机房群控知识
- 格式:doc
- 大小:30.50 KB
- 文档页数:5
瑞虹新城三期群控系统方案说明麦克维尔中央空调有限公司系统控制部日期Date:2016-06-161.工程及系统概况 (3)1.1系统概况 (3)1.2控制点表 (3)1.3群控设计 (4)2.群控系统主要控制功能 (5)2.1冷水机组与辅设的联动控制 (5)2.2依据温度的机组台数控制 (7)2.3冷却塔风机控制 (9)2.4冷冻水泵的频率控制 (10)3.节能策略 (12)3.1机组台数&顺序启停控制 (13)3.2冷冻水温度重置(基于总供回水温差) (13)3.3供回水管流量控制 (14)3.4机组启动/停机时间优化 (15)3.5CSM ECO™其它控制策略 (15)4.集中控制管理站 (16)4.1M C Q UAY W EB用户界面 (16)4.2与第三方集成 (17)5.相关案例 (17)1.工程及系统概况本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。
群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。
1.1系统概况1)机房冷源系统设备概况4台离心式水冷冷水机组1台热交换器4台冷水机冷冻侧电动阀4台冷水机冷却侧电动阀5台变频冷冻泵5台定频冷却泵1个冷冻水压差旁通阀8个冷却塔共8个高低速风机8个冷却塔进出水电动阀相关温度、压力、流量、液位、室外温湿度监测加药装置、补水装置监测1.2控制点表控制点表1.3群控设计1)冷却塔3组冷却塔和对应的机组统筹考虑轮换启停及台数对应,原则上是依据室外湿球温度和出水温度值保证尽量低冷却水出水温度(不能低于最低设定温度)以提高水冷冷水机组的效率;2)冷却泵5台冷却泵与水冷冷水机组做联动控制,冷却泵轮换启停,每次启动选择运行时间最短的水泵运行。
当选定的或运行的某台冷却水泵出现故障时自动切入待运行的备用泵,同时发出报警提醒。
四、冷冻机房群控系统(一)与冷水机组的通讯功能(1)冷水机且的直接数据通讯:本机房群控系统必须具备与冷水机组厂家提供的标准通讯协议(BACnet/Profibus)接口进行直接数据通讯,读取冷水机组的运行参数(如蒸发温度,负荷百分比等)、安全控制参数(如压缩机排气温度、蒸发压力过低等)、运行控制(如出水温度再设定、电流负荷百分比再设定等)、冷水机组状态显示(如启停等)。
接口间的自由转换硬件控制板,在数据传输时间上、速度上、可靠性上都大大提高,可跟上负荷变化的节奏;同时减少增加通讯模块,因而减少故障率。
(2)合理的加减冷水机组要求:不能出现频繁加减冷水机组现象,以免损坏冷水机组。
(二)显示设备及软件要求:机房群控系统的显示设备采用先进可靠的国际著名品牌(研华、研洋、西门子)先进可靠的工控机。
具有干扰、防辐射能力。
显示控制软件必须为正版软件,至少包括以下功能;对系统所有设备的监控点进行集中监控,也能就地控制。
提供符合系统实际运行情况的流程图和动态画面。
所有监控参数均可在中央计算机和各就地控制器上设定。
具有手动控制功能,可在调试、检修、运行期间对各设备分别进行控制。
具有组态、编程功能,并设有不同级别的密码(至少3级)。
显示各监控点参数、各运转设备及部件的状态、各系统的动态图形及各项历史资料。
根据要求能提供1年内的各运行参数的历史数据,各设备的能耗曲线图,并能生成各类报表供管理人员调用和打印。
