集合、函数及其表示
- 格式:doc
- 大小:119.00 KB
- 文档页数:3
集合与函数概念知识点总结集合是由一些元素组成的整体,元素之间无序且互不相同。
常用的集合符号有大括号{}表示,元素之间用逗号隔开。
例如,集合A={1, 2, 3}表示有元素1、2、3的集合A。
函数是一个特殊的关系,它规定了每个输入值都对应唯一一个输出值。
函数由输入集合、输出集合和映射关系构成。
例如,函数f(x) = x^2 表示输入值x经过平方运算得到对应的输出值f(x)。
1. 集合的性质:- 互异性:集合中元素互不相同。
- 无序性:集合中元素之间没有顺序。
- 没有重复元素:集合中不会包含相同的元素。
- 元素的个数:可以用集合的基数表示,用 |A| 表示集合A的元素个数。
2. 常见的集合表示法:- 列举法:用大括号{}将元素列举出来。
- 描述法:利用一个条件式来描述集合中的元素。
- 空集:不包含任何元素的集合,用∅表示。
3. 集合的运算:- 交集:两个集合中共有的元素构成的集合,用符号∩ 表示。
- 并集:两个集合中所有的元素构成的集合,用符号∪表示。
- 差集:从一个集合中去掉与另一个集合相同的元素构成的集合,用符号 - 表示。
- 补集:对于某个给定的全集,该全集中不属于某个集合的元素构成的集合,用符号 ' 表示。
4. 函数的性质:- 单射:对于函数中的每一个输出值,对应的输入值是唯一的。
- 满射:对于函数中的每一个输出值,都有对应的输入值。
- 双射:既是单射又是满射的函数。
5. 函数的表示法:- 函数箭头:用箭头来表示函数的映射关系,如f: A → B 表示函数f从集合A到集合B的映射。
- 函数图像:用图形表示函数的映射关系。
- 函数表达式:使用数学表达式来表示函数的运算规则,如f(x) = x^2 表示函数f对输入值x进行平方运算。
6. 函数的运算:- 复合函数:将一个函数的输出值作为另一个函数的输入值,依次进行运算。
- 反函数:将函数的输入值和输出值互换,得到新的函数。
以上是集合与函数概念的基础知识点总结。
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高一上学期数学必修内容总结高一上学期数学必修内容总结必修一第一章集合与函数概念1。
1集合1.2函数及其表示1。
3 函数的基本性质第二章基本初等函数(Ⅰ)2。
1指数函数2.2 对数函数2。
3幂函数第三章函数的应用3。
1 函数与方程3.2函数模型及其应用必修二第一章空间几何体1.1 空间几何体的结构1.2空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3。
2 直线的方程3。
3 直线的交点坐标与距离公式第四章圆与方程4。
1 圆的方程4.2 直线、圆的位置关系4。
3 空间直角坐标系必修四第一章函数1.1 任意角和弧度制1。
2任意角的函数1.3函数的诱导公式1。
4函数的图象和性质1。
5 函数的图象1.6 函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3平面向量的基本定理及坐标表示2。
4 平面向量的数量积2。
5平面向量应用举例第三章恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的恒等变换必修五第一章解形1.1正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4等比数列2。
5 等比数列的前n项和第三章不等式3。
1 不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题 3。
4基本不等式。
数学集合与函数知识点总结一、集合的基本概念1.1 集合的定义集合是指具有确定的特征和个数、可以确定归属关系的一组事物的总和。
集合中的元素可以是数字、字母、符号、实际事物或抽象概念等。
1.2 集合的表示方法集合可以用两种方式表示:列举法和描述法。
列举法是将集合的元素逐个列举出来,用大括号{}括起来表示;描述法是用适当的条件来表示集合的元素(x满足某个条件),一般用符号{}或者条件表达式表示。
1.3 集合的元素关系集合中的元素之间可以存在包含关系、相等关系和互不相交关系。
1.4 集合的运算常见的集合运算有并集、交集、差集、补集、直积等。
1.5 集合的基本性质集合的基本性质包括空集的唯一性、互补律、结合律、分配律、对称律等。
二、集合的性质和应用2.1 集合的性质集合的性质包括有限集合和无限集合、有穷集合和无穷集合、空集合和非空集合等。
2.2 集合的应用集合在数学和其他学科中都有很多应用,如概率论、图论、数理逻辑、离散数学等。
三、函数的基本概念3.1 函数的定义函数是一个元素集合到另一个元素集合的映射关系。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
3.2 函数的图像函数的图像是函数的自变量和因变量的对应关系在平面直角坐标系中的表示,常用图形表示。
3.3 函数的特性函数具有单值性、有限性、相等性等特性,其中单值性是指每个自变量在函数中对应一个确定的因变量。
