基于MATLAB的运动模糊图像处理
- 格式:doc
- 大小:357.30 KB
- 文档页数:7
运动模糊图像复原算法实现及应⽤任务书1、课程设计⽬的:1)提⾼分析问题、解决问题的能⼒,进⼀步巩固数字图像处理系统中的基本原理与⽅法。
2)熟悉掌握⼀门计算机语⾔,可以进⾏数字图像应⽤处理的开发设计。
2、课程设计的题⽬:运动模糊图像复原算法实现及应⽤1)创建⼀个仿真运动模糊PSF来模糊⼀幅图像(图像选择原理)。
2)针对退化设计出复原滤波器,对退化图像进⾏复原(复原的⽅法⾃定)。
3)对退化图像进⾏复原,显⽰复原前后图像,对复原结果进⾏分析,并评价复原算法。
3、课程设计⽅案制定:1)程序运⾏环境是Windows 平台。
2)开发⼯具选⽤matlab、VC++、VB、C#等,建议选⽤matlab作为编程开发⼯具,可以达到事半功倍的效果、并降低编程难度。
3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题⽬做合理的划分。
4、课程设计的⼀般步骤:1)选题与搜集资料:选择课题,进⾏系统调查,搜集资料。
2)分析与设计:根据搜集的资料,进⾏功能分析,并对系统功能与模块划分等设计。
3)程序设计:掌握的语⾔,编写程序,实现所设计的功能。
4)调试与测试:⾃⾏调试程序,同学之间交叉测试程序,并记录测试情况。
5)验收与评分:指导教师对每个成员开发对的程序进⾏综合验收,综合设计报告,根据课程设计成绩的判定⽅法,评出成绩。
5、要求1)理解各种图像处理⽅法确切意义。
2)独⽴进⾏⽅案的制定,系统结构设计合理。
3)程序开发时,则必须清楚主要实现函数的⽬的和作⽤,需要在程序书写时做适当的注释。
⽬录摘要 (2)⼀、概述 (3)1.1选题背景 (3)1.2课程设计⽬的 (4)1.3设计内容 (5)⼆、图像退化与复原 (6)2.1图像退化与复原的定义 (6)2.2图像退化模型 (7)2.3运动模糊图像复原的⽅法 (7)2.3.1逆滤波复原法 (8)2.3.2维纳滤波的原理 (9)三、运动模糊图象复原的matlab实现 (10)3.1维纳滤波复原 (10)3.2约束最⼩⼆乘滤波复原 (10)3.3 运动模糊图像复原实例 (11)四、课程设计总结与体会 (14)参考⽂献 (16)摘要随着计算机技术的发展,计算机的运⾏速度和运算精度得到进⼀步提⾼,其在图像处理领域的应⽤⽇见⼴泛。
MATLAB技术图像去模糊教程近年来,图像处理技术得到了广泛的应用,并成为了计算机视觉和图像识别领域中的重要组成部分。
然而,由于种种原因,很多时候我们会遇到图像模糊的问题,这给图像的识别和分析带来了一定的困扰。
幸运的是,MATLAB提供了一系列强大的图像处理工具,可以帮助我们有效地处理图像模糊问题。
本文将介绍一些常用的MATLAB技术,帮助读者学习如何使用MATLAB进行图像去模糊处理。
第一部分:图像模糊的原因与分类在开始学习图像去模糊技术之前,我们首先需要了解图像模糊的原因和分类。
图像模糊主要是由于光的散射、镜头成像失真、图像振动等原因引起的。
根据模糊效果的不同,图像模糊可以分为运动模糊、模糊固定模糊和非固定模糊等。
其中,运动模糊是最常见的一种形式,它是由于镜头或者相机在图像获取过程中的移动引起的。
第二部分:基于轨迹估计的图像去模糊方法现在我们来介绍一种常用的图像去模糊方法,即基于轨迹估计的方法。
这种方法的基本思想是通过分析图像中物体的运动轨迹,来估计图像的模糊程度,并对图像进行相应的处理。
具体流程如下:1. 读取图像并进行预处理,包括灰度化、降噪等。
2. 对图像进行运动估计,可以使用不同的算法,比如光流算法、像素匹配算法等。
这一步的目的是准确估计物体的运动轨迹。
3. 根据运动轨迹估计图像的模糊程度,可以使用不同的指标来衡量,比如轨迹长度、轨迹方向变化等。
4. 根据估计的模糊程度对图像进行去模糊处理。
可以采用不同的方法,比如卷积运算、滤波器设计等。
5. 最后,进行图像评价和结果展示,比较去模糊前后的效果。
第三部分:基于频域滤波的图像去模糊方法除了基于轨迹估计的方法,MATLAB还提供了基于频域滤波的图像去模糊方法。
这种方法的基本思想是通过对图像进行傅里叶变换,将图像的频域信息表示为频谱图,然后根据模糊程度设计相应的滤波器,对频谱图进行滤波,最后再进行傅里叶反变换,得到去模糊后的图像。
具体流程如下:1. 读取图像并进行预处理,包括灰度化、降噪等。
二维运动模糊图像的处理一、前言运动模糊是图像处理领域常见的一种失真,它是在拍摄或者成像时,镜头和被拍摄物体之间产生相对运动,导致的图像模糊。
这种失真通常会出现在快速移动的物体上,如运动的车辆、飞机、人或者摄影机自身的移动等。
处理运动模糊图像可以提高图像质量和结果的可信度。
本文主要介绍处理二维运动模糊图像所需要的步骤和方法,并通过具体实例来展示如何实现。
二、二维运动模糊模型二维运动模糊是一种在图像中产生的维度不同的失真,我们需要用一种数学模型来描述它。
根据文献 1 的描述,运动模糊可以表示成下面的方程:g(x, y) = f(x – v_x t, y – v_y t) + n(x, y)式中,g(x,y) 是观察到的模糊图像;f(x,y) 是清晰图像;n(x,y) 是加性噪声;v_x 和 v_y 是物体运动的平均速度;t 是曝光时间。
