用并联电容器补偿无功功率的原理及相关方法
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
电容补偿柜的工作原理
电力电容补偿分为串联和并联两种。
串联补偿是将电容串联在高压输电线路中,以抵消线路的部分感抗,降低输电线路损耗,提高负载端的电压。
并联补偿是将电容并联在无功功率较大的负载上,以提高功率因数,减小无功电流,襄阳拓邦电气公司生产的无功功率补偿柜采用的均为并联电容器装置。
配电系统采用并联电容器进行补偿有五种方式,各种方式有不同的特点和适用范围。
一、个别补偿,电容器设在用电设备旁边,能做到就地补偿,对大容量电动机可在电容器与电动机之间加装一组自动空气开关或刀熔组合开关,但一般说投资较大,适用于经济连续运转的大容量电动机或其它大开进设备的无功补偿。
二、低压分散补偿,电容器组分散安装在各车间的配电间内,当一个车间停电检修时,全厂低母线电压和功率因数不变,适用于厂区范围很大、各产品车间较分散的用户进行无功补偿。
三、低压分组补偿,电容器组利用率比个别补偿高,能减少低压配电线路的截面和变压器的无功负荷或容量,适用于低压配电线路较长的车间和中小型工厂的无功补偿这。
这种方式对提高末端电压效果明显。
四、低压集中补偿这,电容器组利用率较高,但只能减少变压器的无功负荷或容量,适用于负荷较集中、低压线路较短、供电半径不大的用户的无功补偿。
五、10KV高压母线上的集中补偿,电容器组利用率高,能减少供电系统及线路中输送的无功负荷,但不能减少用户变压器的低压配电网络中的无功负荷,适用于大、小中型工厂的无功补偿,可与低压补偿配合使用。
变电站无功补偿及高压并联电容补偿装置设计2020-05-20 新用户796...修改一、电力系统的无功功率平衡1.1、无功功率电网中的电力负荷如电动机、变压器等都是靠电磁能量的变换而工作的,大部分属于感性负荷,建立磁场时要吸收无功,磁场消失时要交出无功。
在运行过程中需向这些设备提供相应的无功功率。
电力设备电磁能量的交换伴随着吸收和放出无功。
每交换一次,无功都要在整个电力系统中传输,这不仅要造成很多电能损失,而且往往在无功来回转换中会引起电压变化,因此设计时,应注意保持无功功率平衡。
变电站装设并联电容器是改善电压质量和降低电能损耗的有效措施。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗。
1.2、功率因数电网中的电气设备如电动机、变压器属于既有电阻又有电感的电感性负载,电感性负载的电压与电流的相量间存在相位差,相位角的余弦值即为功率因数cosφ,它是有功功率与视在功率的比值,即cosφ=P/S。
1.3、无功功率补偿的目的电网中的无功功率负荷主要有异步电动机、变压器,还有一部分输电线路。
而无功电源主要有发电机、静电电容器、同步调相机、静止补偿器。
无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。
合理配置无功功率补偿容量,以改变电力网无功潮流分布,可以减少网络中的有功功率损耗和电压损耗,从而改善用户端的电压质量。
在做电网网架规划时,根据各水平年各负荷点的有功负荷量及可靠性要求确定了变电容量的分配、线路回路数及导线截面和接线方式等等。
但是,这样还不能保证各用户端的电压达到国家和地区规定的要求。
因为做电网网架规划时是以最大负荷为依据,而实际运行时,负荷是变化的,功率因数也是变化的,通过线路的有功、无功功率都与规划计算时大不相同,因此,导致某些负荷点的电压“越限”(过高或过低)。
无功功率补偿原理及方法分析摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。
为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。
关键词:无功功率补偿补偿原理补偿方法无功功率补偿是当今电气自动化技术及电力系统研究领域所而临的一项重大课题,正在受到越来越多的关注。
电网中无功功率不平衡主要有以下两个为一面的原因:一为一而是供电部门传送的电力质量不高;另一为一而是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。
显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。
1无功补偿的原理电流在电感元件中做功时,电流滞后于电压90°;而电流在电容元件中作功时,电流超前于电压90\在同一电路中,电感电流与电容电流方向相反,互差180°o如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。
图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。