具有下列声光报警及自动打印功能:——运行设备故障——各监控点的参数越限设备故障后能在各地控制盘上手动重新启动,当设备运行正常后投入自动。
存储下列历史资料,并能显示、打印。
——运转设备的累计运行小时数——设备发生故障时的时间及地点——设备发生故障前10小时内的运行工况记录——设备、部件联销停机时间及地点,如与火灾探测系统的联锁停机等。
当总站发生故障时,各设备能独立工作,所有的资料、数据、程序均不会消失。
(三)水泵的工频旁路功能:配备变频器的水泵必须配置工频旁路功能,以免变频器发生故障时可切换到工频运行,不影响系统运行。
制冷机房群控系统方案随着信息技术的不断发展,制冷机房的运维工作变得越来越复杂,需要实时监控和控制温度、湿度、能耗等多个参数,以确保机房设备的正常运行和环境的稳定性。
为了提高操作人员的工作效率和机房能耗的控制能力,制冷机房群控系统成为了一个必不可少的设备。
一、制冷机房群控系统的功能1.实时监测:制冷机房群控系统可以实时监测机房设备的运行状态,包括温度、湿度、运转情况等参数。
通过数据采集和传输技术,将监测到的数据实时传送到监控中心,以便及时发现和处理异常情况。
2.远程控制:通过制冷机房群控系统,操作人员可以远程监控和控制机房设备的运行状态。
无论身在何处,只要有网络连接,就可以随时随地监控机房设备的运行情况,并且可以进行远程控制,进行开关机操作、调节温度等操作。
3.自动化控制:制冷机房群控系统可以根据设定的参数和规则,自动调节机房的温度、湿度等参数。
当温度超过设定值时,系统会自动开启制冷设备进行降温,而当温度低于设定值时,系统会自动关闭制冷设备。
4.报警处理:制冷机房群控系统可以根据设定的报警规则,对机房设备的异常情况进行实时报警。
无论是温度异常、湿度异常还是设备运转异常,系统都能及时发出报警,并发送给指定的人员,以便及时处理问题。
5.能耗管理:制冷机房群控系统可以实时监测机房的能耗情况,包括制冷设备的能耗、空调设备的能耗等。
通过对能耗进行监控和分析,可以找出能耗高的设备和用电差异,提供优化建议,降低机房的能耗成本。
二、制冷机房群控系统的实施方案1.传感器部署:在制冷机房内部布置温度、湿度、能耗等传感器,以实时采集机房设备的运行状态和环境参数。
可以根据机房的实际情况,选择传感器的类型和布置位置,以保证数据的准确性和可靠性。
2.数据传输:制冷机房群控系统利用网络通信技术,将采集到的数据传输到监控中心。
可以选择有线或无线通信方式,根据机房的需要和实际情况进行选择。
3.监控中心建设:建立一个专门的监控中心,用于接收、显示和处理采集到的数据。
机房群控系统控制逻辑说明资料机房群控系统是为了远程监控和控制机房内设备的系统,其控制逻辑是为了保证设备的稳定运行、安全性以及设备异常时的应急处理能力。
本文档将详细介绍机房群控系统的控制逻辑。
主要功能机房群控系统主要功能包括以下几个方面:1.远程监控设备状态2.远程操作设备进行开/关/重启等操作3.自动化的设备监控和管理4.报警监控和应急处理控制逻辑设备状态监控机房群控系统需要实时监控每个设备的状态,包括是否在线、运行情况以及设备类型等,同时还需要记录历史数据以便进一步分析。
针对不同设备类型,系统需要实现相应的监控策略以保证监控的准确性。
远程设备操作一旦发现设备异常,机房群控系统需要实现远程操作设备进行开/关/重启等操作。
系统管理员通过登录系统界面,可以查看并操作各个设备,从而快速定位设备故障并进行处理。
自动化设备监控机房群控系统需要实现自动化设备监控功能,通过设备监控策略来实现。
