高中磁场知识点总结
- 格式:doc
- 大小:593.00 KB
- 文档页数:25
高二物理磁现象和磁场的知识点详解高中物理是一门联系很广泛的学科,在高二的物理学习中会学习到很多知识点,下面店铺的小编将为大家带来关于磁现象和磁场的知识点的介绍,希望能够帮助到大家。
高二物理磁现象和磁场的知识点1、磁现象2、磁场:一种特殊物质,对放入其中的磁体具的力的作用,3、磁感线:为了方便研究磁场假想的曲线1)磁感线是闭合的曲线,在磁体外部由N极指向S极,内部则相反2)曲线上任一点的切线方向就是该点的磁场方向3)在磁场中任一点小磁针静止时N极所指方向就是该点磁场方向4)曲线的疏密程度表示该点磁场的强弱(矢量),越密越强,所以磁感线不能相交4、电流周围的磁场:电流周围存在磁场,其方向由安培定则判定安培定则:1)通电直导线:右手握住导线,大姆指指向电流的方向,四指的指向就是周围磁场的方向2)通电螺线管:右手握住线圈,四指指向电流的方向,大姆指的指向就是磁场的方向附:地磁场的NS极和地理NS极方向相反磁现象简介:磁场磁铁吸引铁、钴、镍等物质的性质称为磁性。
磁铁两端磁性强的区域称为磁极,一端为北极(N极),一端为南极(S极)。
实验证明,同性磁极相互排斥,异性磁极相互吸引。
什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。
在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。
因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。
在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们称之为磁场。
磁性物质的相互吸引等就是通过磁场进行的。
我们知道,物质之间存在万有引力,它是一种引力场。
磁场与之类似,是一种布满磁极周围空间的场。
磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。
单位截面上穿过的磁力线数目称为磁通量密度。
运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。
由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。
高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
高中物理磁场知识点总结1500字磁场是指物体或电流所形成的区域,在该区域内磁力可以产生作用。
高中物理中磁场的知识点主要包括磁力、磁感线、磁场中的运动电荷、电磁感应和电磁振荡等。
以下是对这些知识点的总结:1. 磁力:磁力是由磁场对物体或电流产生的力。
根据洛伦兹力的方向,可以知道磁力的方向和电流的方向及磁场的方向之间的关系。
当电流通过导线时,导线会受到磁力的作用,导致导线发生运动。
2. 磁感线:磁感线是用来描述磁场的一种方式。
磁感线是一种虚拟的线条,它的方向是磁场的方向。
磁感线是由北极指向南极,形成闭合回路。
在磁场中,磁感线越密集,表示磁场的强度越大。
3. 磁场中的运动电荷:当电荷在磁场中运动时,会受到磁场力的作用,这种力叫做洛伦兹力。
洛伦兹力的方向垂直于磁场和速度的平面,大小与电荷、速度和磁场强度有关。
当电荷的速度与磁场方向平行时,洛伦兹力为零。
4. 洛伦兹力对带电粒子的轨迹的影响:洛伦兹力对带电粒子的轨迹有两个重要影响:一是使带电粒子的轨道弯曲,这种现象叫做磁偏转;二是使带电粒子的速度发生改变,这种现象叫做磁漂移。
5. 电磁感应:当磁场发生变化时,会在变化的磁场中引起感应电流,产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化的速率成正比。
电磁感应的应用包括发电机、电磁炉和变压器等。
6. 法拉第电磁感应定律:法拉第电磁感应定律指出,当导体中的磁通量发生变化时,感应电动势的大小与磁通量变化的速率成正比。
磁通量的变化可以通过改变磁场强度、改变导体和磁场的相对运动或改变导体的形状来实现。
7. 感应电动势的方向:根据法拉第电磁感应定律,感应电动势的方向可以通过利用楞次定律推理得到。
楞次定律指出,感应电流的磁场方向是使得原磁场和引起感应电流的磁场相抗互斥的方向。
8. 感应电流的方向:感应电流的方向可以通过应用洛伦兹力的右手定则来确定。
右手握拳,拇指指向运动方向,四指表示磁场方向,则感应电流的方向与四指所指方向相同。
高中物理必考知识点总结高中物理磁场知识点:安培力1.磁场对电流的作用力叫安培力2.安培力大小安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即F=BIlsinθ。
注意:公式只适用于匀强磁场。
3.安培力的方向安培力的方向可利用左手定则判断。
左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力方向。
安培力方向一定垂直于B、I所确定的平面,即F一定和B、I 垂直,但B、I不一定垂直。
新高三暑期计划:物理要着重梳理解题方法掌握基本概念,梳理解题方法高三物理复习是在学完所有高中物理知识后进行的,高一,结合xx年的高考以及物理学习的特点来看,我们的暑期复习要把握好高中物理整体知识结构和知识间的内在联系,确定知识的重点、难点,理解典型的例题和习题,梳理并掌握解题中常用的解题方法,才能达到良好的复习效果。
具体来讲主要从以下几个方面来着手:紧扣教材内容理清知识结构高一、高二的学习我们是分章节学习的,同学们的头脑中堆积了许多知识,但没有形成完整的知识体系,这种相互孤立的知识是难以理解和迁移的。
因此在暑我们可以对照教材目录按照力学、热学、电磁学、光学、原子物理等知识板块将知识梗概用框图的形式在笔记本上出来,理解知识间的联系,做到“拎起来一条线,放下来一大片”。
