=-2,所以x=-2.
(4)由x= (
2 3
)2
可94得,所以=3lo2g,23即94 2-x=25,解得x=-5.
log1 32.
(1 )x 2
2
【补偿训练】求下列各式中的x.
(1)x=log48.(2)logx8=6.
(3)log64x=-
.(4)-lne3=x.
2
【解析】(1)由3 x=log48可得4x=8,即22x=23,解得x= .
2
(2)因为4x=5×3x,所以 =5,即( )x=5,
解得x=log 5.
4x
4
3x
3
4 3
【方法技巧】利用指数与对数的互化求变量值的策略 (1)已知底数与指数,用指数式求幂. (2)已知指数与幂,用指数式求底数. (3)已知底数与幂,利用对数式表示指数.
【变式训练】求下列各式中的x的值.
(1)lg0.01=x.
【解析】(1)由 6log65=x13 6得,5x+1=36,解得x=7.
x 1 2x 3, (2)由log(x+1)(2x-3)=1可得 2x 3 0解, 得x=4.
x 1 0, (3)由log3(log4(log5x))=0可得x l1og14. (log5x)=1,故log5x=4,
(2)log7(x+2)=2.
(3)
9
(4)xlo=g 2
3
4
x.
【解题指log南1 3】2.利用指数式与对数式的关系,以及幂的有关运算求解.
2
【解析】(1)因为lg0.01=x,所以10x=0.01=10-2,
所以x=-2.
(2)因为log7(x+2)=2,所以x+2=72,解得x=47.