拉萨市2019年八年级上学期期末数学试卷(II)卷
- 格式:doc
- 大小:184.50 KB
- 文档页数:6
拉萨市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列结论中错误的是()A . 四边形的内角和等于它的外角和B . 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0)C . 方程x2+x-2=0的两根之积是-2D . 函数y= 的自变量x的取值范围是x>32. (2分)(2017·越秀模拟) 当ab>0时,y=ax2与y=ax+b的图象大致是()A .B .C .D .3. (2分)已知下列语句:①天是蓝的;②两点之间线段的长度,叫做这两点间的距离;③是无理数;④对顶角相等,其中是定义的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2020八下·上饶月考) 如图,在 ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A . 梯形B . 矩形C . 菱形D . 正方形5. (2分) (2019八上·建邺期末) 如图,已知AC⊥BD,垂足为O,AO = CO,AB = CD,则可得到△AOB≌△COD,理由是()A . HLB . SASC . ASAD . SSS6. (2分) (2019八下·辉期末) 一次函数的图象如图所示,则不等式的解集是()A .B .C .D .7. (2分)如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P,能表示这个一次函数图象的方程的是()A .B .C .D .8. (2分)(2020·黄石模拟) 在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共5题;共5分)9. (1分) (2019七下·硚口期末) 点P(-2,-5)到x轴的距离是________.10. (1分) (2016八上·江苏期末) 元旦期间,胡老师开车从扬州到相距150千米的老家探亲,如果油箱里剩余油量 y(升)与行驶里程 x(千米)之间是一次函数关系,其图象如图所示,那么胡老师到达老家时,油箱里剩余油量是________升.11. (1分) (2020七下·江阴期中) 一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是________.12. (1分)(2020·青白江模拟) 如图,在△ABC中,按以下步骤作图:①分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN ,分别交边AB , BC于点D和E ,连接CD .若∠BCA =90°,AB=8,则CD的长为________.13. (1分) (2019八下·广安期中) 如图,在四边形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠DAB的度数是________°.三、解答题 (共7题;共67分)14. (2分)如图,在等腰直角三角形Rt△ABC和Rt△ECD中,Rt△ACB的顶点A在Rt△ECD的斜边ED上,求证:AE2+AD2=2AC2 .(提示:添加辅助线连接BD)15. (15分)最短路径问题:例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长。
西藏拉萨市名校2018-2019学年八上数学期末考试试题一、选择题1.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所时间相同,设原计划平均每天生产x 机器,根据题意,下面所列方程正确的是( )A. B. C. D.2.下列运算正确的是( )A .a 4+a 5=a 9B .a 4∙a 2=a 8C .a 3÷a 3=0D .(﹣a 2 )3=﹣a 6 3.某口琴社团为练习口琴,第一次用1200元买了若干把口琴,第二次在同一家商店用2200元买同一款的口琴,这次商家每把口琴优惠5元,结果比第一次多买了20把.求第一次每把口琴的售价为多少元?若设第一次买的口琴为每把x 元,列方程正确的是( )A .12002200205x x -=- B .22001200205x x -=- C .12002200205x x -=-D .22001200205x x -=- 4.已知方程233x m x x -=-- 无解,则m 的值为( ) A .0 B .3C .6D .2 5.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( )A.5,3B.5,−3C.−5,3D.−5, −3 6.将202198⨯变形正确的是( )A .22004-B .22002-C .220022004+⨯+D .220022004-⨯+7.如图,是的高,,则度数是( )A. B. C. D.8.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分CE ;④∠PCF =∠CPF .其中,正确的有( )A.1个B.2个C.3个D.4个9.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC10.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形 11.如图,在四边形ABCD 中,AB ∥CD ,点E ,F 分别为AC ,BD 的中点,若AB =7,CD =3,则EF 的长是( )A .4B .3C .2D .1 12.已知三角形三边长分别为2,x ,9,若x 为正整数,则这样的三角形个数为( ) A .3B .5C .7D .11 13.如图,D ,E ,F 分别是边BC ,AD ,AC 上的中点,若S 阴影的面积为3,则ABC ∆的面积是( )A .5B .6C .7D .814.如图,在Rt ABC △中,C 90∠=,ABC ∠和BAC ∠的平分线交于一点O ,ABO 30∠=,则AOB ∠的度数是( )A .100B .125C .135D .13015.将一副直角三角板如图放置,使GM 与AB 在同一直线上,其中点M 在AB 的中点处,MN 与AC 交于点E ,∠BAC=30°,若AC=9cm ,则EM 的长为( )A .2.5cmB .3cmC .4cmD .4.5cm二、填空题 16.人体中红细胞的直径约为0.00007m ,数据 0.00007 用科学记数法表示为__________.17.如图,如果甲图中的阴影面积为S 1,乙图中的阴影面积为S 2,那么12S S =________.(用含a 、b 的代数式表示)【答案】a b a+ 18.如图,在△ABC 中,CD =DE ,AC =AE ,∠DEB =110°,则∠C =_____.19.如图,直线 AB ,CD 相交于点O ,若∠EOC :∠EOD=4 :5 ,OA 平分∠EOC ,则∠BOE=___________.20.在平面直角坐标系中,点(1,2)P -关于x 轴对称的点的坐标是___.三、解答题21.计算: (1)20192011()(3.14)2π----- (2)()3222()2ab a b ab a b a -÷++⋅ 22.因式分解:(1)x 2-4(2)a 3b-2a 2b+ab23.如图,已知△ABC ,AC <BC ,(1)尺规作图:作△ABC 的边BC 上的高AD(不写作法,保留作图痕迹).(2)试用尺规作图的方法在线段BC 上确定一点P ,使PA+PC =BC ,并说明理由.24.如图,已知△ABC .利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC 的平分线BD 、交AC 于点D ;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.25.若∠A与∠B的两边分别垂直,请判断这两个角的数量关系.(1)如图①,∠A与∠B的数量关系是____,如图②,∠A与∠B的数量关系是____.(2)请从图①或图②中选择一种情况说明理由。
拉萨市2019年八年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各式的计算中不正确的个数是().①100÷10-1=10;②;③(a-b)2=a2-b2;④,A.4B.3C.2D.12 . 平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm3 . 如图,AD平分∠BAC,AB=AC,则图中全等三角形的对数是()A.2对B.3对C.4对D.5对4 . 下列图形是中心对称图形,但不是轴对称图形的是()A.B.C.D.5 . 如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为()A.8.5B.15C.17D.346 . 七边形的内角和是()A.720ºB.900ºC.1080ºD.1260º7 . 如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL8 . 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A.4B.5C.6D.79 . 如图,已知,,于点,于点,若,则长度是()A.B.C.3D.210 . 下列代数运算正确的是()A.x•x6=x6B.(2x)3=8x3C.(x+2)2=x2+4D.(x2)3=x811 . 若a+b=3,,则ab等于()A.2B.1C.﹣2D.﹣112 . 函数y=中自变量x的取值范围是()A.x<3B.x≥3C.x≤3D.x≠3二、填空题13 . 若(3x2﹣2x+1)(x﹣b)的积中不含x的一次项,则b的值为_____.14 . 如图,在中,、的垂直平分线、相交于点,若等于76°,则____________.15 . 因式分解:______.16 . 如果某个正n边形的每一个外角都等于其相邻内角的,则n=_____.17 . 计算:_____三、解答题18 . 化简:÷;19 . 利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=EC.20 . .21 . 作图题.(1)画出四边形ABCD关于直线的成轴对称的图像四边形A1B1C1D1.(2)画出四边形ABCD绕点O逆时针旋转90°后得到的图像四边形A2B2C2D2..22 . △ABC是等腰直角三角形,点E为线段AC上一点(E点不和A、C两点重合),连接BE并延长BE,在BE 的延长线上找一点D,使AD⊥CD,点F为线段AD上一点(F点不和A、D两点重合),连接CF,交BD于点G(1)如图1,若AB=,CD=1,F是线段AD的中点,求CF;(2)如图2,若点E是线段AC中点,CF⊥BD,求证:CF+DE=BE.23 . 某县城要铺一条自来水管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天多铺10m,且甲工程队铺设350m所用的天数与乙工程队铺设250m所用的天数相同甲、乙两个工程队每天各能铺设多少米管道?24 . 先阅读下面的材料,再解决问题:要把多项式因式分解,可以先把它的前两项分成一组,并提出;把它的后两项分成一组,并提出,从而得到.这时,由于,又有因式,于是可提公因式,从而得到.因此有.这种因式分解的方法叫做分组分解法.在三角形中,若任意两条边的差均为0,则这个三角形是等边三角形;若只有两条边的差为0,则这个三角形是等腰三角形;若有两条边的平方和与第三边的平方的差为0,则这个三角形是直角三角形。
拉萨市重点中学市联考2019-2020学年数学八上期末模拟调研试卷(2)一、选择题1.上复习课时李老师叫小聪举出一些分式的例子,他举出了: 211133,22x xy x x y π++,,,,1m,其中正确的个数为( ).A .2B .3C .4D .5 2.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为( ) A .3.7x10-5B .3.7x10-6C .3.7x10-7D .37x10-5 3.下列各式中,自左向右变形属于分解因式的是( ) A .x 2+2x+1=x(x+2)+1B .﹣m 2+n 2=(m ﹣n)(m+n)C .﹣(2a ﹣3b)2=﹣4a 2+12ab ﹣9b 2D .p 4﹣1=(p 2+1)(p+1)(p ﹣1) 4.要使分式11x -有意义,则 x 的取值范围是( ). A .x≠±1 B .x≠-1 C .x≠0 D .x≠15.下列各个式子运算的结果是58a 的是( )A .232a 6a +B .()322aC .728a 8a -D .2a 2⋅4a 36.下列运算正确的是( )A.x 3+x 2=x 5B.x 3-x 2=xC.x 3x 2=x 6D.x 3÷x 2= x7.在△ABC 中,∠A =40°,点D 在BC 边上(不与C 、D 点重合),点P 、点Q 分别是AC 、AB 边上的动点,当△DPQ 的周长最小时,则∠PDQ 的度数为( )A .140°B .120°C .100°D .70°8.在下列图案中,不是..轴对称图形的是( )A .B .C .D .9.下列图形中,既是中心对称图形也是轴对称图形的是A .B .C .D .10.如图,△ABC 中,点D 是边AB 上一点,点E 是边AC 的中点,过点C 作CF ∥AB 与DE 的延长线相交于点F .下列结论不一定成立的是( )A. B. C. D.11.如图,AB DB ABD CBE =∠=∠,,①BE BC = ,②D A ∠=∠ ,③C E ∠=∠ ,④AC DE = ,能使ABC DBE ∆≅∆的条件有( )个.A .1B .2C .3D .412.如图,∠BAC =∠ACD =90°,∠ABC =∠ADC ,CE ⊥AD ,且BE 平分∠ABC ,则下列结论:①AD =BC ;②∠ACE =∠ABC ;③∠ECD +∠EBC =∠BEC ;④∠CEF =∠CFE .其中正的是( )A.①②B.①③④C.①②④D.①②③④13.现有两根木棒,它们的长分别是20cm 和30cm ,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .10cm 的木棒B .40cm 的木棒C .50cm 的木棒D .60cm 的木棒 14.如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,图中哪两个角不是..互为余角 ( )A .∠AOD 和∠BOEB .∠AOD 和∠COEC .∠DOC 和∠COED .∠AOC 和∠BOC 15.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .2B .3C .4D .5二、填空题16.分式2213x y 、314xy z-的最简公分母是______. 17.分解因式:22a 4a -=___.18.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________19.如图,正方形MNOK 和正六边形ABCDEF 的边长相等,边OK 与边AB 重合.将正方形在正六边形内绕点B 顺时针旋转,使边KM 与边BC 重合,则KM 旋转的度数是______ °.20.如图,点D ,P 在△ABC 的边BC 上,DE ,PF 分别垂直平分AB ,AC ,连接AD ,AP ,若∠DAP=20°,则∠BAC= _____°.三、解答题21.