系统管理员需要根据不同的设备类型,设定相应的监控策略,包括定时巡检、阈值报警等。
定时巡检:通过定时巡检设备,可以快速了解设备状态是否正常,数据是否异常等。
阈值报警:设置设备的阈值,一旦设备数据超过阈值,则会发出报警通知,帮助管理员及时发现设备异常情况,以便及时处理。
报警监控和应急处理机房群控系统需要实现报警监控和应急处理功能。
一旦发现设备异常,系统会及时发出报警信息,让管理员可以及时处理。
在发生故障或紧急情况时,机房群控系统还需实现应急处理功能。
系统管理员可以利用应急处理模块,进行紧急处理,确保设备运转正常。
总结本文档介绍了机房群控系统的控制逻辑,主要任务包括设备状态监控、远程设备操作、自动化设备监控、报警监控以及应急处理等。
机房群控系统能够有效地监控和管理机房内的设备,保证设备的稳定运行、安全性以及设备异常时的应急处理能力。
机房群控的主要特点和功能一、主流系统概述早在80 年代,开利(Carrier)、特灵(Trane)、约克(York )全球三大冷机品牌生产厂商就冷机群控或空调水系统的控制就提出了各具特色的控制方式,使冷机群控系统在北美、欧洲有比较普遍的应用。
近几年,三大冷机生产商随着其冷水机组(中央空调)在国内的大量销售,也在不遗余力的推广各自的冷机群控系统。
不同于北美大量的屋顶风机(Rooftop fan)空调系统,国内大型建筑物绝大多数采用冷机+空调末端的空调系统,这使提供冷冻水的冷机用量很大,故可以采用冷机群控系统的项目很多。
从三大冷机生产厂已实施的冷机群控项目来看(上海、北京、杭州、深圳等城市的大型建筑物中),他们的成功率的确较高,同时从事楼宇自控系统的公司认为这块控制风险大,自己也把握不够,故往往也希望把这块自控剔除出其工作范围,所以用户也越来越意识到把冷机群控这一块控制交给冷机生产商来设计、实施是最好的选择。
因此有必要简要介绍一下这三家公司富有特色的控制系统。
1902 年,开利博士发明了世界上第一套科学空调系统,为全人类带来了舒适的室内环境。
开利公司不但在生产空调设备上精益求精,而且致力于实现单台冷水机组及整个空调系统控制的性能优化,采用开利舒适网络Carrier Comfort Network(CCN)为客户提供最合理的控制系统解决方案。
CCN 系统是开利公司应用多年舒适控制领域的先进知识开创的冷水机组能源效率管理系统。
该系统以为用户提供广泛的舒适度、可操作性、空气质量调节和能源管理为目标,全面管理冷水机组和其它机电设备。
特灵公司是当今世界采暖,通风,空调,楼宇自控系统(BAS) 与设备的最大制造商之一。
特灵空调公司于1978 年成立专门的机构,开始其智能控制的研制和集成舒适系统(Integrated Comfort System)的发展;1981 年推出TRACER1000 产品,1993 年推出TRACER SUMMIT 系列产品。
蓄冷机房群控系统技术方案一、引言现代数据中心在运行中会产生大量的热量,需要通过冷却系统来维持恒定的温度。
蓄冷机房群控系统是一种集中管理和控制数据中心蓄冷系统的技术方案,可以实现对冷却设备的智能控制与调度,提高数据中心的能效和可靠性,降低运行成本。
二、系统架构1.数据采集子系统数据采集子系统负责实时采集和监测数据中心蓄冷系统的运行参数,包括冷水机组的供水温度、回水温度、冷却水流量等。
数据采集可以通过传感器进行,传感器安装在冷水机组的关键部位,并将采集到的数据传输给控制与调度子系统进行处理。
2.控制与调度子系统控制与调度子系统是整个蓄冷机房群控系统的核心,负责根据实时采集到的数据对冷却设备进行智能控制和调度。