对照考纲要求掌握考点知识高考的所有知识点虽然都在考试说明即考纲中一一列出,但平时的学习都是在老师的引导下进行的,同学们自己并没有仔细研究考纲,在暑期我们可以找高三毕业的学生借来考纲,对照教材找到考纲上要求掌握的相应的物理概念、物理规律进行理解,考纲中的Ⅰ级和Ⅱ级要求是不同的,要按照考纲中的说明掌握。
如果有实在暂时不能理解的要在笔记本上进行记录,以便在开学后的老师复习讲解中提高自己的注意力。
精选参考书目理解典型例题教材上的概念、规律是否理解关键要看相对应的该部分典型问题能否独立解决,因而同学们可以精选一本讲解详细的参考书目,自己思考并尝试解答参考书上的典型例题(不是直接去看解题过程),然后再与参考书上的解题过程进行对比,从中加深对概念和规律的理解,并提高对概念和规律的迁移应用能力。
高中磁场知识点及规律总结一、磁现象和磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用, 所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.3.磁场的方向:规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。
二、磁感应强度1、 表示磁场强弱的物理量.是矢量.2、 大小:B=F/Il (电流方向与磁感线垂直时的公式).3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T .5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.6、 匀强磁场的磁感应强度处处相等.7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.三、几种常见的磁场(一)、 磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N⒊磁感线的疏密表示磁场的强弱,磁感线越密的地方磁场越强。
⒋磁感线不相交也不想切。
5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.6.磁感线上某点的切线方向表示该点的磁场方向。
7.(环形电流磁场)安培定则:a.用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的的就是磁感线环绕的向;b.其磁感线是内密外疏的同心圆。
8.(通电螺线管)安培定则:a.让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;b.通电螺线管的磁场相当于条形磁铁的磁场9. 熟记常用的几种磁场的磁感线:(二)、匀强磁场1、磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。
史上最全⾼中物理磁场知识点总结⼀、磁场磁体是通过磁场对铁钴镍类物质发⽣作⽤的,磁场和电场⼀样,是物质存在的另⼀种形式,是客观存在的。
⼩磁针的指南指北表明地球是⼀个⼤磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是⼤量运动电荷形成的,所以运动电荷周围空间也有磁场。
静⽌电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的⼀种形式。
磁场对磁体、电流都有⼒的作⽤。
与⽤检验电荷检验电场存在⼀样,可以⽤⼩磁针来检验磁场的存在。
如图所⽰为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有⼒的作⽤实验。
1.地磁场地球本⾝是⼀个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
3.指南针放在地球周围的指南针静⽌时能够指南北,就是受到了地磁场作⽤的结果。
4.磁偏⾓地球的地理两极与地磁两极并不重合,磁针并⾮准确地指南或指北,其间有⼀个交⾓,叫地磁偏⾓,简称磁偏⾓。
说明:①地球上不同点的磁偏⾓的数值是不同的。
②磁偏⾓随地球磁极缓慢移动⽽缓慢变化。
③地磁轴和地球⾃转轴的夹⾓约为11°。
⼆、磁场的⽅向在电场中,电场⽅向是⼈们规定的,同理,⼈们也规定了磁场的⽅向。
规定:在磁场中的任意⼀点⼩磁针北极受⼒的⽅向就是那⼀点的磁场⽅向。
确定磁场⽅向的⽅法是:将⼀不受外⼒的⼩磁针放⼊磁场中需测定的位置,当⼩磁针在该位置静⽌时,⼩磁针N极的指向即为该点的磁场⽅向。
磁体磁场:可以利⽤同名磁极相斥,异名磁极相吸的⽅法来判定磁场⽅向。
电流磁场:利⽤安培定则(也叫右⼿螺旋定则)判定磁场⽅向。
三、磁感线在磁场中画出有⽅向的曲线表⽰磁感线。
磁感线特点:(1)磁感线上每⼀点切线⽅向跟该点磁场⽅向相同。
(2)磁感线的疏密反映磁场的强弱,磁感线越密的地⽅表⽰磁场越强,磁感线越疏的地⽅表⽰磁场越弱。
高中物理磁场知识点总结
磁场的基本性质:磁场对放入其中的磁体产生磁力作用,这种力称为磁场力或磁力。
磁感线:
磁感线是为了描述磁场而假想的曲线,其切线方向表示该点的磁场方向。
磁感线从N极出发,回到S极,在磁体外部。
磁感线密集的区域表示磁场强,稀疏的区域表示磁场弱。
磁场强度(B):描述磁场强弱和方向的物理量。
单位:特斯拉(T)方向:与磁感线切线方向相同。
安培定则(右手螺旋定则):用于判断通电直导线或通电螺线管的磁场方向。
磁场对通电导线的作用:
当导线与磁场平行时,不受磁场力。
当导线与磁场垂直时,受到的磁场力最大。
磁场力的方向由左手定则确定。
洛伦兹力:描述磁场对运动电荷的作用力。
其方向与磁场和电荷运动方向都垂直。
带电粒子在匀强磁场中的运动:
当速度与磁场平行时,粒子不受洛伦兹力,粒子做匀速直线运动。