计算下列各题:(1);(2)22.阅读理解先阅读下面的内容,再解决问题例题:若2222690m mn n n ++-+=,求m 和n 的值.解:∵2222690m mn n n ++-+=∴2222690m mn n n n +++-+=∴22()(3)0m n n ++-=∴0m n +=,30n -=∴3,3m n =-=问题:(1)2222440x y xy y +-++=,求y x 的值.(2)已知,,a b c 是ABC ∆的三边长,满足2212852a b a b +=+-,求c 的范围.23.如图,在△ABC 中,AB =AD ,CB =CE .(1)当∠ABC =90°时(如图①),∠EBD = °;(2)当∠ABC =n°(n≠90)时(如图②),求∠EBD 的度数(用含 n 的式子表示).24.如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于D ,过B 作BE ED ⊥于E .(1)求证:BEC CDA ∆≅∆.(2)已知直线14:43l y x =+与y 轴交于A 点,将直线1l 绕着A 点顺时针旋转45°至2l ,如图2,求2l的函数解析式.25.已知:AOD 156∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当OB 绕点O 在AOD ∠内旋转时,则MON ∠的大小为______;()2如图2,若BOC 24∠=,OM 平分AOC ∠,ON 平分BOD.∠当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小; ()3在()2的条件下,若AOB 30∠=,当BOC ∠在AOD ∠内绕着点O 以2/秒的速度逆时针旋转t 秒时,AOM ∠和DON ∠中的一个角的度数恰好是另一个角的度数的两倍,求t 的值【参考答案】***一、选择题16..17.()2a a 2-18.全等三角形判定(斜边和直角边对应相等)19.20.100三、解答题21.(1);(2). 22.(1)14y x =;(2)210c <<. 23.(1)45;(2) ∠DBE=90°-12n°. 【解析】【分析】(1)根据等腰三角形的性质,即可得到∠ABD=∠ADB=12(180°-∠A ),∠CBE=∠CEB=12(180°-∠C ),再根据三角形内角和定理,即可得到∠DBE 的度数;(2)运用(1)中的方法进行计算,即可得到∠EBD 的度数.【详解】解:(1)∵AB=AD,CB=CE,∴∠ABD=∠ADB=12(180°-∠A),∠CBE=∠CEB=12(180°-∠C),∵∠ABC=90°,∴∠A+∠C=90°,∴△BDE中,∠DBE=180°-(∠ADB+∠CEB)=180°-12(180°-∠A)-12(180°-∠C)=12(∠A+∠C)=12×90°=45°,故答案为:45.(2)∵AB=AD,CB=CE,∴∠ABD=∠ADB=12(180°-∠A),∠CBE=∠CEB=12(180°-∠C),∵∠ABC=n°,∴∠A+∠C=180°-n°,∴△BDE中,∠DBE=180°-(∠ADB+∠CEB)=180°-12(180°-∠A)-12(180°-∠C)=12(∠A+∠C)=12×(180°-n°)=90°-12n°.【点睛】本题考查了等腰三角形的性质,熟知等腰三角形的两个底角相等是解题的关键.24.(1)见解析;(2)y=17x+4;【解析】【分析】(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知BEC CDA∆≅∆;(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,根据∠BAC=45°可知△ABC为等腰Rt△,由(1)可知△CBD≌△BAO,由全等三角形的性质得出C点坐标,利用待定系数法求出直线l2的函数解析式即可;【详解】(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°−90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEC CDA ∆≅∆ (AAS);(2)过点B 作BC ⊥AB 于点B,交l 2于点C,过C 作CD ⊥x 轴于D,∵∠BAC=45°,∴△ABC 为等腰Rt △,由(1)可知:△CBD ≌△BAO ,∴BD=AO ,CD=OB ,∵直线l 1:y=43x+4, ∴A(0,4),B(−3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(−7,3),设l 2的解析式为y=kx+b(k≠0),∴374k b b=-+⎧⎨=⎩ , ∴174k b ⎧=⎪⎨⎪=⎩ ,∴l 2的解析式:y=17x+4; 【点睛】此题考查一次函数综合题,等腰直角三角形,全等三角形的判定与性质,解题关键在于作辅助线和掌握判定定理.25.(1)78°;(2)∠MON=66°;(3)当t=3或t=33时,∠AOM 和∠DON 中的一个角的度数恰好是另一个角的度数的两倍.。
拉萨市2019-2020学年数学八上期末模拟调研测试题(2)一、选择题1.已知a 2=b 3≠0,则代数式()225a 2b ˙a 2b a 4b ---的值是( ) A .12- B .45 C .45- D .122.数值0.0000105用科学记数法表示为( )A .51.0510-⨯B .51.0510⨯C .51.0510-⨯D .710510-⨯ 3.若102m =,103n =,则32110m n +-的值为( )A .7B .7. 1C .7. 2D .7. 4 4.如果a 2m -1·a m +2=a 7,则m 的值是( ).A .2B .3C .4D .55.已知2m n +=,2nm =-,则()()11m n ++的值为( )A.3-B.1-C.1D.5 6.等腰直角三角形的底边长为5cm ,则它的面积是( ) A .25cm 2B .12.5cm 2C .10cm 2D .6.25cm 2 7.已知等腰三角形的一个角为72度,则其顶角为( )A .36°B .72C .48D .36°或72° 8.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=32°,则∠BED 的度数是( )A .32°B .16°C .49°D .64°9.如图△ABC 中,AB 、BC 垂直平分线相交于点 O ,∠BAC =70°,则∠BOC 度数为( )A.140°B.130°C.125°D.110°10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,詹姆斯在探究筝形的性质时,得到如下结论:AC BD ⊥①;12AO CO AC ==②;ABD ③≌CBD ; ④四边形ABCD 的面积12AC BD =⨯其中正确的结论有( )A.1个B.2个C.3个D.4个 11.如图,△ABC ≌△ADE ,点A ,B ,E 在同一直线上,∠B =20°,∠BAD =50°,则∠C 的度数为( )A.20°B.30°C.40°D.50°12.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°13.已知:如图,在△ABC 中,∠A =60°,∠C =70°,点D 、E 分别在AB 和AC 上,且DE ∥BC .则∠ADE 的度数是( )A .40°B .50°C .60°D .70°14.已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD=3∠DOE ,∠COE=m ︒,则∠BOE 的度数是A.m ︒B.1802m ︒-︒C.3604m ︒-︒D.260m ︒-︒15.若xy =x+y≠0,则分式11yx +=( ) A .1xy B .x+yC .1D .﹣1 二、填空题16.当x =__________时,分式15x -无意义。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列几组数,不能作为直角三角形的三边长的是( )A .8,15,17B .4,6,8C .3,4,5D .6,8,10 【答案】B【分析】利用勾股定理的逆定理即可判断.【详解】A .22281517+= ,能组成直角三角形,故该选项不符合题意;B .222468+≠,不能组成直角三角形,故该选项符合题意;C .222345+=,能组成直角三角形,故该选项不符合题意;D .2226810+=,能组成直角三角形,故该选项不符合题意.故选:B .【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.2.在平面直角坐标系中,直线1:3l y x =+与直线2:l y mx n =+交与点()2,A b -,则关于x ,y 的方程组3y x y mx n =+⎧⎨=+⎩的解为( )‘A .21x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩ 【答案】A【分析】直接根据图像及一次函数与二元一次方程组的关系进行求解即可.【详解】解:由直线1:3l y x =+与直线2:l y mx n =+交与点()2,A b -,可得:231b =-+=,所以()2,1A -;∴由图像可得:关于x ,y 的方程组3y x y mx n =+⎧⎨=+⎩的解为21x y =-⎧⎨=⎩; 故选A .【点睛】本题主要考查一次函数与二元一次方程组,关键是根据题意得到一次函数与二元一次方程组的关系即可.3.下列代数式中,属于分式的是( )A .5xB .3xyC .3xD .1x + 【答案】C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【详解】根据分式的定义A .是整式,答案错误;B .是整式,答案错误;C .是分式,答案正确;D .是根式,答案错误;故选C .【点睛】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式. 4.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=,【答案】D【解析】解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是20{210x y x y +-=--=,故选D . 5.若分式2x x -的值为0,则( ) A .0x =B .1x =C .2x =D .2x =- 【答案】C【分析】根据分式的值为0的条件:分子=0且分母≠0,即可求出x .【详解】解:∵分式2x x-的值为0∴20xx-=⎧⎨≠⎩解得: 2x=故选C.【点睛】此题考查的是分式的值为0的条件,掌握分式的值为0的条件:分子=0且分母≠0是解决此题的关键.6.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0;②a*b=b*a;③a*(b+c)=a*b+a*c;④a*b=(﹣a)*(﹣b).正确的有()个.A.1 B.2 C.3 D.4【答案】B【分析】根据新定义的运算的意义,将其转化为常见的运算,根据常见的运算的性质逐个做出判断.【详解】解:∵a*b=0,a*b=(a+b)2,∴(a+b)2=0,即:a+b=0,∴a、b互为相反数,因此①不符合题意,a*b=(a+b)2,b*a=(b+a)2,因此②符合题意,a*(b+c)=(a+b+c)2,a*b+a*c=(a+b)2+(a+c)2,故③不符合题意,∵a*b=(a+b)2,(-a)*(-b)=(-a-b)2,∵(a+b)2=(-a-b)2,∴a*b=(-a)*(-b),故④符合题意,因此正确的个数有2个,故选:B.【点睛】本题考查了新定义运算,完全平方公式的特点和应用,新定义一种运算关键是转化为常见的运算进行计算即可.7.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a≥1B.a>1 C.a≤-1 D.a<-1 【答案】A【解析】{122x ax x->->-①②,由①得,x<1,由②得,x>a ,∵此不等式组无解,∴a ⩾1.故选A.点睛:此题主要考查了已知不等式的解集,求不等式中另一未知数的问题.可以先将另一未知数当做已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.8.下列语句是命题的是( )(1)两点之间,线段最短.(2)如果20x >,那么0x >吗?(3)如果两个角的和是90度,那么这两个角互余.(4)过直线外一点作已知直线的垂线.A .(1)(2)B .(3)(4)C .(1)(3)D .(2)(4)【答案】C【分析】根据命题的定义对四句话进行判断即可.【详解】(1)两点之间,线段最短,它是命题;(2)如果20x >,那么0x >吗?不是命题;(3)如果两个角的和是90度,那么这两个角互余,它是命题;(4)过直线外一点作已知直线的垂线,是作法不是命题.故选C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.9.如图,已知142ABE ∠=︒,72C ∠=︒,则A ∠=( )A .75°B .70°C .65°D .60°【答案】B 【分析】根据三角形外角的性质可得∠A=142°-72°,计算即可.【详解】解:由三角形外角的性质可得∠A+72°=142°,∴∠A=142°-72°=70°,故选:B .【点睛】本题考查三角形外角的性质,三角形外角等于与它不相邻的两个内角的和.10.下列四个式子中是分式的是( )A .3xB .253a -C .107D .m n m n-+ 【答案】D【分析】根据分母中含有字母的是分式来进行判断即可. 【详解】3x ,253a -,107分母中不含字母,不是分式; m n m n-+分母中含有字母,是分式; 故选:D .【点睛】本题主要考查分式,掌握分式的概念是解题的关键,判断一个代数式是分式还是整式的方法:分母中含有字母的是分式,分母中不含字母的是整式.二、填空题11.在正整数中,2111111222⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 2111111333⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 2111111444⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭利用上述规律,计算2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭_____. 【答案】10102019【分析】先依据题例用平方差公式展开,再利用乘法分配律交换位置后,相乘进行约分计算即可.【详解】解:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ =11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019+-+-+-+- =11111111(1)(1)(1)(1)(1)(1)(1)(1)23420192342019++++⨯----=3452020123201823420192342019⨯⨯⨯⨯⨯⨯⨯⨯⨯ =2020122019⨯ =10102019, 故答案为:10102019. 【点睛】 本题考查运用因式分解对有理数进行简便运算.熟练掌握平方差公式是解题关键.12.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.