals coexisting with CO 2–H 2O or CO 2-rich inclusions have irregular or round shapes and range from 2to 15A m.They are interpreted as primary in origin and usually have a higher vapor to liquid ratio than sec-ondary inclusions.Multiphase inclusions are the least common fluid inclusion type and are observed only locally in the samples from some ores.They consist of aqueous liquid,a vapor bubble,and a halite crystal at room temperature (Fig.5j).Halite has been identified on the basis of its cubic to subround shape.Most of these inclusions probably have a primary origin as demon-strated by their isolated distribution.Although the precise timing of the different fluid inclusion types,relative to the gold event,is difficultFig.5.Photomicrographs showing (a)two-phase CO 2-rich inclusions present along healed microfractures,(b)two-phase CO 2-rich inclusions present as isolated individuals,(c)pseudosecondary two-phase CO 2–H 2O inclusions present along healed microfractures,(d)CO 2-rich and CO 2–H 2O inclusions coexisting with primary two-phase aqueous inclusions along the same healed fracture,(e)primary three-phase CO 2–H 2O inclusion occurs as isolated individual,(f )a plane of early primary two-phase aqueous inclusions containing CO 2–H 2O inclusions,(g)CO 2-rich and H 2O-rich inclusions along the same hails,(h)CO 2–H 2O inclusion coexisting with two-phase aqueous inclusions in group,(i)late secondary aqueous inclusions present along healed microfractures with relatively low vapor to liquid ratio,(j)daughter mineral-bearing multiphase inclusions present as isolated individual.X.-H.Zhang et al./Ore Geology Reviews 26(2005)325–348332。
库岸滑坡涌浪二维光滑粒子动力学数值模拟
缪吉伦;陈景秋;张永祥;黄成林
【期刊名称】《水土保持通报》
【年(卷),期】2013(33)3
【摘要】库岸高速滑坡产生的巨大涌浪常常导致严重灾难。
建立了高速滑坡块体
运动全程预测模型,对滑坡冲击产生的水体运动,则根据可压缩流连续方程和Navier—Stokes方程由SPH法(光滑粒子动力学法)求解。
对SPH法的基本原理、核函数及控制方程离散格式、边界处理方法等进行了介绍。
在此基础上结合滑坡体及水体的运动变形,建立了涌浪SPH立面二维数值模型,将所得初始涌浪高度、波浪爬坡高度与其他理论方法得到的结果进行了比较。
结果表明该方法能够模拟滑坡涌浪运动过程,SPH法适于模拟具有瞬时大变形等物理力学问题。
【总页数】6页(P175-179)
【关键词】高速滑坡;涌浪;光滑离子流体动力学;无网格法;数值模拟
【作者】缪吉伦;陈景秋;张永祥;黄成林
【作者单位】重庆大学资源与环境学院,重庆400015;重庆交通大学西南水运工程
研究所,重庆400016
【正文语种】中文
【中图分类】TV145
【相关文献】
1.滑坡涌浪垂面二维数值模拟 [J], 任坤杰;金峰;徐勤勤
2.山区库岸滑坡涌浪翻坝三维数值模拟研究 [J], 明唯;田忠
3.基于FLUENT的二维滑坡涌浪数值模拟 [J], 宋新远;邢爱国;陈龙珠
4.二维自由表面流动的光滑粒子动力学方法数值模拟 [J], 何涛;周岱
因版权原因,仅展示原文概要,查看原文内容请购买。