多级泵平衡盘原理
- 格式:docx
- 大小:70.36 KB
- 文档页数:2
多级泵平衡盘的工作原理
多级泵平衡盘啊,这可是个很有意思的东西呢!你看啊,它就像是多级泵这个大机器里的一个小魔术贴。
多级泵在工作的时候,那可是劲头十足啊,水流在里面呼呼地跑。
可是这劲头要是不均衡,那可就麻烦啦。
就好比人走路,要是一只脚用力大一只脚用力小,那还不得歪歪扭扭的呀。
这时候平衡盘就登场啦!
它就像是一个超级聪明的小卫士,时刻守在那里,维持着整个系统的平衡。
它能感知到泵里的压力变化,然后巧妙地调整自己的位置,让一切都变得稳稳当当的。
你想想看,要是没有平衡盘,那多级泵不就像没头苍蝇一样乱撞啦?它能让多级泵乖乖地工作,不出乱子,这多厉害呀!它就像是一个经验丰富的老船长,稳稳地掌着舵,让船在波涛中平稳前行。
而且哦,平衡盘的工作方式特别巧妙。
它利用了流体的力量,就像我们利用风来放风筝一样。
它能根据流体的压力变化,自动地调整自己的状态,是不是很神奇呀?
它也不是孤立无援的哦,它和其他的部件一起合作,就像一个团队一样。
大家齐心协力,才能让多级泵发挥出最大的作用。
你说,这平衡盘是不是很重要?它虽然不大,但是作用可大着呢!没有它,多级泵可能就没法好好工作啦。
它就像是一个默默付出的幕后英雄,不声不响地做着自己的工作,却让整个系统都能正常运转。
我们生活中不也有很多这样的“平衡盘”吗?那些在背后默默付出的人,他们也许不被人注意到,但是没有他们,很多事情都没法顺利进行呢。
所以啊,我们可不能小瞧了这些小小的东西,它们往往有着大大的能量呢!
多级泵平衡盘就是这样一个神奇又重要的存在,它让多级泵变得更加可靠,更加高效。
让我们为它点个赞吧!。
水泵的常见平衡装置结构探讨摘要:在工业生产过程中,水泵是一种非常重要的机械,轴向力平衡装置是离心泵运行过程中必不可少的装置之一,它能够保证其运行过程的可靠性和使用寿命。
本文就水泵的轴向力平衡装置原理和结构进行了比较和探讨,以便做好水泵平衡装置的维护工作,提高水泵运行的稳定性。
关键词:离心泵轴向力平衡装置平衡盘单侧进水的离心泵在工作时水泵内吸入端的压力一定小于压出端,这样压力高的一端压出端的压力作用在叶轮上,使转子受到一个从压出端指向吸入端的一个力,这个力叫轴向推力。
轴向力必须采用不同的方法平衡,否则将使动、静部件发生摩擦或碰撞。
平衡离心泵轴向推力的方法很多,下面就一些常用方法加以介绍。
一、平衡孔平衡法平衡孔的结构如图1所示,在叶轮前都装有卡圈(密封环),在叶轮吸入口相对的叶轮后盖板上加工有平衡孔,使叶轮进口前后两侧的压力相等,作用在叶轮上的轴向椎力得到平衡。
这种平衡方法简单可靠,缺点是部分流体经平衡孔漏回叶轮的吸入侧时,将使叶轮流道中流体受到干扰,造成涡流损失,使泵的效率降低1。
图1 平衡孔的结构图-2 平衡管平衡结构________________________________________________________二、平衡管平衡法平衡管结构如图-2所示,平衡管是将叶轮后侧靠近轮的空穴与水泵吸水侧用管子连接起来,以使叶轮卡圈(密封环)以下两侧的力相平衡,从而消除了轴向推力。
采用平衡管平衡轴向推力的效果比较可靠、简单,但是效率比较低,泵内的损失比较大。
所以在一些小型离心泵中常采用平衡孔和平衡管综合使用方法效果更好。
三、对称进水平衡法在单级大流量离心泵中常采用双吸叶轮自动平衡轴向推力,多级大容量离心泵把叶轮设计为偶数,使其一半叶轮从左侧进水,另一半叶轮从右侧进水,这样两侧的轴向推力基本相等,自动平衡了轴向推力。
为了安全可靠可以采用推力轴承平衡剩余的轴向推力。
四、平衡鼓平衡鼓是个圆柱体,装在末级叶轮之后,随转子一起旋转。
多级离心泵平衡盘
多级离心泵平衡盘是多级离心泵的一个重要组成部分,用于实现流体的平衡和调节。
离心泵平衡盘通常由两个或多个平衡盘组成,每个平衡盘之间都有一定的间隙,通过这些间隙的流体通道,实现不同级别流道之间的压力平衡和流量调节。
平衡盘的作用是在每个泵级之间分隔流体,使得每个泵级所承受的压力相对均衡,从而减小泵叶轮受到的径向力和轴向力,提高泵的运行稳定性和寿命。
同时,通过调整平衡盘之间的间隙和通道面积,可以实现对流量的调节,满足不同工况下的需求。
离心泵平衡盘通常采用金属材料制作,如不锈钢、铜合金等,以确保其具有足够的强度和耐腐蚀性能。