【答案】213【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=213(小时). 故答案为:213. 【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.13.如图,Rt ABC 中,90C ∠︒=,AD 为BAC ∠的角平分线,与BC 相交于点D ,若3CD =,10AB =,则ABD △的面积是_____.【答案】1【分析】作DE ⊥AB 于E ,根据角平分线的性质求出DE ,根据三角形的面积公式计算,得到答案.【详解】作DE ⊥AB 于E .∵AD 为∠BAC 的角平分线,∠C=90°,DE ⊥AB ,∴DE=DC=3,∴△ABD 的面积12=⨯AB ×DE 12=⨯10×3=1.故答案为:1.【点睛】本题考查了角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标特征.15.如图所示,底边BC 为23,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为__________.【答案】2+23【解析】过A 作AF ⊥BC 于F ,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE ,即可得到结论.【详解】解:过A 作AF ⊥BC 于F ,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE 垂直平分AB ,∴BE=AE ,∴3∴△ACE 的周长3故答案为2+23.【点睛】本题考查了线段垂直平分线性质、三角形内角和定理、等腰三角形的性质、含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.16.如图,在ABC 中,90,ACB BE ∠=︒平分,ABC DE AB ∠⊥于点D ,如果53AB cm BC cm ==,,那么AE DE +等于_____________cm .【答案】4.【分析】由角平分线的性质可证明CE=DE ,可得AE+DE=AC ,再由勾股定理求出AC 的长即可. 【详解】∵90,ACB BE ∠=︒平分,ABC DE AB ∠⊥于点D ,∴DE=CE ,∴AE+DE=AE+EC=AC ,在Rt △ABC 中,53AB cm BC cm ==,,∴2222534AB BC -=-=,∴AE+DE=4,故答案为:4.【点睛】本题主要考查了角平分线的性质以及勾股定理,熟练掌握蜀道难突然发觉解答此题的关键.17.在平面直角坐标系中,点(-1,2)关于y 轴对称的点的坐标是 .【答案】(1,2)【解析】试题解析:由点(-1,2)关于y 轴对称的点的坐标是(1,2).考点:关于x 轴、y 轴对称的点的坐标.三、解答题18.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t (分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.【答案】(1)2(2)0.5(3)1【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:2110.56+=1(分钟).故答案为:1.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.19.在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边ABC∆的BC,CA边上,且BM CN=,AM,BN交于点Q.求证:60BQM∠=︒.同学们利用有关知识完成了解答后,老师又提出了下列问题,请你给出答案并说明理由.(1)若将题中“BM CN =”与“60BQM ∠=︒”的位置交换,得到的是否仍是真命题?(2)若将题中的点M ,N 分别移动到BC ,CA 的延长线上,是否仍能得到60BQM ∠=︒?【答案】(1)真命题;(2)能,见解析【分析】(1)因为∠BQM=60°,所以∠QBA+∠BAM=60°,又因为∠QBA+∠CBN=60°,所以∠BAM=∠CBN ,已知∠B=∠C ,AB=AC ,则ASA 可判定△ABM ≌△BCN ,即BM=CN ;(2)画出图形,易证CM=AN ,和∠BAN=∠ACM=120°,即可证明△BAN ≌△ACM ,可得∠CAM=∠ABN ,即可解题..【详解】解:(1)是真命题.证明:∵∠BQM=∠ABM=60°,∠BAM+∠ABM+∠AMB=180°,∠CBN+∠AMB+∠BQM=180°,∴∠CBN=∠BAM ,∵在△ABM 和△BCN 中,60BAM CBN AB BCABM C ⎧⎪⎨⎪∠∠∠∠︒⎩====, ∴△ABM ≌△BCN ,(ASA )∴BM=CN ;(2)能得到,理由如下∵∠BQM =60°,∴∠QBA+∠BAM =60°.∵∠QBA+∠CBN =60°,∴∠BAM =∠CBN .在△ABM 和△BCN 中,ABM BCN AB AC BAM CBN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABM ≌△BCN (ASA ).∴BM =CN .∵AB =AC ,∴∠ACM =∠BAN =180°-60°=120°,在△BAN 和△ACM 中,BA AC BAN ACM AN CM =⎧⎪∠=∠⎨⎪=⎩,∴△BAN ≌△ACM (SAS ).∴∠NBA =∠MAC ,∴∠BQM =∠BNA+∠NAQ=180°-∠NCB -(∠CBN -∠NAQ )=180°-60°-60°=60°.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证△BAN≌△ACM 是解题的关键.20.中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”.如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近,为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距40海里的船队首(O点)尾(A点)前去拦截,8分钟后同时到达B 点将可疑快艇驱离.己知甲直升机每小时飞行180海里,航向为北偏东25,乙直升机的航向为北偏西65,求乙直升机的飞行速度(单位:海里/小时).【答案】乙直升机的飞行速度为每小时飞行240海里.【分析】根据已知条件得到∠ABO=25°+65°=90°,根据勾股定理即可得到结论.【详解】∵甲直升机航向为北偏东25°,乙直升机的航向为北偏西65°,∴∠ABO=25°+65°=90°,∵OA=40,OB=180×8=24(海里),60∴22-=32(海里),4024-22OA OB∵32÷8=240(海里/小时),60答:乙直升机的飞行速度为每小时飞行240海里.【点睛】本题考查了解直角三角形-方向角问题,正确的理解题意是解题的关键.OC OD之间的地带,现要建一座货物中转站P,若要求中21.如图,工厂A和工厂B,位于两条公路,OC OD的距离相等,且到工厂A和工厂B的距离也相等,请用尺规作出点P的位转站P到两条公路,置.(不要求写做法,只保留作图痕迹)【答案】见解析【分析】结合角平分线的性质及作法以及线段垂直平分线的性质及作法进一步分析画图即可.【详解】如图所示,点P即为所求:【点睛】本题主要考查了尺规作图的实际应用,熟练掌握相关方法是解题关键.22.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【答案】见解析AP BC于P,根据等腰三角形的三线合一得出BP=PC,DP=PE,进而根据【分析】如图,过点A作⊥等式的性质,由等量减去等量差相等得出BD=CE.AP BC于P.【详解】如图,过点A作⊥=,∵AB AC=;∴BP PC∵AD AE =,∴DP PE =,∴BP DP PC PE -=-,∴BD=CE .【点睛】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合. 23.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,3AD =,2DE =,求BE 的长.【答案】1【分析】根据等角的余角相等可得∠DCA =∠EBC ,然后利用AAS 证出△DCA ≌△EBC ,从而得出DC=EB ,AD=CE=3,即可求出BE 的长.【详解】解:∵AD CE ⊥,BE CE ⊥,90ACB ∠=︒∴∠ADC=∠CEB=90ACB ∠=︒∴∠DCA +∠ECB=90°,∠EBC +∠ECB=90°∴∠DCA =∠EBC在△DCA 和△EBC 中ADC CEB DCA EBC AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EBC∴DC=EB ,AD=CE=3∵2DE =∴DC=CE -DE=1∴BE =1【点睛】此题考查的是全等三角形的判定及性质,掌握利用AAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.24.如图,在△ABC 中,∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 相交于点F .若AE 、CD 分别为△ABC 的角平分线.(1)求∠AFC的度数;(2)若AD=3,CE=2,求AC的长.【答案】(1)120°;(2)1【分析】(1)根据角平分线的定义、三角形内角和定理求解;(2)在AC上截取AG=AD=3,连接FG,证明△ADF≌△AGF, △CGF≌△CEF,根据全等三角形性质解答.【详解】解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=1 2∠BAC,∠FCA=12∠BCA .∵∠B=60°,∴∠BAC+∠BCA=120°.∴∠AFC=180﹣∠FAC﹣∠FCA=180﹣12(∠BAC+∠BCA)=120°(2)如图,在AC上截取AG=AD=3,连接FG,∵AE、CD分别为△ABC的角平分线,∴∠FAG=∠FAD,∠FCG=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°.在△ADF和△AGF中,AD AGDAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△AGF(SAS).∴∠AFD=∠AFG=60°,∠GFC=∠CFE=60°.在△CGF和△CEF中,GFC EFCCF CFGCF ECF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CGF≌△CEF(ASA).∴CG=CE=2,∴AC=AG+ CG = 1.【点睛】本题主要考查全等三角形的判定方法(“SAS”、“ASA”)和全等三角形的性质、角平分线的性质及三角形内角和定理,熟练掌握这些知识点是解题的关键.25.如图,已知M是AB的中点,CM=DM,∠1=∠1.(1)求证:△AMC≌△BMD.(1)若∠1=50°,∠C=45°,求∠B的度数.【答案】(1)详见解析;(1)85°.【解析】(1)根据SAS证明即可;(1)由三角形内角和定理求得∠A,在根据全等三角形对应角相等,即可求得∠B的度数.【详解】(1)∵M是AB的中点,∴AM=BM,∵CM=DM,∠1=∠1∴△AMC≌△BMD(SAS)(1)∵△AMC≌△BMD,∴∠A=∠B,在△ACM中,∠A+∠1+∠C=180°,∴∠A=85°,∴∠B=85° .八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC 中,90C ∠=︒,DE AB ⊥于点E ,CD DE =,26CBD ∠=︒,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒【答案】D 【分析】根据角平分线的判定可知,BD 平分∠ABC ,根据已知条件可求出∠A 的度数.【详解】解:∵90C ∠=︒,DE AB ⊥,且CD DE =∴BD 是ABC ∠的角平分线,∴26ABD CBD ∠=∠=︒,∴22652ABC ∠=⨯︒=︒,∴在Rt ABC 中,905238A ∠=︒-︒=︒,故答案选D .【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键. 2.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( ) A .40人B .30人C .20人D .10人 【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.3()()222112a a -+- ) A .0B .42a -C .24a -D .24a -或42a - 【答案】D 2a a =的性质进行化简.原式=2112a a -+-,当1a -1≥0时,原式=1a -1+1a -1=4a -1;当1a -1≤0时,原式=1-1a+1-1a=1-4a .综合以上情况可得:原式=1-4a 或4a -1. 考点:二次根式的性质4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92 95 95 92方差 3.6 3.6 7.4 8.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.下列图形中AD 是三角形ABC 的高线的是( )A .B .C .D .【答案】D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC 的顶点A 作AD ⊥BC 于点D ,点A 与点D 之间的线段叫做三角形的高线, ∴D 符合题意,故选D .【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.8.已知M =m ﹣4,N =m 2﹣3m ,则M 与N 的大小关系为( )A .M >NB .M =NC .M≤ND .M <N【答案】C【分析】利用完全平方公式把N ﹣M 变形,根据偶次方的非负性解答.【详解】解:N ﹣M =(m 2﹣3m )﹣(m ﹣4)=m 2﹣3m ﹣m+4=m 2﹣4m+4=(m ﹣2)2≥0, ∴N ﹣M≥0,即M≤N ,故选:C .【点睛】本题考查的是因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键.9.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠D .AD BC =,BD AC =【答案】B 【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意; C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选择:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.10.已知一组数据为2,3,5,7,8,则这组数据的方差为( )A .3B .4.5C .5.2D .6 【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5, 则方差=15 [(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C .【点睛】此题考查方差,掌握方差公式是解题关键.二、填空题11.