当速度与磁场垂直时,粒子受到与速度垂直的洛伦兹力,粒子做匀速圆周运动。
磁场的分类:
匀强磁场:各处磁感应强度大小相等、方向相同的磁场。
非匀强磁场:磁场中各处的磁感应强度大小或方向不完全相同。
磁通量(Φ):
穿过某一面积的磁感线的条数。
单位:韦伯(Wb)公式:Φ = BS (B与S垂直)若B与S不垂直,磁通量需要乘以B与S之间的夹角的
正弦值。
电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流。
这一现象称为电磁感应。
这只是高中物理磁场部分的核心知识点总结,具体还包括许多细节和计算方法。
建议参考教材和相关教学资料以获取更详细和全面的知识。
高中磁场知识点总结本文介绍了磁场的基本概念和相关知识点,包括磁场的存在形式、地磁场、磁偏角、磁场的方向和磁感线等内容。
磁场是物质存在的一种形式,存在于磁体、电流、运动电荷周围的空间。
与电场一样,磁场也是客观存在的。
地球本身就是一个大磁体,周围存在地磁场,南极在地球北极附近,北极在地球南极附近。
在磁场中,小磁针的指向可以用来检验磁场的存在。
磁场对磁体、电流都有磁力作用。
磁场的方向可以通过规定小磁针北极受力的方向来确定。
在磁体磁场中,可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
在电流磁场中,可以使用安培定则(右手螺旋定则)来判定磁场方向。
磁感线是在磁场中画出的有方向的曲线,每一点的切线方向都跟该点的磁场方向相同。
磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
在磁体外部,磁感线由N极到S极,在磁体内部,磁感线由S极到N极。
总之,磁场是物质存在的一种形式,存在于磁体、电流、运动电荷周围的空间。
地球本身就是一个大磁体,周围存在地磁场。
磁感线是磁场的可视化表现,磁感线的疏密反映了磁场的强弱。
磁场方向可以通过规定小磁针北极受力的方向来确定。
磁感线是一组有方向的曲线,用来形象描述磁场,但并不是真实存在于磁场中的曲线。
和电场线类似,磁感线也不能相交、相切或中断。
在不同的情况下,磁场的分布形态也不同。
通电直导线周围的磁场遵循安培定则,即右手握住导线,弯曲的四指所指的方向就是磁感线环绕的方向。
磁感线是以导线上各点为圆心的同心圆,磁场强度与距导线的距离有关。
环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N 极和S极。
磁感线均为闭合曲线,环内、外磁感线条数相等,故环内磁场强,环外磁场弱。
通电螺线管的磁场分布分为内部和外部。
管外部的磁场分布情况与条形磁铁外部相同,两端分别为N极和S极。
管内部是匀强磁场,磁场分布由S极指向N极。
通电螺线管的磁场是由许多匝环形电流串联而成的,它们的磁场叠加形成了整个螺线管的磁场。
高中物理选修3-1——磁场知识点总结高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。
(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。
(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。
磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。
2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。
在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。
(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。
b.任意两条磁感线不能相交。
3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。
(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。
需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。
电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。
用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。
如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。
物理磁场知识点总结高中一、磁场的产生1. 磁场的产生磁场是由运动电荷产生的,当电荷运动时,它产生磁场,这是由安培定律得出的结论。
磁铁中每个分子都带有一个磁矩,这些磁矩的相互作用使得磁铁成为了一个大的磁矩,它在周围产生磁场。
2. 磁场的特性磁场具有以下特性:磁场的方向随着电流方向而改变,电磁铁的磁极方向可以通过改变电流方向来改变,磁场的大小与电流的大小成正比,与导线的长度成反比,与导线与磁铁间的距离的平方成反比。
3. 磁场的性质磁场具有磁场强度、磁通量、磁感应强度等性质。
二、磁场的力学效应1. 安培力安培力是由于导体中有电流而产生的磁场所感受到的力,根据安培定律和洛伦兹力定律,得出电流导致导线间有相互作用力的结论。
2. 洛伦兹力洛伦兹力是由电子在电磁场中受到的力,它改变了电子的运动轨迹,是磁场的一种力学效应。
3. 磁场对运动电荷的影响磁场可以改变运动电荷的运动轨迹,使得电荷在垂直方向上受到力的作用,这一现象称为磁场对运动电荷的影响。
三、磁场的工程应用1. 电动机电动机利用磁场对电流产生的力来使得转子转动,实现了电能到机械能的转换。
2. 发电机发电机利用电动机的原理,通过机械能到电能的转换来实现电能的产生。