该子系统可以通过分析数据中心的运行状态,合理配置冷却设备的运行模式,包括开启和关闭机组、调节水流量和温度等,以满足数据中心的需求同时降低能耗。
3.用户接口子系统用户接口子系统提供给操作人员使用的界面,操作人员可以通过该界面实时监测数据中心的运行状态和冷却设备的运行情况,并可以进行手动控制和调度。
界面可以设计成直观易用的图形界面,支持操作人员快速了解数据中心的运行情况,以及进行冷却设备的设置和调整。
4.通信网络子系统通信网络子系统用于实现各个子系统之间的数据传输和通信。
该子系统可以利用局域网或互联网进行通信,确保各个子系统之间的实时数据传输和信息共享。
三、关键技术1.数据采集技术数据采集技术是蓄冷机房群控系统的基础,需要选择合适的传感器对冷却设备的运行参数进行实时采集。
传感器的安装位置和数量需要根据冷却设备的特点和数据中心的需求进行合理配置,以保证数据采集的全面和准确。
2.数据分析与决策技术控制与调度子系统需要依靠数据分析和决策技术对实时采集到的数据进行分析和处理。
通过建立运行模型和算法,可以对数据中心的运行状态进行实时判断和评估,从而对冷却设备进行智能控制和调度,以实现最佳的能效和性能。
3.控制与调度算法控制与调度算法是蓄冷机房群控系统的核心技术,主要包括机组开启与关闭的策略、温度和水流量的调节策略等。
XXX机房群控系统技术方案本文将介绍一种基于XXX机房的群控系统技术方案,该系统可以实现对多个终端设备进行远程控制和监控。
具体方案如下:一、系统架构该群控系统分为三层,分别是终端设备层、服务器层和客户端层。
终端设备层由多个终端设备组成,如手机、平板、电脑等。
服务器层由一台或多台服务器组成,主要负责接收来自客户端的指令,并通过无线网络将指令发送给终端设备。
客户端层由PC端和手机端组成,可以通过客户端向服务器层发送控制指令。
二、系统功能1. 远程控制:用户可以通过客户端向终端设备发送控制指令,例如远程打开某个应用程序、远程截屏等。
2. 监控终端设备:用户可以通过客户端实时地查看终端设备的运行状态,例如CPU利用率、内存使用情况等。
3. 数据统计:系统可以对终端设备的使用情况进行统计分析,例如某个应用程序的启动次数、使用时长等。
4. 设备管理:用户可以通过客户端对终端设备进行管理,例如添加和删除终端设备、设置终端设备的属性等。
三、系统技术实现1. 终端设备层:终端设备需要安装一个客户端软件,该软件可以与服务器进行通信,并接收服务器发送的控制指令。
软件需要支持自动更新,以保证软件的新功能可以及时地推送给用户。
终端设备还需要安装一个系统监控软件,该软件可以实时地监控终端设备的运行状态,并将这些数据发送给服务器。
2. 服务器层:服务器需要部署在机房中,由于服务器需要处理大量的请求,因此必须具备高性能、高可靠性等要求。
服务器需要提供接口给客户端,以便客户端可以向服务器发送控制指令。
服务器需要对接收到的指令进行解析,并将指令发送给对应的终端设备。
3. 客户端层:客户端需要开发两个版本,一个是手机端,另一个是PC端。
客户端需要实现以下功能:(1)实现用户的登录认证,以防止非法用户访问系统。
(2)展示终端设备的运行状态,例如CPU利用率、内存使用情况等。
(3)向服务器发送控制指令,例如打开某个应用程序、远程截屏等。