3.4 函数的表示方法函数可以用解析式、图象或者映射表示。
3.5 函数的分类函数可以按照定义域、值域、解析式的形式来分类,常见的函数有多项式函数、指数函数、对数函数、三角函数等。
四、函数的性质和应用4.1 函数的性质函数的性质包括奇偶性、周期性、单调性、最值等。
4.2 函数的应用函数在数学和其他学科中有很多应用,可以用来描述现实生活中的变化规律,如物理学中的运动规律、经济学中的需求函数、生物学中的生长规律等。
五、数学集合与函数的综合应用5.1 集合与函数的关系集合与函数是数学中基本的概念,它们之间有着密切的关系。
集合与函数概念知识点总结一、集合的基本概念集合是数学中的一个基本概念,它是由一些确定的元素构成的整体。
集合中的元素可以是任意对象,可以是数字、字母、符号、词语等。
集合的表示方式有两种:列举法和描述法。
集合的元素之间没有顺序关系,每个元素在集合中只能出现一次。
1.1 集合的符号表示集合用大写字母表示,例如A、B、C等。
如果一个元素x属于集合A,则用x∈A 表示;如果一个元素y不属于集合A,则用y∉A表示。
1.2 集合的列举法集合的列举法是将集合的所有元素一一列举出来。
例如,集合A={1, 2, 3, 4}表示A是由元素1、2、3、4组成的集合。
1.3 集合的描述法集合的描述法是通过描述集合元素的共同特征来表示集合。
例如,集合A={x|x是正整数,x<5}表示A是由小于5的正整数组成的集合。
二、集合的运算集合之间可以进行多种运算,包括并集、交集、差集和补集。
2.1 并集两个集合A和B的并集,表示为A∪B,包含了A和B中的所有元素,且每个元素只出现一次。
2.2 交集两个集合A和B的交集,表示为A∩B,包含了同时属于A和B的所有元素。
2.3 差集两个集合A和B的差集,表示为A-B,包含了属于A但不属于B的所有元素。
2.4 补集对于给定的全集U,集合A相对于U的补集,表示为A’,包含了属于U但不属于A的所有元素。
三、函数的基本概念函数是数学中的一个重要概念,它描述了一个集合中的元素和另一个集合中的元素之间的对应关系。
函数可以看作是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
3.1 函数的符号表示函数用小写字母表示,例如f、g、h等。
如果集合A中的元素x经过函数f的映射得到了集合B中的元素y,则用f(x)=y表示。
3.2 定义域和值域函数的定义域是指函数中所有可能的输入值的集合,也就是函数的自变量的取值范围。
函数的值域是指函数中所有可能的输出值的集合,也就是函数的因变量的取值范围。
集合与函数知识点总结1. 集合的概念和表示方法集合是数学中一个重要的概念,在现实生活中也有很多应用。
集合可以看作是一组互不相同的元素的集合体,元素可以是数字、字母、词语、对象等。
常见的表示方法有:•列举法:直接列举集合中的元素,用大括号括起来。
•描述法:通过描述元素的属性或满足的条件来表示集合。
•空集:不包含任何元素的集合,用符号 {} 或∅ 表示。
•全集:与讨论的问题有关的所有元素的集合,用大写字母 U 表示。
例如,表示一个包含 1、2、3 三个元素的集合可以写成 {1, 2, 3},表示所有正整数的集合可以写成 N。
2. 集合间的运算集合间的运算包括交集、并集、差集和补集。
•交集:两个集合中共同的元素组成的集合,用符号∩ 表示。
例如,A 与 B 的交集可以表示为A ∩ B。
•并集:两个集合中所有元素组合而成的集合,用符号∪ 表示。
例如,A 和B 的并集可以表示为A ∪ B。
•差集:一个集合减去另一个集合中共有的元素后所得的新集合,用符号 - 表示。
例如,A 减去 B 可以表示为 A - B。
•补集:相对于全集中一个集合中没有的元素构成的集合,用符号’ 表示。
例如,A 的补集可以表示为A’。
3. 集合的性质和关系集合有许多重要的性质和关系可以用来描述和比较集合。
•包含关系:一个集合的所有元素都属于另一个集合,称为包含关系。
用符号⊆ 或⊂ 表示。
例如,A ⊆ B 表示 A 是 B 的子集。
•相等关系:两个集合具有相同的元素,称为相等关系。
用符号 = 表示。
例如,A = B 表示 A 和 B 相等。
•并非关系:两个集合没有共同的元素,称为并非关系。
用符号∅ 表示。
例如,A ∩ B = ∅ 表示 A 和 B 之间没有元素共同。
•互斥关系:两个集合没有相同的元素,称为互斥关系。
用符号A ∩ B = ∅ 表示。
例如,如果 A 和 B 代表男生和女生的集合,则 A 和 B 互斥。
4. 函数的定义和性质函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素上。