在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率, 转化为礦场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出礁场能量,电容吸收功率,以E的四分之一周期重复上述循环。
从图3可以看出并联电容器无功补偿原理。
将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。
图1电感中电流、电压和功率的变化图2电容中的电流、电压和功率的变化u Ir| ^3 |Il Czzo图3并联电容器无功补偿原理图4为并联电容器补偿向量图。
用并联电容器补偿无功功率的原理及相关方法无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率. 直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90°C.而电流在电容元件中作功时,电流滞后电压90°C.在同一电路中,电感电流与电容电流方向相反,互差180°C.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。
宙联补偿是把直接审联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少釆用。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6-10kV母线上, 用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高圧或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范圉相对小些。
但是分组补偿的效果比较明显,釆用得也较普遍。
3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。
首先,让我们先了解下什么是无功功率,以及无功功率在我们的电力系统中的作用. 无功功率:许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。
为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。
无功功率单位为乏(var)。
可见,虽然叫"无功"但是对于我们的生产生活还是非常重要的,是我们某些用电设备对电能进行转化环节的关键.但是因为它的这种必不可少,但又非能源的身份,使得无功功率处在了一个比较尴尬的地位.对用户,我们需要他.但是对于电能的销售以及管理部门,因为无功功率不参与能量转化,也就是我们说的不做功,所以就不能记以收费.但是由于用户的需要还必须对他们进行输送,管理,因而浪费财力及生产成本.因此需要一个合理的方法来解决这个问题.无功补偿:电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。
说通俗些,就是利用电容器这一容性特性来提供本来需要我们从电网中获得的无功.最后祝你工作顺利.电容补偿就是无功补偿或者功率因数补偿。
电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。
电力电容补偿也称功率因数补偿!(电压补偿,电流补偿,相位补偿的综合).1,电容在交流电路里可将电压维持在较高的平均值!(近峰值).(高充低放),可改善增加电路电压的稳定性!2,对大电流负载的突发启动给予电流补偿!电力补偿电容组可提供巨大的瞬间电流!可减少对电网的冲击!3,电路里大量的感性负载会使电网的相位产生偏差,(感性元件会使交流电流相位滞后,电压相位超前90度!).而电容在电路里的特性与电感正好相反,起补偿作用。
毕业论文题目:无功功率补偿和并联电容器专业:年级:姓名:学号:指导教师:电力工程系年月日目录摘要第一章绪论 (1)1.1无功功率的产生和影响 (1)第二章无功功率补偿 (2)2.1无功补偿的原理 (2)2.2无功补偿的意义 (3)2.3无功功率补偿装置 (4)2.4无功补偿容量的确定 (5)第三章功率因数 (6)3.1功率因数的提高 (6)3.3功率因数调整电费 (8)3.4功率因数的标准值及其适用范围 (10)第四章电力电容器 (10)4.1电容器组投入和退出运行 (10)4.2并联电容器的补偿方式 (11)4.3并联电容器的接线方式 (11)4.4电容器组的运行注意事项 (12)4.5电容器组的运行维护 (13)第五章风力发电 (13)5.1风力发电系统无功补偿的重要性分析 (13)5.2风力发电的无功补偿 (14)第六章结论与研究展望 (15)参考文献 (15)摘要:近年来,随着电网容量增加,对电网无功要求也与日增加。