简析冷热源群控系统0 引言空调系统冷热源的能耗在整个空调系统中占有相当大的比例.而冷源系统的能耗主要由冷水机组电耗及冷冻水泵、冷却水泵、冷却塔风机电耗构成,采取群控策略可以恰当地调节冷水机组运行状态.降低冷冻水泵、冷却水泵及冷却塔风机电耗.最大限度地实现空调冷热源系统的节能运行1 群控系统的优势民用建筑内中央空凋设备种类繁多.各设备运行是相互关联的。
群控系统按照T艺流程控制各设备的启停.如果局部设备发生故障.群控系统能及时进行逻辑判断并决定是否启用备用设备或全面停机。
所有的逻辑控制及设备关联控制的实现均由群控系统控制主机完成.能真正做到协涮统一而对于BA系统的DDC控制器来说.各控制器的功能独立完成.通过控制器间的指令传递来执行先后顺序.没有全面协调的“大脑”.很难实现逻辑性很强的设备关联控制因此.采用群控系统对冷热源设备运行进行优化控制.在提高空凋系统的运行效率方面具有很大的优势2 冷热源群控系统构成本文结合光启城项目对冷热源群控系统进行分析光启城项目总建筑面积约为163 868 mz,业态为裙房商业和塔楼办公相结合的综合体项目。
该项目冷热源设备如表1、表2所示。
---------------冷热源群控系统由冷热源监测系统、冷冻机房设备监控系统、直燃机房设备监控系统构成冷热源群控系统管理主机设于地下室冷冻机房值班室内.共设置监控管理主机两台(互为备用),对冷冻监控系统及锅炉监控系统中相关设备的运行状态等进行监测并通过TCP/IP 协议与本项目的BA系统通信.接受其对冷热水机组、板式换热器及配套设备的总体监测、控制和管理。
冷热源群控系统网络拓扑结构如图1所示。
冷冻机房设备监控系统用于集中监测、控制和管理冷源设备,由冷水机组群控系统、配套设备群控系统、冷却塔群控系统及冷冻水二次变频泵群控系统共同组成。
在冷水机组群控系统中.7台冷水机组通过各自的机组管理模块连接到网络控制器.实现与冷水机组工作站的通信。
冷水机组网络拓扑结构见图2直燃机组工作站通过RS485总线连接每台锅炉控制器,通过直燃机组群控系统对各锅炉实时监控.根据热水负荷的变化合理控制锅炉运行台数网络拓扑结构见图33冷热源群控系统分析3.1 冷热源群控系统冷热源群控系统对冷冻机房设备监控系统及直燃机房设备监控系统各设备的运行状态进行实时监测、记录.同时根据各设备运行的最佳效率曲线与控制策略进行匹配.使各设备合理节能运行.并可以对各种设备的运行参数打印,形成数据报表冷热源群控系统管理主机作为冷水机组和直燃机组工作站的客户机.与冷水机组和直燃机组工作站构成C—S结构.管理主机从工作站读取系统运行信息。
管理主机同时又作为OPC服务器.可以实现与BA 系统以及更高一级的管理层客户机通信,实现监测冷热源系统设备运行及能耗宏观调控的目的。
3.2 热源群控系统热水锅炉牵涉到安全,一般只对热水总管设置流量及温度传感器了解系统运行工况.同时对锅炉配电箱设置监测点了解锅炉运行及故障情况.极少对锅炉进行启停控制,除非发生燃气或燃油泄漏报警而被消防系统强制停机。
本项目热源群控系统在上述常规控制基础上,设置了自动台数控制装置.将多台锅炉进行集中监控及管理,可以最大程度地提高锅炉运行合理化、自动化水平,达到节能、延长锅炉使用寿命的目的。
通过检测使用端热水负荷的变化(温度、流量)来控制锅炉运行的台数,保证锅炉在高效点运行,从而节省锅炉燃料消耗量及降低炉体散热损失,以减少系统运行费用------------------3.3 冷源群控系统冷源群控系统实施对所有机电设备(冷水机组、冷冻水一次泵、冷冻水二次泵、冷却泵、冷却塔、电动阀门.以及其它相关设备)的自动控制和必要的手动控制.并实时进行设备的故障和传感器超限报警提示.设备故障复位请求对冷冻机房设备进行自动开/停机控制;阀门、变频器调节:监控冷冻水的供/回水温度、流量,冷水机组的运行工况和运行效率.对所控机组进行系统群控和自动编组控制.实现系统的无级平滑控制和节能控制:监控冷站工况切换.为末端提供相对稳定的运行工况:根据末端用户供水回路压差设定值调节冷冻水泵转速.确保用户端的运行稳定。