3. 磁控管磁控管利用磁场对电子运动的影响来控制电子的运动方向,实现了电子的集中和分散。
四、电磁感应1. 电磁感应的原理电磁感应是由于磁场的变化而产生的感应电动势,根据法拉第电磁感应定律,得出了感应电动势与磁感应强度的变化率成正比的结论。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述了磁场的变化对感应电动势产生的影响,根据这个定律,可以定量的描述电磁感应现象。
3. 感应电动势的规律感应电动势与磁感应强度的变化率成正比,与导体的速度成正比,与导体的长度成正比。
五、磁场的源1. 磁场的表示磁场的表示可以通过磁力线和磁力线的分布来描述。
2. 磁力线的特点磁力线具有以下特点:从南极指向北极,磁力线在同一点的方向是唯一的,磁力线是连续闭合的曲线。
高考物理专题复习――磁场一、磁场磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。
小磁针的指南指北表明地球是一个大磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。
静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有磁力作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。
如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。
1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。
4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
说明:①地球上不同点的磁偏角的数值是不同的。
②磁偏角随地球磁极缓慢移动而缓慢变化。
③地磁轴和地球自转轴的夹角约为11°。
二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。
磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。
三、磁感线在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。
(1)磁感线上每一点切线方向跟该点磁场方向相同。
(2)磁感线特点(1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
(2)磁感线上每一点的切线方向就是该点的磁场方向。
(3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。
以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场说明:①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。
②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。
四、几种常见磁场1通电直导线周围的磁场(1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。
(2)磁感线分布如图所示:说明:①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。
②直线电流的磁场无磁极。
③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。
④图中的“×”号表示磁场方向垂直进入纸面,“·”表示磁场方向垂直离开纸面。
2.环形电流的磁场(1)安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指的方向就是环形导线轴线上磁感线的方向。
(2)磁感线分布如图所示:(3)几种常用的磁感线不同画法。
说明:①环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N极和S极。
②由于磁感线均为闭合曲线,所以环内、外磁感线条数相等,故环内磁场强,环外磁场弱。
③环形电流的磁场在微观上可看成无数根很短的直线电流的磁场的叠加。
3.通电螺线管的磁场(1)安培定则:用右手握住螺线管,让弯曲时四指的方向跟电流方向一致,大拇指所指的方向就是螺线管中心轴线上的磁感线方向。
(2)磁感线分布:如图所示。
(3)几种常用的磁感线不同的画法。
说明:①通电螺线管的磁场分布:外部与条形磁铁外部的磁场分布情况相同,两端分别为N极和S极。
管内(边缘除外)是匀强磁场,磁场分布由S极指向N极。
②环形电流宏观上其实就是只有一匝的通电螺线管,通电螺线管则是由许多匝环形电流串联而成的。
因此,通电螺线管的磁场也就是这些环形电流磁场的叠加。
③不管是磁体的磁场还是电流的磁场,其分布都是在立体空间的,要熟练掌握其立体图、纵截面图、横横面图的画法及转换。
4.匀强磁场(1)定义:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫做匀强磁场。
(2)磁感线分布特点:间距相同的平行直线。
(3)产生:距离很近的两个异名磁极之间的磁场除边缘部分外可以认为是匀强磁场;相隔一定距离的两个平行放置的线圈通电时,其中间区域的磁场也是匀强磁场,如图所示:五、磁感应强度1、磁感应强度为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度。
描述磁场强弱和方向的物理量,用符号“B”表示。
通过精确的实验可以知道,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对它的力的作用。