可以看出,运动模糊是由物体的运动和相机曝光时间共同决定的。
三、处理方法针对二维运动模糊图像,我们可以采用各种方法来恢复清晰的图像。
下面介绍一些比较常用的处理方法:1. 经典逆滤波方法经典逆滤波方法通过将运动模糊图像和一个恢复器(transfer function)进行傅里叶变换,再运用逆滤波器来实现模糊图像的去除。
其基本思想是,将傅里叶变换后的运动模糊图像 G(w_x, w_y) 除以傅里叶变换后的恢复器 H(w_x, w_y) 就可以得到原始图像F(w_x, w_y):其中,H(w_x, w_y) 通常由点扩散函数(PSF)计算得到。
逆滤波概念简单,在算法实现装回时,逆滤波方法不是很稳定,尤其是当噪声较强时,会使得结果出现明显的伪影或者噪声。
由于经典逆滤波方法在实际应用中存在一些局限性,如较强的噪声干扰、图像边缘成分缺失或者存在振铃效应等问题,因此带约束的逆滤波方法得到了广泛的应用。
该方法基于最小化损失函数的理论,引入了正则化约束项,以达到更稳定的结果。
例如在Tikhonov 正则化中,可以将原问题转化成带有正则化项的最小二乘问题:min{||H(F)-G||^2 + α||F||^2}其中 ||F||^2 表示平滑性约束,α越大,结果越平滑;||H(F)-G||^2 表示显著性约束,约束了算法的收敛度。
高斯模糊和散焦模糊 matlab高斯模糊和散焦模糊都是图像处理中常用的模糊技术。
在Matlab 中,可以使用一些函数来实现这些技术。
高斯模糊是一种常见的模糊技术,可以用于去除图像噪声和平滑图像。
在 Matlab 中,可以使用 imfilter 函数来实现高斯模糊。
该函数的语法为:```matlabB = imfilter(A, h, boundary, options)```其中,A 是输入图像,h 是高斯卷积核,boundary 是边界处理选项,options 是卷积选项。
要实现高斯模糊,需要先创建一个高斯卷积核,可以使用 fspecial 函数来创建。
例如,要创建一个大小为5x5,标准差为 1.5 的高斯卷积核,可以使用以下代码:```matlabh = fspecial('gaussian', [5 5], 1.5);```然后,就可以使用 imfilter 函数来进行高斯模糊,例如:```matlabB = imfilter(A, h);```散焦模糊是一种模拟焦距不足或物体运动的效果,使得图像变得模糊。
在 Matlab 中,可以使用 fspecial 函数来创建散焦卷积核,例如:```matlabh = fspecial('motion', len, theta);```其中,len 是卷积核长度,theta 是卷积核方向的角度。
然后,可以使用 imfilter 函数来进行散焦模糊,例如:```matlabB = imfilter(A, h);```需要注意的是,散焦模糊需要选择合适的卷积核长度和方向,否则可能会出现过度模糊或不足模糊的情况。
Matlab中的模糊图像恢复与图像重建技术详解引言:随着数码相机、移动设备以及各种图像处理软件的普及,人们对图像质量要求越来越高。
然而,在图像获取和传输过程中,由于种种原因,图像可能会变得模糊,失真或损坏。
为了解决这些问题,图像恢复和重建技术应运而生。
本文将详细介绍基于Matlab的模糊图像恢复与图像重建技术。
一、图像模糊恢复技术1. 模糊图像的概念和原因模糊图像是指由于摄像机移动、图像采集设备问题、环境光线等因素而导致图像失真的现象。
图像模糊会降低图像的细节和清晰度,使得图像难以辨认和识别。
常见的模糊原因有运动模糊、焦距模糊、镜头畸变等。
2. 模糊图像恢复方法为了恢复模糊图像的清晰度和细节,研究人员提出了各种方法。
其中,基于傅里叶变换的频域滤波是最常用的方法之一。
该方法通过将模糊图像转换到频域,应用适当的频域滤波器来消除模糊效果。
Matlab提供了丰富的函数和工具箱来实现这些滤波方法,比如利用低通滤波器恢复运动模糊图像。
另外,基于对图像恢复的数学建模和优化算法也是常用的方法。
例如,最小二乘法、最小化总变差等。
3. Matlab中的模糊图像恢复函数Matlab提供了多种函数用于模糊图像恢复。
其中,`deconvwnr`函数可以用于模糊图像的逆滤波处理。
该函数通过对图像进行频域滤波,去除模糊效果。
另外,`deconvblind`函数可以用于盲去卷积处理,即对图像进行反卷积操作以恢复图像细节。
二、图像重建技术1. 图像重建的意义和应用图像重建指的是利用已有的图像信息来还原、修复或生成新的图像。
与图像恢复类似,图像重建技术对于改善图像质量、还原损坏图像、生成虚拟图像等方面有着重要的应用。
图像重建技术在医学影像、图像压缩和增强、虚拟现实等领域都有广泛的应用。
2. 图像重建算法在Matlab中,图像重建可以通过多种算法实现。
其中一种常用的算法是基于插值的图像重建方法。
该方法通过对已有图像的像素进行插值来生成新的图像。