冷源群控系统介绍如下3.3.1 三种供冷工况为实现系统节能运行.冷源系统分为两种收费供冷丁况和一种免费供冷工况收费供冷为冷水机组单独供冷、板式换热器单独供冷;免费供冷为冷却水供冷。
3.3.1.1 冷水机组单独供冷在夏季05:o0~23:00时段.末端冷负荷高于板式换热器单独供冷所能提供的负荷时.由冷水机组向末端供冷关闭板式换热器进出水阀门.开启冷水机组进出水阀门,开启冷冻水一、二次泵,开启冷却塔风机,开启冷水机组群控系统。
进人夏季供冷模式3.3.1.2 板式换热器单独供冷在过渡季节及夏季23:00~05:00时段,末端冷负荷低于板式换热器单独供冷所能提供的负荷时.由板式换热器单独向末端供冷。
关闭冷水机组进}}l水阀门,开启板式换热器进出水阀门。
开启冷冻水一、二次泵,开启冷却塔风机,进入过渡季节供冷模式3.3.1.3 24 h免费供冷系统屋顶塔楼设置单独的冷却塔.为各租户提供24 h免费供冷系统群控系统在冷却塔供回水总管上设置温度及流量传感器.通过旁通调节阀来调节冷却水供水温度.通过供回水流量传感器监测管路漏水情况,同时对免费供冷系统的冷量使用进行监测.3.3.2 冷水机组群控冷源系统中.冷冻水一次泵及其前后的电动阀、冷水机组及其前后的电动阀、冷却水泵及其前后的电动阀均为一一对应关系,群控系统在冷水机组、冷冻水一次泵、冷却塔风机、冷却水泵的水系统管路上连接所需的温度传感器和压力变送器.通过冷水机组群控系统控制系统各设备及相关的电动阀门,实现对冷水机组、冷却水泵、冷冻水一次泵及冷却塔风机的自动监测与控制冷冻机房安装了7台冷水机组.通过群控系统合理控制冷水机组的运行台数.使冷量满足负荷要求.同时避免机组在低负荷高能耗状态运行若两台冷水机组均工作在50%的负荷状态时.可改为一台冷水机组运行.使冷水机组本身的COP(能效此)提高.尚可停止一台冷冻水泵和冷却水泵:对于二级泵系统当两台冷水机组运行时。
会出现冷冻水侧流量大于用户侧流量的情况.此时一部分冷水通过旁通管与用户侧回水混合。
使进入蒸发器的水温降低从而进一步使制冷机的COP降低。
只运行一台冷水机组和一台冷冻水泵时,用户侧流量就会大于冷冻机蒸发器侧流量.用户侧回水一部分通过旁通管与冷水机组出口的冷水混合后送到用户管网,而进人蒸发器的水温则升高至用户回水温度,这也使冷水机组的C OP进一步提高。
从这个角度看.少开一台冷水机组.使各台运行的机组均处于满负荷状态比多开一台冷水机组.使各台机组都处于低负荷状态要好群控系统按此原则并结合机组能级曲线对冷水机组进行台数的增减控制当末端负荷变小时.冷冻水二次变频水泵控制系统接收到末端的压差增加.发出降低二次变频水泵频率的指令.减少供水量来适应末端需求变化首先机组会降低自身的制冷能力来适应该变化.当已运行机组降低的制冷量总计达到单台机组最大容量时.说明可以再减少一台运行机组(减少的那台为运行时间最长的冷水机组).让剩下的运行机组提高制冷量运行在较高负载工况下.机组在较高负载下可以有较好的能效比群控系统检测到机组负荷大于95%.且控制偏差值K >200时,则控制增加一台机组运行,其中选择开启的为运行时间最少的一台冷水机组.并预先开启机组进出水阀门、相应水泵、水泵进出水阀门。