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠,AC CD AB DB ∴=, 74BC BD =, 34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.12.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.【答案】x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.13.点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为_______.【答案】(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.14.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.【答案】(22020﹣1,22019)【分析】求出直线y =x+1与x 轴、y 轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B 1、B 2、B 3……的坐标,根据规律得到答案.【详解】解:直线y =x+1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1, ∵△A 1B 1A 2、△A 2B 2A 3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23),故答案为:B 2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B 的坐标的概率是得出答案的关键.15.若(m+1)0=1,则实数m 应满足的条件_____.【答案】m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.16.点P (3,﹣5)关于x 轴对称的点的坐标为______.【答案】(3,5)【解析】试题解析:点()3,5P -关于x 轴对称的点的坐标为()3,5.故答案为()3,5.点睛:关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.17.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题18.如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.【答案】答案见解析【解析】在AB 上取AE =AC ,然后证明△AEP 和△ACP 全等,根据全等三角形对应边相等得到PC =PE ,再根据三角形的任意两边之差小于第三边证明即可.【详解】如图,在AB 上截取AE ,使AE =AC ,连接PE .在△AEP 和△ACP 中,∵12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△AEP ≌△ACP (SAS ),∴PE =PC .在△PBE 中,BE >PB ﹣PE ,即AB ﹣AC >PB ﹣PC .【点睛】本题考查了全等三角形的判定与性质,涉及到全等三角形的判定与性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.19.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A ,C 坐标分别是(a ,5),(﹣1,b ).(1)求a ,b 的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC 关于y 轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系,即可判定a ,b 的值; (2)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题. 20.如图,AC=AE,∠C=∠E,∠1=∠1.求证:△ABC≌△ADE.【答案】证明见解析【解析】试题分析:由题目已知条件可得∠EAC+∠1=∠DAE 、∠1+∠EAC=∠BAC 、∠1=∠1,利用角的加减关系可得∠BAC=∠DAE ;结合AC=AE 、∠C=∠E ,利用两角及其夹边对应相等的两个三角形全等即可解答本题.试题解析:∵∠1+∠EAC=∠BAC ,∠EAC+∠1=∠DAE ,∠1=∠1,∴∠BAC=∠DAE.∵∠BAC=∠DAE ,AC=AE ,∠C=∠E ,∴△ABC ≌△ADE.21.如图,以ABC ∆的边AB 和AC 为边向外作等边ABD ∆和等边ACE ∆,连接BE 、CD .求证:BE CD =.【答案】见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB ≌ △CAD,则BE=CD .【详解】证明:∵ △ACE 和△ABD 都是等边三角形∴ AC=AE ,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD .∴ △EAB ≌ △CAD(SAS)∴BE CD =【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件. 22.(1)分解因式:m(x -y)-x +y(2)计算:5(1)(1)x x x +-【答案】(1)(x-y)(m-1);(2)5x 3-5x。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列分式中,是最简分式的是().A.2xxB.242xx y-C.22x yx y-+D.23x-【答案】D 【详解】A选项:2xx=x,不是最简分式;B选项:242xx y-=2xx y-,不是最简分式;C选项:22x yx y-+=x y x yx y()()+-+=x-y,不是最简分式;D选项,是最简分式.故选D.点睛:判断一个分式是不是最简分式关键看分子、分母是否有公因式,如果分子分母是多项式,可以先分解因式,以便于判断是否有公因式,从而判断是否是最简分式.2.下列多项式① x²+xy-y² ② -x²+2xy-y² ③ xy+x²+y² ④1-x+ 14x其中能用完全平方公式分解因式的是()A.①②B.①③C.①④D.②④【答案】D【解析】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+24x=14(x2-4x+4)=14(x-2)2,能用完全平方公式分解.故选D.3.点P(–2,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】根据各象限中点的坐标特征进行判断即可.【详解】第二象限中的点的横坐标为负数,纵坐标为正数.故选B.4.人字梯中间一般会设计一“拉杆”,这样做的道理是()A .两点之间,线段最短B .垂线段最短C .两直线平行,内错角相等D .三角形具有稳定性【答案】D【分析】根据三角形的稳定性解答即可. 【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D .【点睛】此题考查三角形的性质,关键是根据三角形的稳定性解答.5.在统计中,样本的标准差可以反映这组数据的( )A .平均状态B .分布规律C .离散程度D .数值大小 【答案】C【解析】根据标准差的概念判断.标准差是反映数据波动大小的量.【详解】方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,同样也反映了数据的波动情况.故选C .【点睛】考查了方差和标准差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,6.无论x 、y 取何值,多项式22246x y x y +--+的值总是( )A .正数B .负数C .非负数D .无法确定【答案】A【分析】利用完全平方公式把多项式分组配方变形后,利用非负数的性质判断即可.【详解】解:∵22222224621441(1)(2)1x y x y x x y y x y +--+=-++-++-+-+=≥1>0, ∴多项式的值总是正数.故选:A .【点睛】本题考查了利用完全平方公式化简多项式,熟练掌握并灵活运用是解题的关键.7.如图所示,已知∠1=∠2,下列添加的条件不能使△ADC ≌△CBA 的是A .//AB DCB .AB CD =C .AD BC = D .B D ∠=∠【答案】B 【分析】根据全等三角形的判定的方法进行解答即可.【详解】A 、∵AB ∥DC ,∴∠BAC =∠DCA ,由12AC CA DCA BAC ∠∠⎧⎪⎨⎪∠∠⎩===,得出△ADC ≌△CBA ,不符合题意;B 、由AB =CD ,AC =CA ,∠2=∠1无法得出△ADC ≌△CBA ,符合题意;C 、由12AD CB AC CA ⎧⎪∠∠⎨⎪⎩===得出△ADC ≌△CBA ,不符合题意; D 、由12D B AC CA ∠∠⎧⎪∠∠⎨⎪⎩===得出△ADC ≌△CBA ,不符合题意; 故选C .【点睛】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ADC ≌△CBA 的另一个条件.8.某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( )A .31525y x x y -=⎧⎨-=⎩B .31525y x y x -=⎧⎨-=⎩C .31525x y x y -=⎧⎨-=⎩D .31525x y y x -=⎧⎨-=⎩ 【答案】D【解析】由两个句子:“书法小组人数的3倍比绘画小组的人数多15人”,“绘画小组人数的2倍比书法小组的人数多5人”,得两个等量关系式:①3×书法小组人数=绘画人数+15⇒ 3×书法小组人数-绘画人数=15,②2×绘画小组人数=书法小组的人数+5⇒2×绘画小组人数-书法小组的人数=5,从而得出方程组31525x y y x -=⎧⎨-=⎩. 故选D.点睛:应用题的难点,一是找到等量关系,二是根据等量关系列出方程.本题等量关系比较明显,找出不难,关键是如何把等量关系变成方程,抓住以下关键字应着的运算符号:和(+)、差(—)、积(×)、商(÷)、倍(×)、大(+)、小(—)、多(+)、少(—)、比(=),从而把各种量联系起来,列出方程,使问题得解.9.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1,则P1表示的数是()A.-2 B.-22C.1-22D.22-1【答案】C【分析】首先利用勾股定理计算出QP的长,进而可得出QP1的长度,再由Q点表示的数为1可得答案. 【详解】根据题意可得QP=222+2=22,∵Q表示的数为1,∴P1表示的数为1-22.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.10.下列图形中AD是三角形ABC的高线的是()A.B.C.D.【答案】D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC的顶点A作AD⊥BC于点D,点A与点D之间的线段叫做三角形的高线,∴D符合题意,故选D.【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.二、填空题11.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F 点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM的周长的最小值为_____.【答案】1.【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×6×AD=18,解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=6+12×6=6+3=1.故答案为:1.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,轴对称-最短路线问题.能根据轴对称的性质得出AM=MC,并由此得出MC+DM=MA+DM≥AD是解决此题的关键.12.计算:-4(a2b-1)2÷8ab2=_____.【答案】34 2 ab【分析】利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【详解】解:原式=-4a4b-2÷8ab2=-12a3b-4=-342ab,故答案为:-34 2 a b【点睛】本题考查了积的乘方、幂的乘方、以及单项式除以单项式,熟练掌握运算法则是解答本题的关键.13.如图,将长方形纸片ABCD沿对角线AC折叠,AD的对应线段AD′与边BC交于点E.已知BE=3,EC =5,则AB=___.【答案】1【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=1,在直角三角形ABE 中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB=2253=1,故答案为:1.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.14.如图是高空秋千的示意图, 小明从起始位置点A处绕着点O经过最低点B, 最终荡到最高点C处,若∠AOC=90°, 点A与点B的高度差AD=1米, 水平距离BD=4米,则点C与点B的高度差CE为_____米.【答案】4.1【分析】如图(见解析),过点A 作AH OB ⊥,过点C 作CG OB ⊥,先利用勾股定理求出OA 的长,再根据三角形全等的判定定理与性质求出OG 的长,最后根据线段的和差即可得.【详解】如图,过点A 作AH OB ⊥,过点C 作CG OB ⊥,则四边形ADBH 和四边形CEBG 都是矩形 由题意得,OA OB OC ==由矩形的性质得,4,1,AH BD BH AD CE BG =====在Rt AHO ∆中,222OH AH OA +=,即222()OB BH AH OA -+=则222(1)4OA OA -+=,解得178.52OA == 231390∠+∠=∠+∠=︒21∴∠=∠又90,OGC AHO OC OA ∠=∠=︒=()OGC AHO AAS ∴∆≅∆4OG AH ∴==8.54 4.5BG OB OG OA OG ∴=-=-=-=则 4.5CE BG ==(米)故答案为:4.1.【点睛】本题考查了勾股定理、三角形全等的判定定理与性质、矩形的判定与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.15.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是22=0.8=1.3S S 甲乙,,从稳定性的角度看,_________的成绩更稳定.(填“甲”或“乙”)【答案】甲.【分析】方差越小,数据的密集度越高,波动幅度越小.【详解】解: 已知S 甲2=0.8,S 乙2=1.3,可得S 甲2<S 乙2,所以成绩最稳定的运动员是甲.故答案为:甲.【点睛】本题考查方差.16.已知3,5m n x x ==,则2m n x +的值为________.【答案】1【分析】逆用同底数幂的乘法公式m n m n a a a +=进行变形,然后代入即可得出答案.【详解】233545n m m m n x x x x +==⨯⨯=故答案为:1.【点睛】本题主要考查同底数幂的乘法的逆用,掌握同底数幂的乘法法则是解题的关键.17.