利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
Matlab中的模糊图像处理和图像模糊恢复技术随着数字图像的广泛应用和发展,图像模糊成为一个重要的问题。
由于摄像器材或传输媒介等方面的限制,图像的清晰度可能受到一定程度的影响,导致图像模糊。
在实际应用中,图像的模糊问题会给图像解析、目标跟踪、计算机视觉等许多领域带来困扰。
为了改善模糊图像的质量,并解决图像模糊问题,Matlab提供了一系列的模糊图像处理和图像模糊恢复技术。
一、图像模糊的产生原因图像模糊一般是由光学系统的缺陷、运动物体、相机抖动等因素引起的。
光学系统的缺陷包括镜头的失真、散射、衍射等;运动物体指的是图像中的物体在拍摄过程中出现运动造成模糊;相机抖动是由于相机本身的不稳定性或者手持摄影造成的。
二、模糊图像处理的方法1.滤波方法滤波方法是最基本也是最常用的图像模糊处理方法。
在Matlab中,可以使用各种滤波器对图像进行处理,例如平滑滤波、高斯滤波、中值滤波等。
这些滤波器可以消除图像中的高频噪声,同时也会导致图像的模糊。
2.图像退化模型图像退化模型是描述图像模糊过程的数学模型。
常见的图像退化模型有运动模糊模型、模糊核模型等。
通过了解图像退化模型的特性,可以更准确地恢复图像的清晰度。
在Matlab中,可以根据图像退化模型进行图像恢复的研究和实现。
3.频域方法频域方法是一种基于图像频谱的模糊图像处理方法。
通过对图像进行傅里叶变换,可以将图像从空间域转换到频率域,然后在频率域进行处理,最后再进行逆傅里叶变换得到恢复后的图像。
在Matlab中,可以利用fft2函数进行傅里叶变换和逆傅里叶变换,实现频域方法对图像的处理。
三、图像模糊恢复技术1.盲去卷积算法盲去卷积算法是一种不需要知道图像退化模型的图像恢复方法。
通过对模糊图像进行去卷积处理,可以尽可能地恢复图像的清晰度。
在Matlab中,可以使用盲去卷积相关的函数和工具箱实现图像模糊恢复。
2.基于深度学习的图像超分辨率重建技术深度学习技术如今在计算机视觉领域取得了巨大的成功。
在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。
通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。
本文将介绍在Matlab中使用FCM进行图像分析的技巧。
首先,让我们简要了解一下FCM算法。
FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。
与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。
在Matlab中使用FCM进行图像分析的第一步是加载图像。
可以使用imread函数将图像加载到Matlab的工作区中。
例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。
这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。
这是因为FCM算法通常用于灰度图像分析。
可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。
预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。
常用的图像预处理方法包括平滑、锐化和边缘检测等。
Matlab中提供了许多图像预处理函数。
例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。
常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。
基于 MATLAB 的运动模糊图像处理
提醒:
我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。
研究目的
在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、
调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。
但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提
取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊
图像复原技术来尽可能地去除失真,恢复图像的原来面目。
因此对于运动模糊图像的复原技术研究更具有重要的现实意义。
图像复原原理
本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,
并在此基础上讨论了复原过程中对点扩散函数 (PSF)的参数估计从而依据自动鉴别
出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模
型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参