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b是两个实数,且a b<,满足a x b≤≤的实数x的集合叫做闭区间,记做[,]a b;满足a x b<<的实数x的集合叫做开区间,记做(,)a b;满足a x b≤<,或a x b<≤的实数x的集合叫做半开半闭区间,分别记做[,)a b,(,]a b;满足,,,x a x a x b x b≥>≤<的实数x的集合分别记做[,),(,),(,],(,) a a b b+∞+∞-∞-∞.注意:对于集合{|}x a x b<<与区间(,)a b,前者a可以大于或等于b,而后者必须a b<.(3)求函数的定义域时,一般遵循以下原则:①()f x是整式时,定义域是全体实数.②()f x是分式函数时,定义域是使分母不为零的一切实数.③()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tany x=中,()2x k k Zππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高一数学知识点:集合与函数概念引言在高一数学学习中,集合与函数是非常重要的概念。
集合是数学中最基本的概念之一,它可以用来描述一组元素的集合。
函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
本文将介绍集合与函数的基本概念和一些重要的性质。
集合的概念和表示方法集合的定义集合是指具有某种特定性质的事物的总体。
集合中的元素是指具有该特定性质的事物。
集合中的元素可以是数字、字母、符号等等,以及其他更复杂的对象。
集合的表示方法集合可以通过列举法和描述法来表示。
- 列举法:列举法是指将集合的所有元素一一列举出来。
用花括号 {} 表示集合,元素之间用逗号分隔。
例如,集合A = {1, 2, 3} 表示集合A包含元素1、2、3。
- 描述法:描述法是指通过描述集合元素的共同特征来表示集合。
用大括号 {} 表示集合,之后用竖线 | 和描述集合元素的条件。
例如,集合B = {x | x 是正整数,且 x < 5} 表示集合B包含所有小于5的正整数。
集合的运算并集集合A和集合B的并集,表示为A ∪ B,是指包含A和B中所有元素的集合。
即,如果x是集合A或集合B的元素,那么x是集合A∪B的元素。
交集集合A和集合B的交集,表示为A ∩ B,是指同时属于集合A和集合B的元素组成的集合。
即,如果x是集合A和集合B的元素,那么x是集合A∩B的元素。
差集集合A和集合B的差集,表示为 A - B,是指属于集合A但不属于集合B的元素组成的集合。
即,如果x是集合A的元素但不是集合B的元素,那么x是集合A-B的元素。
互斥事件如果集合A和集合B的交集为空集,即A ∩ B = ∅,则A和B称为互斥事件。
函数的概念和性质函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用字母f、g等来表示。
自变量和因变量在函数中,自变量是指输入的变量,因变量是指随着自变量变化而变化的变量。
§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
新版高一数学必修一知识点梳理一、集合集合是数学的基本概念,表示一组对象的总体。
对象称为集合的元素,若a是集合A的元素,则记作a∈A。
集合的表示方法:列举法、描述法。
集合间的关系:子集、真子集、等于。
集合的运算:并集、交集、补集。
二、函数及其表示函数描述了一种对应关系,对于每一个输入值,都有唯一的输出值与之对应。
函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。
函数的表示方法:解析法、列表法、图象法。
三、函数的基本性质函数的单调性:函数在某个区间内,随着自变量的增大,函数值也增大(或减小),则称该函数在这个区间内是增函数(或减函数)。
函数的奇偶性:对于函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x),则称f(x)为偶函数。
四、指数函数与对数函数指数函数:形式为y=a^x (a>0, a≠1) 的函数称为指数函数。
当a>1时,函数单调递增;当0<a<1时,函数单调递减。
对数函数:形式为y=log_a(x) (a>0, a≠1) 的函数称为对数函数。
当a>1时,函数单调递增;当0<a<1时,函数单调递减。
五、幂函数幂函数是基本初等函数之一。
一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。
例如,y=x^0、y=x^1、y=x^2、y=x^-1(x≠0)等都是幂函数。
六、数列数列是按照一定顺序排列的一列数。
数列的概念:按一定次序排列的一列数叫做数列。
集合
1.下列对象不能构成集合的是…( )
①方程x 2-9=0的实数根 ②我国近代著名的数学家
③联合国常任理事国 ④空气中密度大的气体
A.①②
B.①④
C.①②④
D.②④
2.下列说法正确的是( )
①任意集合必有子集 ②1,0.5,23,21
组成的集合有四个元素
③若集合A 是集合B 的子集,集合B 是集合C 的子集,则集合A 是集合C 的子集 ④若不属于集合A 的元素也一定不属于集合B,则B 是A 的子集
A.①②③
B.①③④
C.①③
D.①②③④
3.下面六种表示法:
①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.