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=100⨯利润进价)若设这种童鞋原来每双进价是x 元,根据题意,可列方程为_________________________________________. 【答案】()()8014%80100%5%100%14%x x x x---⨯+=⨯- 【分析】由等量关系为利润=售价-进价,利润率=100⨯利润进价%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得 ()()8014%80100%5%100%14%x x x x ---⨯+=⨯-; 故答案为:()()8014%80100%5%100%14%x x x x---⨯+=⨯-. 【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.三、解答题18.解下列方程组:38526x y x y -=⎧⎨-=⎩,. 【答案】1,5.x y =⎧⎨=-⎩【分析】将②变形得526x y =+③,然后将③代入①可求得y 的值,最后把y 的值代入方程③即可求得x 的值,进而得到方程组的解.【详解】解:(1)38,526x y x y -=⎧⎨-=⎩①;② 由②,得 526x y =+,③将③带入①,得3(526)8y y +-=,5.y =-将5y =-代入③,得()55261x =⨯-+=所以原方程组的解为1,5.x y =⎧⎨=-⎩【点睛】 本题主要考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,正确掌握解题方法是解题的关键.19.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出P 的坐标.【答案】(1)详见解析;(2)图详见解析,P (0,74). 【分析】(1)根据轴对称的性质进行作图,即可得到△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)连接A 1C 交y 轴于P ,连接AP ,则点P 即为所求,再根据C (3,4),A 1(-1,1),求得直线A 1C 解析式为y=34x+74,最后令x=0,求得y 的值,即可得到P 的坐标. 【详解】(1)如图所示,△A 1B 1C 1即为所求;(2)连接A1C交y轴于P,连接AP,则点P即为所求.根据轴对称的性质可得,A1P=AP,∵A1P+CP=A1C(最短),∴AP+PC+AC最短,即△PAC的周长最小,∵C(3,4),A1(﹣1,1),∴直线A1C解析式为y=34x+74,∴当x=0时,y=74,∴P(0,74).【点睛】本题主要考查了运用轴对称变换进行作图,以及待定系数法求一次函数解析式的运用,解决问题的关键是掌握轴对称的性质.解题时注意:两点之间,线段最短.20.在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD 于点F,交AC于点G.(1)若∠BAC=50°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)试判断线段EF、BF与AC三者之间的等量关系,并证明你的结论.【答案】(1)10°;(1)证明见解析;(3)EF1+BF1=1AC1.理由见解析.【分析】(1)根据等腰直角三角形的旋转得出∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(1)根据等腰三角形的性质得出∠BAF=∠CAF ,根据SAS 推出△BAF ≌△CAF ,根据全等得出∠ABF=∠ACF ,即可得出答案;(3)根据全等得出BF=CF ,求出∠CFG=∠EAG=90°,根据勾股定理求出EF 1+BF 1=EF 1+CF 1=EC 1,EC 1=AC 1+AE 1=1AC 1,即可得出答案.【详解】(1)∵AB=AC ,△ACE 是等腰直角三角形,∴AB=AE ,∴∠ABE=∠AEB ,又∵∠BAC=50°,∠EAC=90°,∴∠BAE=50°+90°=140°,∴∠AEB=(180°-140°)÷1=10°;(1)∵AB=AC ,D 是BC 的中点,∴∠BAF=∠CAF .在△BAF 和△CAF 中AF AF BAF CAF AB AC ⎧⎪∠∠⎨⎪⎩===,∴△BAF ≌△CAF (SAS ),∴∠ABF=∠ACF ,∵∠ABE=∠AEB ,∴∠AEB=∠ACF ;(3)∵△BAF ≌△CAF ,∴BF=CF ,∵∠AEB=∠ACF ,∠AGE=∠FGC ,∴∠CFG=∠EAG=90°,∴EF 1+BF 1=EF 1+CF 1=EC 1,∵△ACE 是等腰直角三角形,∴∠CAE=90°,AC=AE ,∴EC 1=AC 1+AE 1=1AC 1,即EF 1+BF 1=1AC 1.【点睛】本题考查了勾股定理,全等三角形的性质和判定,等腰直角三角形的应用,能综合运用性质进行推理是解此题的关键,题目比较好,有一定的难度.21.过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =6,AC =10,EC =254,求EF 的长. 【答案】(1)证明见解析;(2)152. 【分析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形; (2)由菱形的性质可得:菱形AECF 的面积=EC×AB =12AC×EF ,进而得到EF 的长. 【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ACB =∠DAC ,∵O 是AC 的中点,∴AO =CO ,在△AOF 和△COE 中, ACB DAC AO COAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOF ≌△COE (ASA ),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形; (2)∵菱形AECF 的面积=EC×AB =12AC×EF , 又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF , 解得EF =152.【点睛】考核知识点:菱形性质.理解性质是关键.22.我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=12 AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.【答案】(1)AE =32;(2)AD=2,S△BDF3(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=12AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=12AD=32;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=2284-=43,∴S△BDF=12×4×43=83;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,90AED FMCA FCMAD CF︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,90DEG FMCEGD MGFDE FM︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【点睛】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.某区的校办工厂承担了为全区七年级新生制作夏季校服3000套的任务,为了确保这批新生在开学时准时穿上校服,加快了生产速度,实际比原计划每天多生产50%,结果提前2天圆满完成了任务,求实际每天生产校服多少套.【答案】750套【分析】设原计划每天生产校服x 套,根据题意列出方程解答即可.【详解】解:设原计划每天生产校服x 套,实际每天生产校服(1+50%)x ,可得: 300030002(150%)x x -=+ 解得:x=500,经检验x=500是原分式方程的解,(1+50%)x=1.5×500=750,答:实际每天生产校服750套.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆;(模型应用)(2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.【答案】(1)见解析;(2)y =−7x−21;(3)D (4,−2)或(203,223-).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定BEC CDA∆≅∆;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD =OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBC CA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721 kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x+6=223 -,∴D(203,223-),此时,ED=PF=203,AE=BF=43,BP=PF−BF=163<6,符合题意,综上所述,D点坐标为:(4,−2)或(203,223-)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.25.某服装厂接到一份加工3000件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.【答案】100【分析】设原计划每天加工校服x件,则实际每天加工校服1.2x件,根据工作时间=工作总量÷工作效率,结合实际比原计划提前5天完工,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】解:设原计划每天加工校服x件,则实际每天加工校服1.2x件依题意得3000300051.2x x-=解得100x=经检验,100x=是分式方程的解,且符合题意答:原计划每天加工校服100件.【点睛】本题考查了分式方程的实际应用,掌握分式方程的性质以及解法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组. 2.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D【答案】B 【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B 点.3.下列各数中最小的是( )A .0B .1C 3D .﹣π 【答案】D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π30<1.则最小的数是﹣π.故选:D .【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.4.下列函数中,y 随x 值增大而增大的是:① =87y x -;② =65y x -;③8y =-;④y x =;⑤9y x =;⑥10y x =-( )A .①②③B .③④⑤C .②④⑤D .①③⑤【答案】D【分析】根据一次函数的性质对各小题进行逐一分析即可.【详解】解:一次函数y=kx+b ,当k>0时,y 随x 值增大而增大,① =87y x -,k=8>0,满足;② =65y x -,k=-5<0,不满足;③8y =-+,,满足;④y x =,,不满足;⑤9y x =,k=9>0,满足;⑥10y x =-,k=-10<0,不满足;故选D.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性与系数k 的关系是解答此题的关键.5.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形(a b <),8张宽为a ,长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形较长的边长为( )A .23a b +B .2a b +C .3a b +D .32a b + 【答案】A【分析】先计算所拼成的长方形的面积(是一个多项式),再对面积进行因式分解,即可得出长方形的长和宽.【详解】解:根据题意可得:拼成的长方形的面积=4a 2+3b 2+8ab ,又∵4a 2+3b 2+8ab=(2a+b )(2a+3b ),且b <3b ,∴那么该长方形较长的边长为2a+3b .故选:A .【点睛】本题考查因式分解的应用.能将所表示的长方形的面积进行因式分解是解决此题的关键.6.计算(3x-1)(1-3x)结果正确的是()A .291x -B .219x -C .2961x x -+-D .2961x x -+【答案】C 【解析】试题解析:(3x-1)(1-3x )=-(3x-1)(3x-1)=-9x 2+6x-1.故选C .7.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1【答案】B 【解析】如图,过点P 作PC 垂直AO 于点C ,PD 垂直BO 于点D,根据角平分线的性质可得PC=PD ,因∠AOB与∠MPN 互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN ,即可判定△CMP ≌△NDP ,所以PM=PN ,(1)正确;由△CMP ≌△NDP 可得CM=CN ,所以OM+ON=2OC ,(2)正确;四边形PMON 的面积等于四边形PCOD 的面积,(3)正确;连结CD ,因PC=PD ,PM=PN ,∠MPN=∠CPD ,PM>PC ,可得CD≠MN ,所以(4)错误,故选B.8.如图,在ABC ∆中,D E ,分别是边BC AC ,上的点,若EAB ∆≌EDB ∆≌EDC ∆,则C ∠的度数为( )A .15B .20C .25D .30【答案】D 【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵EDB ∆≌EDC ∆,∴∠BDE=∠CDE ,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵EAB ∆≌EDB ∆≌EDC ∆,∴∠AEB=∠BED=∠CED ,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D .【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.9.(2016四川省成都市)平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ) A .(﹣2,﹣3)B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2) 【答案】A【解析】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3).故选A .10.某次列车平均提速vkm/h ,用相同的时间,列车提速前行驶skm ,提速后比提速前多行驶50km ,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h ,下面所列出的四个方程中,正确的是( ) A .50s s x x v +=+ B .50s s x v += C .50s s v x += D .50s s x x v-=- 【答案】A【分析】先求出列车提速后的平均速度,再根据“时间=路程÷速度”、“用相同的时间,列车提速前行驶km s ,提速后比提速前多行驶50km ”建立方程即可.