数,使得复原效果达到最佳。
实验过程
模糊方向的估计:
对图 1(a)所示的原始图像‘车牌’图像做方向= 30,长度 L=20像素的匀速直线运动模糊,得到退化图像如图1(b)
1(a)1(b)
j=imread('车牌 1.jpg');len=20; theta=30;
figure(1),imshow(j);psf=fspecial('motion',len,theta); title(' 原图像');j1=imfilter(j,psf,'circular','conv');
figure,imshow(j1);
title('PSF模糊图像');
图 1(c)和 1(d)分别为原图像和模糊图像的二次傅里叶变化
1(c)1(d)
J=rgb2gray(j);J1=rgb2gray(j1);
K=fft2(J);% 傅里叶变换K1=fft2(J1);% 傅里叶变换
M=fftshift(K);%直流分量移到频谱中心M1=fftshift(K1);%直流分量移到频谱中心
N=abs(M);%计算频谱幅值N1=abs(M1);%计算频谱幅值
P=(N-min(min(N)))⋯P1=(N1-min(min(N1)))/(max(max(N1))⋯/(max(max(N))-min(min(N)))*225;%-归min(min(N1)))*225;%一
归一化
化
figure,imshow(P);figure,imshow(P1);
title(' 傅里叶变换频谱');title(' 傅里叶变换频谱');
利用图 1(d)粗略的计算模糊的方向,可以通过matlab 自带的画线工具,
选取如下图1(e)所示的三角形,计算 a 与 c 之间的夹角
Matlab 命令窗口输: ginput
选中三个顶角后回车,可得数据
ans =
136.6009 146.3977
137.4205 166.8895
145.2074 166.8895
粗略取值后,经Matlab 计算得:
atan(20/9)*180/pi
ans =65.7723则运动方向为
90-ans≈ 25(误差为 5)。
1(e)
模糊长度的估计
运动模糊图像中,在运动方向上大多数模糊图像的背景像素点具有很强
的相关性,即沿着运动模糊的轨迹,背景像素点的灰度值逐渐变化或者
不变。
通过文献的学习,先对模糊图像进行一阶微分,然后进行自相关
运算,可得一条鉴别曲线,曲线上会出现对称的相关峰,峰值为负,两
相关峰之间的距离等于运动模糊长度。
把模糊图像转换为灰度图像,采用Sobel 算子对其进行一阶微分运算,Sobel 算子
1 01
So b e l = 2 02
1 01
其自相关曲线如图2(a)所示。
利用m atlab 的 Data Cursor 可以测得两
负峰之间的距离为20
个像素点,此为运动模
糊的长度,与理论值吻
合(比较精确)。
由于
长度的测量计较精确,
可以根据长度对运动
模糊方向进行不同的
取值,达到最好效果。
f1=rgb2gray(j1);
f1=im2double(f1);
h = fspecial('Sobel');%Sobel算子
J = conv2(f1,h,'same'); %Sobel
算子微分
IP=abs(fft2(J));
%图像能量谱密度
S=fftshift(real(ifft2(IP)));
figure,plot(S);
title('自相关图');
%图像自相关函数
图像的复原
然后我们按本文中鉴别出的运动模糊图像的运动长度和运动角度后,
构造出相应的匀速直线运动PSF,并对其进行图像复原,得到的效果如下图 3 所示。
len=20;
theta=25;np=0.002*prod(size(j));
psf=fspecial('motion',len,theta);er=deconvreg(j1,psf,np/3.0);
wnr1=deconvwnr(j1,psf,0);subplot(222),imshow(er);
subplot(221),imshow(wnr1);title(' 最小二乘方复原')
title(' 维纳滤波处理后图像');
lucy=deconvlucy(j1,psf);NITPSF=ones(size(psf));
subplot(223),imshow(lucy);[mang,psf]=deconvblind(j1,INITPSF,40); title(' Lucy richardson 图像复原 ');subplot(224),imshow(mang);
title(' 盲去卷积复原 ');
由上图可知经过 Lucy richardson 复原的图像效果最好,可多次修改运动模糊方向,
再进行 Lucy richardson 复原。
下图 4 为运动模糊方向为 30 的效果。
图像中可以比较清楚的看出此图中汽车的牌
子‘本田’以及车牌‘闽 C 6R972’。
参考文献:1.红外技术第32卷第5期2010
年5 月《毫米波辐射图像的运动模糊参数
辨识》胡泰洋、肖泽龙、许建中
2.《数字图像处理及MATLAB 实现——学习与实验指导》。