其中Kl:( 一71j )/0.001 5,为冷水出水温度,c《=;71I 为冷水出水温度的设定值(4℃) 由于冷水机组从开始投入到加载完毕运行约需要12 min.故机组运行15 rain后采集到的负荷数据才可作为程序控制用的负荷判据3.3.3 冷冻水二次变频泵组群控冷冻水二次变频泵共有4组并联运行每台水泵对应一台变频器、二个电动阀门.设备启停相互联锁.将其暂定义为冷冻水二次泵系统在各组冷冻水二次泵系统内设置最不利压差点和流量传感器,确保每个供冷管路的压差平衡.并向末端提供合适的供水压力群控系统根据检测到的冷冻水供回水温差、冷冻水流量计算末端空调负荷.再根据空调计算负荷.推算出在标准工况下(即供回水温差为5℃,可调整)所需的冷冻水流量.将其作为冷冻水二次变频泵变频的另一参变量通过负荷跟踪.动态修正冷冻水二次变频泵频率.以使冷冻水二次变频泵在最佳、最节能的工况下运行。
冷冻水二次变频泵运行台数的增减控制采用负荷控制.即利用水泵并联特性曲线,设定一个供回水压力的波动范围.当负荷变化引起相应分区管网的流量改变时.供回水压力也随之波动.当超过设定上限值时增泵:当低于设定下限值时减泵。
负荷控制原理如下:二次变频泵控制器把每一个反馈的压差模拟信号值.与已输入的定点值(调压值)作比较,当反馈的压差值满足所有定点值时,水泵速度会固定下来假如相应分区管网设置的压差传感器反馈的压差值反映二次变频泵运行接近其运行曲线范围边缘时.控制器会自动增加泵的运行台数.把水泵工作点带至可接受的运行点。
控制器不断扫描反馈的压差信号并与定点值作比较.若定点值不能被已运行的泵(前泵)满足。
控制器会增加泵(后泵)的投入,后泵加速而前泵减速,直至两者同速。
反馈的压差信号再次改变时.将会引起水泵速度变动当定点值可以被低流量满足时.控制器会减少水泵运行台数。
当最坏情况的区域(例如末端)与定点相差值大。
控制器会发出信号给变频器.后者改变频率.令水泵加速当一台变频器失灵.控制器自动启动备用变频器。
当某一区域压差传感器失灵,其反馈信号会被群控系统自动删除因此,负荷控制多用在控制要求较高的场合.可有效解决水力、热力工况不协调的问题.是有效解决冷冻水泵运行台数自动增减控制的最佳方案3.3.4 冷却塔风机群控7台冷却塔风机(双速)并联,设备启停相互联锁,运行时.冷却塔风机运行台数及风速根据冷却水回水总管温度进行控制群控系统根据各冷却塔风机运行时间长短对冷却塔进行轮替运行控制接于各冷却塔进出水管上的电动阀用于当冷却塔风机停止运行时切断水路.同时可适当调整进入各冷却塔的水量,使其分配均匀.以保证各冷却塔都能达到最大出力由于湿式冷却塔的工作性能主要取决于室外的温湿度,因此需设室外温湿度测点.再由监控管理主机计算出湿球温度。
冷却塔风机启停台数根据冷水机组开启台数、室外温湿度、冷却水温度、冷却水泵开启台数来确定,具体开启哪台冷却塔风机则由风机的运行时间长短来决定。
冷却塔出口温度(制冷主机冷凝器进口温度)是冷却塔风机台数控制的关键参数.其设定值参考当日的平均湿球温度。
冷却塔出口温度与设定值的差值控制区间为l℃(可调整).当差值大于1℃,并维持5min(可调整)上升趋势时,开启一台冷却塔风机(开启未运行风机中运行时间最短的):当差值小于一l cE,并维持5rain(可调整)下降趋势时.关停一台冷却塔风机(关停运行风机中运行时间最长的)4 结语在目前越来越注重节约能源和提高能效的前提下,中央空调设备作为楼宇建筑中的能耗大户.其控制环节中的冷热源群控变得尤为重要。