【详解】由题意得:设列车提速前的平均速度是/xkm h ,则列车提速后的平均速度是()/x v km h + 则50s s x x v+=+ 故选:A .【点睛】本题考查了列分式方程,读懂题意,正确求出列车提速后的平均速度是解题关键.二、填空题11.若实数a ,b 4b =+,则a ﹣b 的平方根是_____.【答案】±1a =5,b =﹣4,再代入求解即可.a =5,故b =﹣4,3===,∴a ﹣b 的平方根是:±1.故答案为:±1.【点睛】本题考查了求平方根的问题,掌握平方根的性质以及解法是解题的关键.12.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,将a ,b ,c ,d 按从大到小的顺序用“>”连接起来:__________.【答案】c >d >a >b【解析】根据实数的乘方法则分别计算比较大小即可。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在Rt ABC ∆中, 90ACB ︒∠=,以AB ,AC ,BC 为边作等边ABD ∆,等边ACE ∆.等边CBF ∆.设AEH ∆的面积为1S ,ABC ∆的面积为2S ,BFG ∆的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )A .2143S S S S =++B .1234S S S S +=+C .1423S S S S +=+D .1324S S S S +=+【答案】D 【分析】由 90ACB ︒∠=,得222AC BC AB +=,由ABD ∆,ACE ∆,CBF ∆是等边三角形,得2132ABD S AB DM AB ∆=⋅⋅=,23ACE S AC ∆=,23CBF S BC ∆=,即+ACE CBF ABD S S S ∆∆=,从而可得1324S S S S +=+.【详解】∵在Rt ABC ∆中, 90ACB ︒∠=,∴222AC BC AB +=,过点D 作DM ⊥AB∵ABD ∆是等边三角形,∴∠ADM=12∠ADB=12×60°=30°,AM=12AB , ∴33, ∴2132ABD S AB DM AB ∆=⋅⋅= 同理:23ACE S AC ∆=,23CBF S BC ∆=, ∴+S S S =∵13ACE CBF ACH BCG S S S S S S ∆∆∆∆+=+--,24ABD ACH BCG S S S S S ∆∆∆+=--∴1324S S S S +=+,故选D.【点睛】本题主要考查勾股定理的应用和等边三角形的性质,根据勾股定理和三角形面积公式得到 ,是解题的关键.2.等腰三角形的一个外角为 80°,则它的底角为( )A .100°B .8 0°C .40°D .100°或 40°【答案】C【解析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C .考点:等腰三角形的性质.3.A ,B 两地航程为48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9696944x x+=+- B .9696944+=+-x x C .4848944x x +=+- D .4848944+=+-x x 【答案】C 【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,4848944x x +=+-,【点睛】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,列出相应的方程.4.如图所示,AC ①平分BAD ∠,AB AD =②,AB BC ⊥③,AD DC.⊥以此三个中的两个为条件,另一个为结论,可构成三个命题,即⇒①②③,⇒①③②,⇒②③①.其中正确的命题的个数是( )A .0B .1C .2D .3【答案】C 【解析】根据全等三角形的性质解答.【详解】解:⇒①②③错误,两个全等三角形的对应角相等,但不一定是直角;⇒①③②正确,两个全等三角形的对应边相等;⇒②③①正确,两个全等三角形的对应角相等,即AC 平分BAD ∠;故选:C .【点睛】考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.9的平方根是( )A .3B .3±C 3D .3【答案】B【分析】根据平方根的定义,即可解答.【详解】解:∵()239±=,∴实数9的平方根是±3,故选:B .【点睛】本题考查了平方根,解决本题的关键是熟记平方根的定义.6.下图中为轴对称图形的是( ).A .B .C .D .【答案】D 【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC 选项均不是轴对称图形,D 选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.7.9的平方根是( )A .3B .81C .3±D .81±【答案】C【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.8.如图,在ABC ∆中,AB AD DC ==,40BAD ∠=︒,则C ∠的度数为( )A .30B .35︒C .40︒D .45︒【答案】B 【分析】根据等腰三角形两底角相等求出∠B =∠ADB ,根据等边对等角可得∠C =∠CAD ,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB =AD ,∠BAD =40°∴∠B =12(180°-∠BAD )=12(180°-40°)=70° ∵AD =DC∴∠C =CAD在△ABC 中,∠BAC +∠B +∠C =180°即40°+∠C +∠C +70°=180°本题主要考查等腰三角形的性质:等角三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.9.已知点(),4A m 与点()3,B n 关于x 轴对称,那么()2017m n +的值为( ) A .1-B .1C .20177-D .20177【答案】A【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】解:点(,4)A m 与点(3,)B n 关于x 轴对称, 3m ∴=,4n =-,∴()()2017201711m n +=-=-,故选:A .【点睛】此题主要考查了关于x 轴对称点的坐标,关键是掌握点的坐标的变化规律.10.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°【答案】A 【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B ′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .二、填空题11._____3(填>,<或=)【答案】<.【解析】将3转化为,再比较大小即可得出结论.【详解】∵3=, ∴<,本题考查了实数的大小比较,解题的关键是熟练的掌握实数的大小比较方法.12.计算:2323a b c ⎛⎫-= ⎪⎝⎭____________. 【答案】62249a b c【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果.【详解】332232262222222(2)(2)()4()3(3)(3)9a b a b a b a b c c c c ---===, 故答案为:62249a b c【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.13.点A 关于x 轴对称的点的坐标是()3,1-,则A 点坐标为__________【答案】 (-3,-1)【分析】根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:∵点A 关于x 轴对称的点的坐标是()3,1-,∴点A 的坐标为()3,1--故答案为:()3,1--.【点睛】此题考查的是关于x 轴对称的两点坐标关系,掌握关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数是解决此题的关键.14.在平面直角坐标系中,直线l 1∥l 2,直线l 1对应的函数表达式为12y x =,直线l 2分别与x 轴、y 轴交于点A ,B ,OA=4,则OB=_____.【答案】1【详解】∵直线1l ∥2l ,直线1l 对应的函数表达式为12y x =, ∴可以假设直线2l 的解析式为12y x b =+, ∵4OA =, ∴()40A ,代入12y x b =+,得到2b =-, ∴()0,2B -,∴2OB =,故答案为1.15.如果分式21x -有意义,那么x 的取值范围是____________. 【答案】x≠1【解析】∵分式21x -有意义, ∴10x -≠,即1x ≠.故答案为1x ≠.16.在平面直角坐标系中,点A (﹣1,0)、B (3,0)、C (0,2),当△ABC 与△ABD 全等时,则点D 的坐标可以是_____.【答案】(0,﹣2)或(2,﹣2)或(2,2)【分析】根据题意画出符合条件的图形,根据图形结合A 、B 、C 的坐标即可得出答案.【详解】解:∵△ABC 与△ABD 全等,如图所示:点D 坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).【点睛】本题考查三角形全等的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解题17.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.【答案】40︒【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.三、解答题18.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC ∆(即三角形的顶点都在格点上).(1)在图中作出ABC ∆关于直线l 的对称图形111A B C ∆(要求点A 与1A ,B 与1B ,C 与1C 相对应). (2)在直线l 上找一点P ,使得PAC ∆的周长最小.【答案】见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:111A B C ∆ 即为所求;(2)如图所示:点P 即为所求的点.此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.19.解方程组和计算(1(2)解方程组①43522x y y x +=⎧⎨=-⎩②341423 3.x y x y -=⎧⎨-=⎩, 【答案】(1)①-(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩. 【分析】(1)①先化简二次根式,再合并同类二次根式即可;②先利用乘法分配律相乘,再化简二次根式,合并同类二次根式即可;(2)①利用代入消元法即可求解;②用加减消元法即可求解.【详解】解(1)①原式==②原式==-(2)①435[1]22[2]x y y x +=⎧⎨=-⎩将[2]代入[1]中得43(22)5x x +-=, 解得1110x =, 将1110x =代入[2]中得15y =, 所以该方程的解为:111015x y ⎧=⎪⎪⎨⎪=⎪⎩; ②3414[1]23 3.[2]x y x y -=⎧⎨-=⎩,[2]×3得699,[4]x y -=,[3]-[4]得19y =,将19y =代入[1]中解得30x =,所以该方程的解为:3019x y =⎧⎨=⎩. 【点睛】 本题考查二次根式的混合运算,解二元一次方程组.(1)中,二次根式的混合运算,一般有乘除,先乘除,再化简,然后合并同类项.只有加减,先化简,再合并同类项;(3)掌握用代入消元法和加减消元法解二元一次方程组的基本步骤是解决此题的关键.20.如图,在面积为3的△ABC 中,AB=3,∠BAC=45°,点D 是BC 边上一点.(1)若AD 是BC 边上的中线,求AD 的长;(2)点D 关于直线AB 和AC 的对称点分别为点M 、N ,求AN 的长度的最小值;(3)若P 是△ABC 内的一点,求2PA PB PC ++的最小值.【答案】(1)见解析;(2655(329【分析】(1)作CE ,DF 分别垂直于AB 于点E ,F ,已知CE ⊥AB ,S △ABC =3,∠BAC=45°,可得AE=CE=2,BE=1,因为DF ∥CE ,AD 是BC 边上的中线,可得BF=EF=12,在Rt △AFD 中利用勾股定理即可求出AD 的长.(2)在Rt △BEC 中,求得BC ,当AD ⊥CB 时,AN=AD 最小,根据等面积法,即可求出AD .(3)将△APB 绕点A 逆时针旋转90°得到△AFE ,易知△AFP 是等腰直角三角形,∠EAC=135°,作EH ⊥BA 交BA 的延长线于H .在Rt △EAH 中,可得22AE AB ==,在Rt △EHC 中,求得EC ,2PA PB PC FP EF PC CE ++=++≥2PA PB PC ++的最小值即为CE 的值.【详解】(1)作CE ,DF 分别垂直于AB 于点E ,F∵CE ⊥AB ,S △ABC =3,∠BAC=45° ∴3223AE CE ⨯===,BE=1, ∵CE ,DF 分别垂直于AB 于点E ,F∴DF ∥CE又∵AD 是BC 边上的中线∴112DF CE ==,1122BF BE EF === ∴AF=15222AE EF +=+= 在Rt △AFD 中,2222529()122AD AF DF =+=+= ∴292AD = (2)在Rt △BEC 中,BC=2222125BE EC +=+=当AD ⊥CB 时,AN=AD 最小根据等面积法,325AD ⨯=⨯得AN=655AD=65 (3)将△APB 绕点A 逆时针旋转90°得到△AFE ,易知△AFP 是等腰直角三角形,∠EAC=135°,作EH ⊥BA 交BA 的延长线于H .在Rt △EAH 中,∵∠H=90°,∠EAH=45°,22AE AB == ∴EH=AH=2,在Rt △EHC 中,222222329EC EH HC ++==+=()2PA PB PC FP EF PC CE ++=++≥∴2PA PB PC ++的最小值为29.【点睛】本题考查了用三角函数和勾股定理解直角三角形,点到线段的最短距离,图形旋转的性质,线段和的最值问题.21.如图:在ABC ∆中(AC AB >),2AC BC =,BC 边上的中线AD 把ABC ∆的周长分成60cm 和40cm 两部分,求边AC 和AB 的长.【答案】48AC cm =,28AB cm =【分析】先根据AD 是BC 边上的中线得出BD=CD ,设BD=CD=x ,AB=y ,则AC=4x ,再根据AC+CD=60,AB+BD=40,即可得出x 和y 的值.【详解】∵AD 是BC 边上的中线,2AC BC =,∴BD CD =,设BD CD x ==,AB y =,则4AC x =,∵AC AB >,∴60AC CD +=,40AB BD +=,即460x x +=,40x y +=,解得:12x =,28y =,即448AC x cm ==,28AB cm =.【点睛】本题考查了三角形的中线,利用数形结合的方法,用列方程求线段的长度是常用的方法,需要掌握好.22.