能正确表示方程组⎩⎨⎧=+-=+03,02y x y x 的解集的是( )
A.①②③④⑤⑥
B.①②④⑤
C.②⑤
D.②⑤⑥
4.设集合A={-3,0,1},B={t 2-t+1}.若A ∪B=A ,则t=_________.
5.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是( ).
A .4
B .5
C .7
D .31
6.设A ={x |-1<x ≤3},B ={x |x >a },若A B ,则a 的取值范围是( ).
A .{a |a ≥3}
B .{a |a ≤-1}
C .{a |a >3}
D .{a |a <-1}
7.已知集合M ={(x ,y )|x +y <0,xy >0}和P ={(x ,y )|x <0,y <0},那么( ).
A .P M
B .M P
C .M =P
D .M ⊄P
8.下列关系中正确的是________.
①∅∈{0};②∅{0};③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}.
9.已知集合A={x|x 2+4x=0},集合B={x|x 2+2(a+1)x+a 2-1=0},其中x ∈R .
(1)若A ∩B=B ,求实数a 的取值范围;
(2)若A ∪B=B ,求实数a 的值.
10.已知集合A={x|x 2-4ax+2a+6=0},B={x|x <0},若A ∩B ≠∅,求实数a 的取值范围.
11 设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R }.如果B ⊆A ,求实数a 的取值范围.
函数及其表示
1.下列四个图形中,不可能是函数y=f (x )的图象的是( )
2.试判断以下各组函数中,是否表示同一函数? (1)f(x)=2x ,g(x)=33x ; (2)f(x)=x x ||,g(x)=;0,01,1<≥⎩
⎨⎧-x x (3)f(x)=1212++n n x ,g(x)=(12+n x ) 2n-1(n ∈N ) (4)f(x)=1+x x ,g(x)=x x +2.
3. 给出下列关于从集合A 到集合B 的映射的论述,其中正确的有________.
(1)B 中任何一个元素在A 中必有原象;(2)A 中不同元素在B 中的象也不同;
(3)A 中任何一个元素在B 中的象是唯一的;(4)A 中任何一个元素在B 中可以有不同的象;
(5)B 中某一元素在A 中的原象可能不止一个;(6)集合A 与B 一定是数集;
(7)符号f:A →B 与f:B →A 的含义是一样的.
4. 作出下列函数的图象:
(1)y=|x+1|+|x-2|; (2)y=.1,1,
1,2-<-≥⎩⎨⎧+x x x x 5.求下列函数的定义域: (1)f(x)=21-x ; (2)f(x)=23+x ; (3)f(x)=x
x -++211. (4).已知f(x)的定义域为[-2,2],则f(x 2-1)的定义域为
(5)函数f (x )的定义域为[0,2],则函数f (x+1)的定义域是
6.已知f(x)的定义域是[a,b ],求F(x)=f(x-1)+f(x+1)的定义域.
7.已知函数y=5
4322++-kx kx x 的定义域为R ,求k 的取值范围. 8.已知y=32341
++-ax ax ax 的定义域为R ,求实数a 的取值范围.
9.求下列函数的解析式
(1)求一次函数y=f(x),使f [f(x)]=4x+3.
(2)已知f(1-x )=x ,求f(x).
(3)已知f(x)满足2f(x)+3f(x
1)=4x,求函数f(x)的解析式.
10.已知f(x)=
x
+11(x ∈R 且x ≠-1),g(x)=x 2+2(x ∈R ). (1)求f(2)、g(2)的值;
(2)求f [g(2)]的值;
(3)求f [g(x)]的函数解析式.
11.已知函数f(x)=1
2++x b ax 的值域为[-1,4],求实数a 、b 的值. 12.求函数f (x )=x 2-2ax-1在区间[0,2]上的最大值和最小值.
13.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.
14当m 为怎样的实数时,方程x 2-4|x |+5=m 有四个互不相等的实数根?。