Chapter3-稳态扩散问题-16
- 格式:pdf
- 大小:345.39 KB
- 文档页数:16
一、扩散方程稳态扩散与非稳态扩散1.稳态扩散下的菲克第一定律(一定时间内,浓度不随时间变化dc/dt=0)单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比即J=-D(dc/dx)其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散。
x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx若原子平均跳动频率f, dt时间内跳离平面1的原子数为n1f·dt跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间内两者的差值即扩散原子净流量。
令,则上式2.扩散系数的测定:其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从内壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉内脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离内溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
三材料的扩散扩散是物质中原子(分子或离子)的迁移现象,是物质传输的一种方式。
扩散的本质是原子依靠热运动从一个位置迁移到另一个位置。
是固体中原子迁移的唯一方式。
研究扩散一般有两种方法:表象理论—根据所测量的参数描述物质传输的速率和数量等;(宏观)原子理论—扩散过程中原子是如何迁移的。
(微观)3.1 扩散的分类1. 根据有无浓度变化自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)互扩散:原子通过进入对方元素晶体点阵而导致的扩散。
(有浓度变化)2. 根据扩散方向下坡扩散:原子由高浓度处向低浓度处进行的扩散。
上坡扩散:原子由低浓度处向高浓度处进行的扩散。
固态扩散的条件1、温度足够高;2、时间足够长;3、扩散原子能固溶;4、具有驱动力:5、化学位梯度。
菲克第一定律稳态扩散:扩散过程中各处的浓度及浓度梯度不随时间变化(əC/ət=0,əJ/əx=0)菲克第一定律:在稳态扩散过程中,扩散通量J与浓度梯度成正比J为扩散通量,表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量,其单位为kg/(m2s)或kg/(cm2s)。
D为扩散系数,其单位为m2/s;ρ是扩散物质的质量浓度,其单位为kg/m3。
式中的负号表示物质从高浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减小,使成份趋于均匀。
菲克第二定律非稳态扩散——各处的浓度和浓度梯度随时间发生变化的扩散过程。
(əC/ət≠0, əJ/əx≠0)。
大多数扩散过程是非稳态扩散过程,某一点的浓度是随时间而变化的菲克第二定律:扩散过程中,扩散物质浓度随时间的变化率,与沿扩散方向上物质浓度梯度随扩散距离的变化率成正比。
3.2 置换式固溶体中的扩散---互扩散与柯肯达尔效应互扩散——柯肯达尔效应柯肯达尔最先发现互扩散,在α黄铜—铜扩散偶中,用钼丝作为标志,785℃下保温不同时间后,钼丝向黄铜内移动,移动量与保温时间的平方根成正比,Cu-黄铜分界面黄铜侧出现宏观疏孔。
一、扩散方程稳态扩散与非稳态扩散1.稳态扩散下的菲克第一定律(一定时间,浓度不随时间变化dc/dt=0)单位时间通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比即J=-D(dc/dx)其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散。
x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx若原子平均跳动频率f, dt时间跳离平面1的原子数为n1f·dt跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间两者的差值即扩散原子净流量。
令,则上式2.扩散系数的测定:其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
稳态扩散规则是指在一定条件下,物质在介质中自由扩散的过程符合一定的规律和规则。
稳态扩散规则是物质传输领域的基础理论之一,对于理解及解决物质在空间中传输和扩散的过程具有重要的理论指导和应用价值。
本文将从稳态扩散规则的基本概念、适用条件、数学模型以及实际应用等方面进行详细阐述,以期帮助读者全面了解稳态扩散规则,并在实际工作中做出合理的应用。
一、稳态扩散规则的基本概念稳态扩散规则是描述物质在介质中自由扩散的一种规律,是描述扩散过程的基本理论。
在稳态扩散过程中,物质从高浓度区域传输到低浓度区域,直到达到均匀分布的状态。
稳态扩散规则认为扩散速率与浓度梯度成正比,扩散的总通量与浓度梯度成正比。
在不考虑外界因素扰动的情况下,稳态扩散规则可以有效描述物质在介质中的传输过程。
二、稳态扩散规则的适用条件稳态扩散规则适用于物质在均质介质中的自由扩散过程。
其中,均质介质是指介质的性质在空间上是均匀分布的,在这样的介质中,物质的扩散过程可以被理想化为观察微观尺度上的分子移动。
稳态扩散规则还适用于扩散过程中不考虑其它外部干扰的理想化情况,例如不考虑温度、压力、湍流等外部因素的影响。
三、稳态扩散规则的数学模型稳态扩散规则可以用数学模型进行描述。
经典的稳态扩散模型是菲克定律,它可以用数学方程表示为:\[J = -D \frac{dC}{dx}\]其中,J表示单位面积上的物质通量,D表示扩散系数,C表示浓度,x表示扩散方向。
菲克定律是描述稳态扩散规则的基本方程,它将扩散通量与浓度梯度联系起来,揭示了浓度梯度对于扩散通量的影响。
除了菲克定律外,还有一些扩散模型可以用于描述不同情况下的稳态扩散规则,例如对于非均质介质、非线性扩散等情况,可以采用不同的数学模型来描述。
四、稳态扩散规则的实际应用稳态扩散规则在实际应用中具有广泛的意义。
在环境保护领域,稳态扩散规则可以用于描述大气污染物在大气中的扩散过程,为评估和预测大气污染物的扩散范围提供理论依据。