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.【答案】 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA 证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG 中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD ,∴△DEF 是正三角形;(3)作AG ⊥BD 于G ,如图所示:∵△DEF 是正三角形,∴∠ADG=60°,在Rt △ADG 中,DG=b ,AG=b ,在Rt △ABG 中,c 1=(a+b )1+(b )1,∴c 1=a 1+ab+b 1.考点:1.全等三角形的判定与性质;1.勾股定理.23.如图,射线BD 平分ABC ∠,ADE CDE ∠=∠,求证:AD CD =.【答案】证明见解析.【分析】先根据角平分线的定义得出ABD CBD ∠=∠,再根据三角形的外角性质得出A C ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】证明:BD 平分ABC ∠ABD CBD ∴∠=∠ ADE CDE ∠=∠A ABD C CBD ∴∠+∠=∠+∠A C ∴∠=∠在ABD ∆和CBD ∆中,A C ABD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD CBD AAS ∴∆≅∆AD CD ∴=.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质等知识点,依据角平分线的定义得出ABD CBD ∠=∠是解题关键.24.先化简,再求值:222x 4x 4x 2x 12x x-+-÷+,在0,1,2,三个数中选一个合适的,代入求值. 【答案】x 2,当x=1时,原式=12. 【分析】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到x 212-+,可通分得x 2,代x 值时,根据分式和除式有意义的条件,必须使分母或被除式不为0,故只能取x=1. 【详解】解:原式=22(x 2)x x 2x 112x x(x 2)22--⋅+=+=-. 当x=1时,原式=12. 25.东方市在铁路礼堂举办大型扶贫消费市场,张老师购买一斤芒果和三斤哈密瓜共花费26元;李老师购买三斤芒果和两斤哈密瓜共花费29元.求一斤芒果和一斤哈密瓜的售价各是多少元?【答案】芒果5元,哈密瓜7元.【分析】设一斤芒果售价x 元,一斤哈密瓜售价y 元,根据题意列出二元一次方程组即可求解.【详解】解:设一斤芒果售价x 元,一斤哈密瓜售价y 元.依题意可得:3263229x y x y +=⎧⎨+=⎩解得:57x y =⎧⎨=⎩经检验.符合题意.答:一斤芒果售价5元,一斤哈密瓜售价7元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列方程求解.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,等边ABC ∆的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若3AE =,则EM CM +的最小值为( )A .226B .33C .23D .92【答案】B 【分析】连接BE ,与AD 交于点M ,BE 就是EM CM +的最小值,根据等边三角形的性质求解即可.【详解】解:连接BE ,与AD 交于点M ,AD 是BC 边上的中线,AD BC ∴⊥,AD ∴是BC 的垂直平分线,B ∴、C 关于AD 对称,BE ∴就是EM CM +的最小值,等边ABC 的边长为6,∴3BD =,6AB =,2233AD AB BD ∴-=,3AE =,633CE AC AE ∴=-=-=,BE ∴是AC 的垂直平分线,∵ABC 是等边三角形,易得 33BE AD ==EM CM BE +=,∴+的最小值为33,EM CM故选:B.【点睛】+最短是解本题考查等边三角形的性质、轴对称-路径最短等内容,明确当B,M,E三点共线时EM CM题的关键.2.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地,下列函数图象(图中v表示骑车速度,s表示小刚距出发地的距离,t表示出发时间)能表达这一过程的是()A. B.C.D.【答案】C【解析】根据小刚以400米/分的速度匀速骑车5分,可知路程随时间匀速增加;再根据原地休息,可知其路程不变;然后加速返回, 其与出发点的距离随时间逐渐减少, 据此分析可得到答案.【详解】解:由题意得,以400米/分的速度匀速骑车5分, 路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地, 与出发点的距离逐渐减少.故选C.【点睛】本题是一道有关函数的实际应用题,考查的是函数的表示方法-图象法.3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【答案】C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称的定义,结合所给图形逐一判断即可得答案.【详解】A.不是中心对称图形,故该选项不符合题意,B.不是中心对称图形,故该选项不符合题意,C.是中心对称图形,故该选项符合题意,D.不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查了中心对称图形的特点,判断中心对称图形的关键是寻找对称中心,旋转180°后与原图形能够重合.53)A24B12C 32D18【答案】B【分析】先化简各选项,根据同类二次根式的定义判断即可.【详解】解:A2426=A错误;B1223=,符合题意,故B正确;C 362=,不符合题意,故C错误;D1832=,不符合题意,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.6.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( ) A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=90【答案】A【分析】如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【点睛】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.7.点A(-3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.直线l上有三个正方形A、B、C放置如图所示,若正方形A、C的面积分别为1和12,则正方形B的面积为().A.11 B.12 C.13 D145【答案】C∠=∠,然后可依据AAS证明【分析】运用正方形边长相等,再根据同角的余角相等可得EDF HFG∆≌HFGEDF∆,再结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵A 、B 、C 都是正方形,∴DF FH =,90DFH ∠=︒,90EDF HFG ∴∠=∠=︒∴90DFE HFG ∠+∠=︒,90EDF DFE ∠+∠=︒∴EDF HFG ∠=∠,在DEF ∆和FGH ∆中,,EDF HFG DEF HGF DF HF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EDF ∆≌HFG ∆ (AAS),DE FG ∴=,EF HG =;∴在Rt DEF 中,由勾股定理得:22222DF DE EF DE HG =+=+,即11213B A C S S S =+=+=,故选:C .【点睛】此题主要考查对全等三角形和勾股定理的综合运用,发现两个直角三角形全等是解题的关键.9.等腰三角形的两边长分别为3cm ,6cm ,则该三角形的周长为( )A .12cmB .15cmC .12cm 或15cmD .以上都不对【答案】B【分析】分两种情况:底边为3cm ,底边为6cm 时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【详解】底边为3cm ,腰长为6cm ,这个三角形的周长是3+6+6=15cm ,底边为6cm ,腰长为3cm ,3+3=6,不能以6cm 为底构成三角形;故答案为:B .【点睛】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键. 10.点A (1-,1x -)在第二象限,则x 的值可能为( )A .2B .1C .0D .1- 【答案】A【解析】根据第二象限内点的纵坐标是正数求解即可.【详解】解:∵点A (1-,1x -)在第二象限,∴10x ->,即1x >,∴只有2符合题意,故选:A..【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).二、填空题11.若分式2x x +有意义,那么x 的取值范围是 . 【答案】2x ≠-【分析】分式要有意义只需分母不为零即可.【详解】由题意得:x+1≠0,解得x ≠﹣1.故答案为:x ≠﹣1.【点睛】本题考查分式有意义的条件,关键在于熟练掌握基础知识.12.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为__________.【答案】0.6【分析】数出这10个数据中不少于50的个数,然后根据频率公式:频率=频数÷总数,计算即可.【详解】解:这10个数据中不少于50有52、50、53、61、72、58,共6个∴10名女生仰卧起坐个数不少于50个的频率为6÷10=0.6故答案为:0.6.【点睛】此题考查的是求频率问题,掌握频率公式:频率=频数÷总数是解决此题的关键.13.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约____千克.【答案】90【分析】根据题意先算出50户家庭可回收垃圾为15千克,再用300户家庭除以50户家庭乘以15即可解答【详解】100×15%=15千克 30050 ×15=90千克 故答案为90千克【点睛】此题考查扇形统计图,解题关键在于看懂图中数据14.已知2()40m n -=,2()4000m n +=,则22m n +的值为____.【答案】2020【分析】已知等式利用完全平方公式化简整理即可求出未知式子的值.【详解】∵2()40m n -=,2()4000m n += ∴()()2222400040202022m n m n m n ++-++=== 故答案是:2020【点睛】 本题考查了完全平方公式,熟练掌握公式是解题的关键.15.如图,在平面直角坐标系中,111A B C ∆、222A B C ∆、333A B C ∆、…、n n n A B C ∆均为等腰直角三角形,且123n C C C C ∠=∠=∠==∠90=︒,点1A 、2A 、3A 、……、n A 和点1B 、2B 、3B 、……、n B 分别在正比例函数12y x =和y x =-的图象上,且点1A 、2A 、3A 、……、n A 的横坐标分别为1,2,3…n ,线段11A B 、22A B 、33A B 、…、n n A B 均与y 轴平行.按照图中所反映的规律,则n n n A B C ∆的顶点n C 的坐标是_____.(其中n 为正整数)【答案】71,44n n ⎛⎫- ⎪⎝⎭【分析】当x=1代入12y x =和 y x =-中,求出A 1,B 1的坐标,再由△A 1B 1C 1为等腰直角三角形,求出C 1的坐标,同理求出C 2,C 3,C 4的坐标,找到规律,即可求出n n n A B C ∆的顶点n C 的坐标.【详解】当x=1代入12y x =和y x =-中,得:11122y =⨯=,1y =-, ∴111,2A ⎛⎫ ⎪⎝⎭,()11,1B -, ∴()1113122A B =--=, ∵△A 1B 1C 1为等腰直角三角形,∴C 1的横坐标为111137112224A B +=+⨯=, C 1的纵坐标为111131112224A B -+=-+⨯=-, ∴C 1的坐标为71,44⎛⎫- ⎪⎝⎭; 当x=2代入12y x =和y x =-中,得:1212y =⨯=,2y =-, ∴()22,1A ,()22,2B -,∴()22123A B =--=,∵△A 2B 2C 2为等腰直角三角形,∴C 2的横坐标为22117223222A B +=+⨯=, C 2的纵坐标为22111223222A B -+=-+⨯=-, ∴C 2的坐标为71,22⎛⎫- ⎪⎝⎭; 同理,可得C 3的坐标为213,44⎛⎫- ⎪⎝⎭;C 4的坐标为()7,1-; ∴n n n A B C ∆的顶点n C 的坐标是71,44n n ⎛⎫-⎪⎝⎭, 故答案为:71,44n n ⎛⎫-⎪⎝⎭. 【点睛】 本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C 1、C 2、C 3、C 4的坐标找到规律是解题的关键.16.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1.考点:菱形的性质.17.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.【答案】(a+2)(a﹣2)=a2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a﹣2),图②中阴影部分面积=a2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a﹣2)=a2﹣1,故答案为:(a+2)(a﹣2)=a2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.三、解答题18.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)【答案】见解析.【分析】分别作线段CD 的垂直平分线和∠AOB 的角平分线,它们的交点即为点P .【详解】如图,点P 为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键. 19.如图,AB ∥CD ,直线EF 分别交直线AB 、CD 于点M 、N ,MG 平分∠EMB ,MH 平分∠CNF ,求证:MG ∥NH .【答案】详见解析.【分析】依据平行线的性质以及角平分线的定义,即可得到∠CNH =∠BMG ,再根据平行线的性质即可得到∠CNM =∠BMN ,依据∠HNM =∠GMN ,即可得到MG ∥NH .【详解】证明:∵MG 平分∠EMB ,MH 平分∠CNF ,∴∠CNH =12∠CNF ,∠BMG =12∠BME =12∠AMN , ∵AB ∥CD ,∴∠CNF =∠AMN ,∴∠CNH =∠BMG ,∵AB ∥CD ,∴∠CNM =∠BMN ,∴∠CNF+∠CNM =∠BMG+∠BMN ,即∠HNM =∠GMN ,∴MG ∥NH .【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20.如图,在ABC ∆中,AB AC =,DAC ∠是ABC ∆的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作DAC ∠的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接,AE CF ;(3)在(1)和(2)的条件下,若15BAE ∠=︒,求B 的度数.