在泵的设计和制造过程中,需要根据实际工况和要求进行合理的平衡盘设计,并考虑到流体的压力、温度、粘度等因素,以确保泵的运行效果和安全性能。
(1)平衡鼓法这是一种径向间隙液压平衡装置,它装在最后一级叶轮和平衡室之间,和泵轴一起旋转的称为平衡鼓轮,静止部分称为平衡鼓轮头。
用一根管线平衡室与泵进口连通,这样平衡室内的压力就等于进口连通管线中损失压力之和。
平衡鼓法平衡原理:平衡鼓轮前面是最后一级叶轮的后泵腔,其压力接近于泵的排出压力,因而平衡鼓两个端面之间有一个很大的压力差,能够把平衡鼓轮向后推,从而带动整个转子向后移动。
如果我们设法使这个推力和离心泵的轴向力相等,就能够达到平衡轴向力的目的。
(2)平衡盘法(下图):平衡盘是一种轴向间隙液压平衡装置。
装在最后一级叶轮与平衡室之间,和轴一起转动的称为平衡盘,静止不动的称为平衡环(套)。
平衡原理:从叶轮出来的一部分液体经过平衡盘与平衡环之间的轴向间隙漏入平衡室,再用管路把平衡室与泵吸入口连通,这时平衡盘背面所受的压力是平衡室压力。
平衡盘正面最小直径上受到的压力是泵的吐出压力,而在周界上是平衡室压力。
只要选择好平衡盘的内、外直径尺寸,就可以使平衡盘正面与背面的压力差和泵的轴向力相等,从而达到平衡的目的。
平衡盘法假如泵的轴向力增加,这额外的压力就会把泵的转子推向吸入口侧,从而使平衡盘和平衡环之间的端面间隙减小。
此时通过这个间隙的漏失量将减少,平衡室压力下降,这时平衡盘前后的压力差增加,将转子向吐出口方向推,直到与轴向力平衡为止。
反之,如果泵的轴向力减小,就会造成平衡盘与平衡环之间的轴向间隙增大,漏失量增加,平衡压力增高,直到又获得新的平衡为止。
(3)平衡盘与平衡鼓组合法(下图):平衡盘与平衡鼓组合实际上是一种径向、轴向液压平衡装置。
高压多级离心泵普遍采用此法,平衡效果好,组合法的平衡原理与上述两法相同。
平衡盘与平衡鼓组合法(4)叶轮对称布置平衡法:在多级水平中开式离心泵中通常采用叶轮对称布置平衡法来平衡轴向力,使成组叶轮的吸人口方向正好相反,从而起到平衡轴向力的作用。
在泵上也要安装止推轴承。
平衡盘能自动平衡轴向力,是因为平衡盘两个间隙(径向间隙和轴向间隙)相辅相成的结果。
平衡盘是靠泄漏产生压差来变化平衡力的,没有泄漏就不能达到轴向力的完全平衡。
平衡盘的工作过程是一个运动平衡的过程。
平衡盘装置由平衡板、平衡盘组成。
其工作原理是:从末级叶轮出来的带有压力P的液体,经平衡板与平衡盘间的径向间隙流入平衡盘与平衡板间的水室中,使水室处于高压状态,压力为P´。
平衡盘后有平衡管与泵的入口相连,其压力P0近似为泵的入口压力。
这样平衡盘两侧压力不相等,就产生了向后的轴向平衡力。
轴向平衡力的大小随轴向位移的变化、调整平衡盘与平衡板间的轴向间隙(即改变平衡盘与平衡板间水室压力)而变化,从而达到平衡的目的。
但这种平衡经常是动态平衡。
从末级出来的带有压力的液体,经过平衡板与平衡盘间的径向间隙流入平衡盘前的空腔中,空腔处于高压状态。
平衡管作用:平衡盘后有平衡管与泵入口相连,其压力近似为入口压力。
这样平衡盘两侧压力不相等,因而也就产生了向后的轴向推力,即平衡力,平衡力与轴向力相反,因而自动地平衡了叶轮的轴向推力。
当叶轮的轴向推力大于平衡盘的平衡力时,泵转子就会向入口侧移动,并由于惯性的作用,这种移动并不会立即停止在平衡位置上,而是要超出限度,引起平衡盘轴向间隙过量减小,使泄漏量减少,平衡盘前空腔的压力升高,于是平衡盘上平衡力增加,并超过叶轮的轴向推力,把转子又拉向出口侧。
同样这个过程是有惯性的,使平衡盘的轴向间隙增大,引起平衡力小于轴向推力,转子又向入口侧移动,重复上述过程。
这个过程是自动的,在泵工作时,转子始终是在某一平衡位置上这样轴向窜动着,不过窜动量极小,从外观上很难看出来。
具体来看,如上图所示。
1、平衡盘安装在多级泵的末级叶轮背后,平衡盘除轮毂(或轴套)与泵体之间有一个间隙b外,在盘与泵体之间还有一个轴向间隙b0,平衡盘的背后则是通入口管的平衡室。
末级叶轮背后的高压液体流向径向间隙b,压力从P降到P′,由于P′大于P0(平衡室压力),平衡盘两侧产生一压力差,压力P′液体将平衡盘推向后面并经间隙b0流向平衡室,这推开平衡盘的力即为平衡力,与转子的轴向推力方向相反。
多级泵平衡结构的介绍多级泵指泵轴上串装两个以上叶轮的泵,叶轮个数即为泵的级数。
它的结构比单级泵复杂。
由于叶轮前后盖板结构的不对称,在叶轮出口压力的作用下,作用在后盖板上的力大于作用到前盖板的力,这就是所谓的轴向力。