无功电源与有功电源一样,是保证电力系统电能质量、降低网络损耗以及安全运行所不可缺少的部分。
电力系统中,应保持无功功率的平衡,否则,将导致系统电压不正常,严重时,将导致设备损坏,系统瓦解。
此外,网络功率因素和电压的降低,还将导致网络输送能力下降、输电损耗增大、电气设备不能充分利用等。
因此,解决好网络补充问题,有着极其重要的意义。
关键词:无功补偿;功率因数;并联电容器;风力发电;第一章绪论1.1无功功率的产生和影响在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。
电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。
用并联电容器补偿无功功率的原理及相关方法引言在电力系统中,无功功率是不可避免的。
无功功率对于电力系统的影响包括电压稳定性和输电损失等。
由于电容器具有“吞噬”无功功率的功能,因此并联电容器补偿无功功率是一种有效的方法。
本文将介绍并联电容器补偿无功功率的原理及相关方法。
无功功率的产生与影响无功功率是电力系统中不可避免的现象。
在电路中,一部分电能转化为有用功率,用于供电设备的工作,其他部分电能则被转化为无功功率,用于维持电路的电磁场。
一般来说,无功功率对电路性能的影响包括以下几个方面:电压波动电压波动是无功功率对电路性能的主要影响之一。
当无功功率过多时,会导致电路中电压的不稳定。
此时,电路中的各种设备会受到影响,其工作效率将大大降低。
特别是在对质量要求较高的行业中,电压波动将对设备带来严重的危害。
输电损失由于无功功率产生的电磁场的存在,线路中的电流将变得更大。
这意味着更多的电能将被转化为热量和其他不需要的形式的能量。
如果无功功率过多,将导致输电损失增加,进而降低电力系统的效率。
并联电容器补偿无功功率的原理并联电容器可以通过吸收无功功率的方式来调整电路的无功功率。
在电路中引入并联电容器后,电容器将在电流周期中积累电荷,然后在下一个周期中释放这些电荷。
换句话说,电容器通过在不同的周期中增加或减少电流的流动来调整电路的无功功率。
并联电容器补偿无功功率的原理可通过以下公式来描述:Qc = Qp * tan(acos(Pf))其中,Qc代表电容器的无功补偿容量,Qp代表电路的总无功功率,Pf为功率因数的余弦值。
并联电容器补偿无功功率的方法为了高效地补偿无功功率,需要根据实际情况选择合适的并联电容器进行安装。
并联电容器的选择通常基于电路的功率因素和负载特性。
以下是几种应用广泛的并联电容器安装方法:固定电容器固定电容器是一种直接在电路中并联安装的电容器。
这种方法对于负载电流比较稳定、功率因数波动不大的电路比较适用。
电容并联和串联无功补偿
电容并联和串联无功补偿是两种常见的无功补偿方式,它们在电力系统中的应用场景和工作原理有所不同。
电容并联无功补偿:这种方式是将电容器直接并联在被补偿设备的同一电路上。
电容器为用电设备提供所需无功电流,从而减轻电力线路、变压器和发电机的负担。
并联电容器是目前电网中应用最为广泛的一种无功补偿方式,尤其在10KV及以下电压等级的供电系统中,几乎所有的无功补偿装置均属于并联电容器补偿。
其主要作用是减小视在电流,提高功率因数,降低损耗,从而提高电力设备的效率。
对用户侧而言,补偿无功还有提高电压、降低线损、减少电费支出、节约能源、增加电网有功容量传输、提高设备的使用效率等作用。
电容串联无功补偿:这种方式是把电容器直接串联到高压输电线路上,主要作用是通过在电网输电侧直接治理进而达到改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗的作用。
由于串联电容器只能应用在高压系统中(在低压系统中由于电流太大无法应用),因此其一般的应用场所是高压远距离输电线路上,用户侧的应用较少。
串联电容无功补偿的原理是利用电容器的容性阻抗抵消线路电感的感性阻抗,从而缩短电气距离,提高线路的输电容量和稳定性。
总的来说,电容并联和串联无功补偿都是为了提高电力系统
的功率因数、降低损耗、提高设备的效率等目的而采取的措施。
具体选择哪种方式需要根据实际情况进行综合考虑。
用并联电容器补偿无功功率的原理及相关方法
无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.
集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。
串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。
但是分组补偿的效果比较明显,采用得也较普遍。
3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。
这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。