【答案】(1)见解析;(2)见解析;(3)55°.【分析】(1)先以A 为圆心,任意长为半径作圆,交AD ,AC 边于两点,再分别以这两点为圆心大于两点距离一半为半径作圆相交于一点,再连接A 和这一点作出AM ;(2)分别以A 、C 为圆心,大于12AC 为半径作圆交于两点,连接两点即可作出AC 的垂直平分线; (3)通过垂直平分线和角平分线得出,AE CE ACB EAC =∠=∠,从而求出∠B 的度数.【详解】(1)先以A 为圆心,任意长为半径作圆,交AD ,AC 边于两点,再以这两点为圆心作圆相交于一点,再连接A 和这一点作出AM ;(2)分别以A 、C 为圆心,大于12AC 为半径作圆交于两点,连接两点即可作出AC 的垂直平分线;(3)AB AC =B ACB ∴∠=∠AM DAC CAM DAM ∠∴∠=∠平分DAC B ACB ∠=∠+∠B CAM ACB DAM ∴∠=∠=∠=∠EF AC 垂直平分AE CE ACB EAC ∴=∴∠=∠180DAM CAM EAC BAE ∠+∠+∠+∠=︒1180-15553DAM CAM EAC ∴∠=∠=∠=⨯︒︒=︒()B 55∴∠=︒【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键.21.先化简,再求值:()()()()3232232x y x y x y x y x +--+-÷⎡⎤⎣⎦,其中2x =,1y =-【答案】64x y -;16.【分析】首先利用整式的乘法法则和平方差公式打开小括号,然后合并同类项,最后利用整式的除法法则计算即可求解.【详解】原式=(32)2-÷x y x x=2(32)64-=-x y x y当2x =,1y =-时,∴ 原式=12+4=16【点睛】此题主要考查了整式的混合运算-化简求值,解题的关键 是利用整式的混合运算法则,同时也注意利用乘法公式简化计算.22.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.【答案】(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE=30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论; (3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE+CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM=3BM ,进而可得BE+CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =1.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE=30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,。
拉萨市2019届数学八上期末调研试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 2.化简222x y x xy-+的结果为( ) A .﹣y xB .﹣yC .x y x +D .x y x - 3.已知某花粉直径为360000纳米(1米=109纳米),用科学记数法表示该花粉的直径是( ) A .3.6×105米 B .3.6×10﹣5米 C .3.6×10﹣4米 D .3.6×10﹣9米4.下列因式分解正确的是( )A .x 2﹣4=(x+4)(x ﹣4)B .4a 2﹣8a =a(4a ﹣8)C .a+2a+2=(a ﹣1)2+1D .x 2﹣2x+1=(x ﹣1)2 5.下列各式由左到右的变形中,属于因式分解的是( )A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列运算正确的是( )A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 7.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°8.已知△ABC 在平面直角坐标系中,将△ABC 的三个顶点的纵坐标保持不变,横坐标都乘以-1,得到△A 1B 1C 1,则下列说法正确的是( )A .△ABC 与△A 1B 1C 1 关于 x 轴对称B .△ABC 与△A 1B 1C 1 关于 y 轴对称C .△A 1B 1C 1是由△ABC 沿 x 轴向左平移一个单位长度得到的D .△A 1B 1C 1是由△ABC 沿 y 轴向下平移一个单位长度得到的9.已知的坐标为,直线轴,且,则点的坐标为( )A.B.或C. D.或10.如图,已知△ABC ≌△ADC ,∠B =30°,∠BAC =23°,则∠ACD 的度数为( )A.120°B.125°C.127°D.104°11.如图,已知AB =AC ,AD ⊥BC ,AE =AF ,图中共有( )对全等三角形.A.5B.6C.7D.812.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于1MN 2的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为()4a,3b 1-,则a 与b 的数量关系为()A .4a 3b 1-=B .4a b 1+=C .4a b 1-=D .4a 3b 1+=13.利用反证法证明命题“在ABC ∆中,若AB AC =,则90B ∠<︒”时,应假设( )A.若AB AC =,则90B ∠>︒B.若AB AC ≠,则90B ∠<︒C.若AB AC =,则90B ∠︒…D.若AB AC ≠,则90B ∠︒… 14.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A.4B.5C.6D.7 15.如图,工人师傅做了一个长方形窗框ABCD ,E 、F 、G 、H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.E 、G 之间B.A 、C 之间C.G 、H 之间D.B 、F 之间二、填空题 16.一根头发丝的直径约为0.0000597米,则数0.0000597用科学记数法表示为__________.17.要使4x 2-mx +9满足是完全平方式m 的值是多少________18.如图,在Rt △ABC 与Rt △DEF 中,∠B=∠E=90°,AC=DF ,AB=DE ,∠A=50°,则∠DFE= ________19.已知:△ABC 中,∠A+∠B=12∠C ,则∠C =____________. 20.在Rt △ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB 于D ,如果BD=0.5,那么AD=_________.三、解答题21.化简(1)(-a 2)3+3a 2a 4(2)211a a a --- 22.在前面学习中,一些乘法公式可以通过几何图形来进行验证,请结合下列两组图形回答问题:图①说明:左侧图形中阴影部分由右侧阴影部分分割后拼接而成.图②说明:边长为()a b +的正方形的面积分割成如图所示的四部分.(1)请结合图①和图②分别写出学过的两个乘法公式:图①:____________,图②:____________;(2)请利用上面的乘法公式计算:①2201820192017-⨯;②2100123.如图,已知,在△ABC 中,AB =AC ,分别以AB 、BC 为边作等边△ABE 和等边△BCD ,连结CE 、AD .。
西藏拉萨市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·马山月考) -8的立方根与4的平方根之和是()A . 0B . 4C . 0或4D . 0或-42. (2分)(2017·沭阳模拟) 在下列实数:、、、、﹣1.010010001…中,无理数有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019九上·海曙开学考) 下列标志中是中心对称图形,但不是轴对称图形的是()A .B .C .D .4. (2分)在平面直角坐标系中,点A的坐标为(3,4),则A关于x轴对称的点的坐标是()A . (-3,4)B . (3,-4)C . (-3,-4)D . (4,3)5. (2分) (2020八下·江岸期中) 以下列长度的线段为边,不能构成直角三角形的是()A . 2、3、4B . 1、1、C . 3、4、5D . 5、12、136. (2分)(2020·南山模拟) 下列命题正确是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 有两条边对应相等的两个直角三角形全等C . 垂直于圆的半径的直线是切线D . 对角线相等的平行四边形是矩形7. (2分) (2019八下·抚顺月考) 已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x上,则y1 ,y2 , y3的大小关系是()A . y1>y2>y3B . y1<y2<y3C . y3>y1>y2D . y3<y1<y28. (2分) (2020八上·张掖期末) 如图所示,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB 的度数为()A . 25°B . 60°C . 85°D . 95°9. (2分)(2019·成都模拟) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,∠ADE=35°,∠C=120°,则∠A为()A . 60°B . 45°C . 35°D . 25°10. (2分) (2017八上·三明期末) 若实数k、b满足k+b=0,且k<b,则一次函数y=kx+b的图象可能是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分) (2019八上·河南月考) =________.12. (1分) (2016八上·江苏期末) 将点A(﹣2,﹣3)先向右平移3个单位长度再向上平移2个单位长度得到点B,则点B所在象限是第________象限.13. (1分) (2020九下·江阴期中) 如图,∠ACB=90°,D为AB的中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为________.14. (1分)如图,∠1+∠2+∠3+∠4=________度.15. (1分)如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=________.16. (1分)直线与轴交于点,则时,的取值范围是________。
拉萨市2019年八年级上学期期末数学试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列计算正确的是()
A.a2•a3=a6B.2a•3a=6a C.(a2)3=a6D.(a+b)2=a2+b2
2 . 若分式方程有增根,则a的值为()
A.5B.4C.3D.2
3 . 下列图形是中心对称图形但不是轴对称图形的是()
A.B.C.D.
4 . 等腰三角形的两边长为 a、b,且满足|a-b-2|+(2a+3b-9) =0,则该等腰三角形的周长为()A.7B.5C.8D.7 或 5
5 . 如图,点分别在的边、上,,若垂直平分,则
().
A.B.C.D.
6 . 如图,已知的3条边和3个角,则能判断和全等的是()
A.甲和乙B.乙和丙C.只有乙D.只有丙
7 . 若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()
A.ab=1B.ab=0C.a﹣b=0D.a+b=0
8 . 下列多项式能用公式法分解因式的有()
①②③④⑤
A.1个B.2个C.3个D.4个
9 . 如图,为等边三角形,是边上一点,在上取一点,使,在边上取一点
,使,则的度数为()
A.B.C.D.
10 . 下列等式中正确的是()
A.B.C.D.
二、填空题
11 . 如图,AD为△ABC的中线,BE为△ABD的中线,若△ABC的面积为60,BD=5,则点E到BC边的距离为
_______
12 . 如图,中,,,为线段上一动点(不与点,重合),连接,作,交线段于.以下四个结论:
①;
②当为中点时;
③当时;
④当为等腰三角形时.
其中正确的结论是_________(把你认为正确结论的序号都填上)
13 . 计算:=_____.
14 . 如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为 D
A.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .
15 . 若a-4b=0,则a:b=______.
16 . 光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒,则地球与太阳的距离约是________千米.
17 . 如果一个多边形的内角和等于1800°,则这个多边形是_____边形;如果一个n边形每一个内角都是135°,则n=_____;如果一个n边形每一个外角都是36°,则n=_____.
18 . 分解因式:(1)a2+4a+4=_________________;(2)x3y-9xy=___________________.
三、解答题
19 . 某工厂有新、旧两台机器,上半年,新机器平均每天比旧机器多生产50件产品,新机器生产600件产品所用的时间与旧机器生产450件产品所用的时间相同.
(1)求上半年新、旧机器日均产品数;
(2)下半年,新机器提高了生产效率,而旧机器由于不断损耗,生产效率降低,经测算,新机器日均产品数提高的百分数是旧机器日均产品数降低的百分数的2倍,结果新机器生产960件产品所用的时间与旧机器生产540件产品所用的时间相同,求新机器日均产品比旧机器多多少件?
20 . 在平面直角坐标系 xOy 中,点A,B的坐标分别为(-2,0),(1,0).同时将点A ,B先向左平移1个单位长度,再向上平移2个单位长度,得到点A,B的对应点依次为C,D,连接CD,AC, B
A.
(1)写出点C , D 的坐标;
(2)在 y 轴上是否存在点E,连接EA ,EB,使S△EAB=S四边形ABDC?若存在,求出点E的坐标;若不存在,说明理由;
(3)点 P 是线段 AC 上的一个动点,连接 BP , DP ,当点 P 在线段 AC 上移动时(不与 A , C 重合),直接写出ÐCDP 、ÐABP 与ÐB PD 之间的等量关系.
21 . 如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.
(1)在网格中△ABC的下方,直接画出一个△EBC,使△EBC与△ABC全等.
(2)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)
(1)(2)
22 . 计算:
(1)
(2)
(3)
(4)1232-124×122(利用乘法公式计算)
23 . 某班组织学生参加秋季社会实践活动,其中第一小组有人,第二小组的人数比第一小组人数的少3人,如果从第二小组调出1人到第一小组,那么:
(1)两个小组共有多少人?
(2)调动后,第一小组的人数比第二小组多多少人?
24 . 先化简,再求值:
.其中.
25 . 计算:
(1);
(2);
(3)。