按照平衡轴向力方式分,可以分为两大类类:一,平衡结构平衡轴向力的多级泵;二、自平衡式多级泵。
第一类多级泵又分为平衡孔、平衡鼓、平衡盘及盘鼓联合结构。
平衡孔结构泄漏量比较大,而且对加工及装配的要求比较高。
平衡鼓结构大量用于输送化工介质,这种结构泄露量比较大,符合API610要求;平衡盘结构泵主要用于输送介质为水(允许含有部分杂质);盘鼓结合结构一般用于对效率要求高的地方,如电厂的锅炉给水等场合。
图一、阶段式(带口环)图二、阶段式(平衡盘结构)第二类多级泵又可以细分为蜗壳式跟阶段式,主要用于输送大量杂质的污水中。
由于结构形式决定这两种多级泵体积比较庞大,而且蜗壳式多级泵的适用范围比较窄,因此其数量极其有限。
阶段式多级泵(自平衡结构)目前第一类多级泵的后三种使用率占到整个多级泵市场的80%以上,而且这一比例逐渐的上升。
就其优点主要有以下几点:1、结构形式比较简单第一类多级泵主要零件主要有进水段,中段,导叶跟出水段。
结构简单,容易铸造。
第二类阶段式多级泵流道结构比较复杂,铸造比较困难。
2、维修方便;第一类多级泵的叶轮,导叶都是相同的。
加工、装配不需要考虑旋向及次序。
而第二类阶段式多级泵装配时需要注意叶轮、导叶的旋向。
对维修人员的要求比较高。
而且出现故障时,难排查。
3、通用性强,效率高;第一类多级泵零件主要是加工的,过流部分的光洁度比较高,流体的阻力比较小,因此效率相对于铸造流道的第二类多级泵效率高。
而且第一类多级泵的叶轮、导叶、中段具有互换性,零件的通用性比较强。
第二类多级泵具有对称结构的流道,备件需要提高一倍,无形中增加了成本。
4、重量轻,成本低第一类多级泵体积相对于第二类多级泵减少二分之一。
多级泵的平衡盘原理
平衡盘:利用轴向间隙的变化,能够自动调节过水量,完全平衡轴向力。
轴向间隙正常工作时一般是0.1~0.2mm,但是要求转子有轴向窜动量,平衡盘是易损件。
1、平衡盘装置(见图1)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的轴向间隙b2,平衡盘后面的平衡室与泵吸入口连通。
径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于多级泵吸入口的压力加平衡水管的管阻损失。
由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。
2、泵在刚启动时由于受到轴向力的作用,泵转子要向左移动,这时由于p4还没又形成平衡盘要发生瞬时研磨,但是很快p4将形成并推开平衡盘,但是由于惯性,平衡盘不会立即停在平衡位置,要靠惯性向前移动少许后才能停止。
此停止位置已经超过了平衡位置,转子要向回运动。
可见平衡盘的工作过程过程是处于运动平衡的过程,平衡是暂时的,相对的。
3、对于目前使用的多级泵平衡盘装置都是经过了多年的生产验证的,因此平衡盘的设计方面是不存在问题的,如果平衡盘装置发生故障,就需要我们从其他方面寻找原因了。
高压给水泵平衡盘工作原理:当叶轮产生的轴向力大于平衡盘上的轴向力时,泵轴向泵入口方向移动,使平衡盘和平衡圈之间的间隙bo减小,这时高压液体通过间隙bo时的阻力增大,泄漏量减小,使平衡盘和平衡圈之间的压力上升,增大了平衡盘上的平衡力,直到平衡力与轴向力相等。
bo保持不变。
反之当轴向力小于平衡力时,泵轴向右移动,间隙bo增大,高压液体泄漏量增大,平衡盘和平衡圈之间的压力下降,作用在平衡盘上的平衡力减小,直到与叶轮上产生的轴向力相等为止,保持bo在一定间隙下运行。
如下图所示:
离心泵的平衡盘装置主要由由平衡盘、平衡座和调整套(有的平衡盘和调整套为一体)组成。
平衡盘装置利用的变化,能够自动调节过水量,完全平衡轴向
力。
正常工作时一般是~0.2mm,但是要求转子有轴向窜动量,平衡盘是易损件。
?
平衡盘装置(见图)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的b2,平衡盘后面的平衡室与泵吸入口连通。
径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于多级泵吸入口的压力加平衡水管的管阻损失。
由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。