对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比。
而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比。
对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关。
在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱。
(1)磁感应强度的定义电流元①定义:物理学中把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元。
②理解:孤立的电流元是不存在的,因为要使导线中有电流,就必须把它连到电源上。
(2)磁场对通电导线的作用力①内容:通电导线与磁场方向垂直时,它受力的大小与I和L的乘积成正比。
②公式:。
说明:①B为比例系数,与导线的长度和电流的大小都无关。
②不同的磁场中,B的值是不同的。
③B应为与电流垂直的值,即式子成立条件为:B与I垂直。
磁感应强度定义:在磁场中垂直于磁场方向的通电直导线,受到的安培力的作用F,跟电流I和导线长度L的乘积IL的比值,叫做通电直导线所在处的磁场的磁感应强度。
公式:B=F / IL。
(2)磁感应强度的单位在国际单位制中,B的单位是特斯拉(T),由B的定义式可知:1特(T)=(3)磁感应强度的方向磁感应强度是矢量,不仅有大小,而且有方向,其方向即为该处磁场方向。
小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。
B是矢量,其方向就是磁场方向,即小磁针静止时N极所指的方向。
2、磁通量磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。
为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。
这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。
(1)磁通量的定义穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。
物理意义:穿过某一面的磁感线条数。
(2)磁通量与磁感应强度的关系按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。
若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。
当平面S与磁场方向平行时,φ=0。
公式(1)公式:Φ=BS。
(2)公式运用的条件:a.匀强磁场;b.磁感线与平面垂直。
(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。
此时,式中即为面积S在垂直于磁感线方向的投影,我们称为“有效面积”。
(3)磁通量的单位在国际单位中,磁通量的单位是韦伯(Wb),简称韦。
磁通量是标量,只有大小没有方向。
(4)磁通密度磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B =Φ/S。
六、磁场对电流的作用1.安培分子电流假说的内容安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。
2.安培假说对有关磁现象的解释(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。
(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。
磁现象的电本质磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。
说明:①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。
在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。
但是现在,“假设”已成为真理。
②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。
安培力通电导线在磁场中受到的力称为安培力。
3.安培力的方向——左手定则(1)左手定则伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。
(2)安培力F、磁感应强度B、电流I三者的方向关系:①,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂直。
②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。
③若已知B、I方向,则方向确定;但若已知B(或I)和方向,则I(或B)方向不确定。
4.电流间的作用规律同向电流相互吸引,异向电流相互排斥。
安培力大小的公式表述(1)当B与I垂直时,F=BIL。
(2)当B与I成角时,,是B与I的夹角。
推导过程:如图所示,将B分解为垂直电流的和沿电流方向的,B对I的作用可用B1、B2对电流的作用等效替代,。
5.几点说明(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。
(2)B对放入的通电导线来说是外磁场的磁感应强度。
(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。
(4)式中的L为导线垂直磁场方向的有效长度。
如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。