匀变速直线运动的重要推论
- 格式:ppt
- 大小:575.50 KB
- 文档页数:11
灵活运用匀变速直线运动的“四个推论”正确理解匀变速直线运动的两个基本规律,即速度与时间的关系:v v at t =+0和位移与时间的关系:s v t at =+0212,是学好匀变速直线运动的基础,而灵活运用由这两个公式推导出的四个有用推论则是学好匀变速直线运动的关键。
推论1:平均速度:v s t v v v t t ==+=022 匀变速直线运动的平均速度等于这段时间的初速度和末速度的平均值,也等于这段时间的中间时刻的瞬时速度。
例1:做匀变速直线运动的物体,在某一时刻前t 1时间内的位移为s 1,在该时刻后t 2时间内的位移为s 2,则物体的加速度为__________。
解析:物体在t 1时间内的平均速度为v s t 111=,亦等于t 1时间内的中间时刻的瞬时速度,在t 2时间内的平均速度为v s t 222=,亦等于t 2时间内的中间时刻的瞬时速度。
物体在这两个中间时刻所经历的时间为t t t =+122。
根据加速度的定义知,物体的加速度为a v v t s t s t t t t t =-=-+21211212122()()。
推论2:速度与位移:v v as t 2022-=例2:一列沿平直轨道匀加速行驶的长为L 的列车,通过长度也为L 的桥,车头通过桥头和桥尾的速度分别为v 1和v 2,则车尾通过桥尾时的速度为___________。
解析:设车尾通过桥尾时的速度为v ,加速度为a ,则根据推论有:v v aL v v aL 221222222-=-=, 由以上两式可得:v v v =-22212例3:物体从O 点由静止开始做匀加速直线运动,A 、B 、C 、D 为其轨迹上四点,测得AB m BC m CD m ===234,,,如图1所示,且物体通过AB 、BC 、CD 所用的时间相等,则O 、A 之间的距离为__________。
图1解析:设物体通过AB 、BC 、CD 所用的时间均为t ,加速度为a ,根据推论1有:v AB BC t t v BC CD t tB C =+==+=252272, 再根据推论2有:v v a BC a v a OA C B B 2222622-=⨯==⨯+,() 联立以上两式可得:OA m =1125. 推论3:连续相等时间内的位移差:∆s aT =2以加速度a 做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是s s s 123、、、……s n ,则∆s s s s s s s n n =-=-==--21321……。
匀变速直线运动的规律(二)【知识点】 一、基本公式1、速度公式:2、位移公式: 2、速度-位移公式: 二、匀变速直线运动的重要推论1、平均速度==2/t v v ;适用条件:2、设物体做匀变速直线运动经过一段位移x 的初、末速度分别为0v 、t v ,中点位置的速度为=2/x v∆ 一段匀变速直线运动中点位置的速度与中点时刻的速度关系:2/t v 2/x v3、逐差相等:在任意两个连续相等的时间间隔T 内,位移差是一个常量 数学表达式:三、初速度为零的匀加速直线运动的几个重要比例关系 1、等分位移(1)通过前x 1、前x 2、前x 3、……、前nx 位移时所用速度之比=⋯n v v v v ::::321(2)通过前x 1、前x 2、前x 3、……、前nx 位移时所用时间之比=⋯n t t t t ::::321(3)通过连续相等的位移所用的时间之比:=⋯n t t t t ::::III II I2、等分时间(1)T 1末、T 2末、T 3末、……、nT 末的速度之比=⋯n v v v v ::::321(2)T 1内、T 2内、T 3内、……、nT 内的位移之比=⋯n x x x x ::::321(3)第一个T 内、第二个T 内、第三个T 内、……、第N 个T 内的位移之比=⋯n x x x x ::::III II I【例题讲解】例1、一个做匀加速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是m s 241=,m s 642=,每一个时间间隔为4s ,求质点的初速度和加速度。
解法Ⅰ:解法Ⅱ:解法Ⅲ:例2、某市规定,车辆在市区内行驶的速度不得超过40 km/h ,有一辆车遇到情况紧急刹车后,经时间s t 5.1 停止,量得路面刹车的痕迹长为s=9m ,问这辆车是否违章(刹车后做匀减速运动)?例3、从斜面上某一位置,每隔0.1 s 释放一颗小球,在连续释放几颗后,对在斜面上滑动的小球拍下照片,如图所示,测得s AB =15cm ,s BC =20cm ,试求:(1)小球的加速度(2)拍摄时B 球的速度v B =? (3)拍摄时s CD =?(4)A 球上面滚动的小球还有几颗?例4、一滑块自静止开始,从斜面顶端匀加速下滑,第5 s 末的速度是6 m /s ,试求(1)第4 s 末的速度;(2)运动后7 s 内的位移;(3)第3 s 内的位移例5、一物体沿斜面顶端由静止开始做匀加速直线运动,最初3 s 内的位移为s 1 ,最后3s 内的位移为s 2,已知s 2-s 1=6 m ;s 1∶s 2=3∶7,求斜面的总长.例6、一列车由等长的车厢连接而成. 车厢之间的间隙忽略不计,一人站在站台上与第一节车厢的最前端相齐。
匀变速直线运动6个推论推导过程一、推论一:速度 - 位移公式v^2-v_0^2=2ax1. 推导依据。
- 匀变速直线运动的速度公式v = v_0+at,位移公式x=v_0t+(1)/(2)at^2。
2. 推导过程。
- 由v = v_0+at可得t=frac{v - v_0}{a}。
- 将t=frac{v - v_0}{a}代入位移公式x = v_0t+(1)/(2)at^2中,得到:- x=v_0frac{v - v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2。
- 展开式子:x=frac{v_0v - v_0^2}{a}+(1)/(2)frac{(v - v_0)^2}{a}。
- 进一步化简:ax=v_0v - v_0^2+(1)/(2)(v^2-2vv_0+v_0^2)。
- ax = v_0v - v_0^2+(1)/(2)v^2-vv_0+(1)/(2)v_0^2。
- 整理可得v^2-v_0^2=2ax。
二、推论二:平均速度公式¯v=frac{v_0+v}{2}(适用于匀变速直线运动)1. 推导依据。
- 位移公式x = v_0t+(1)/(2)at^2,速度公式v = v_0+at,平均速度定义¯v=(x)/(t)。
2. 推导过程。
- 由位移公式x = v_0t+(1)/(2)at^2。
- 又因为v = v_0+at,则t=frac{v - v_0}{a}。
- 将t=frac{v - v_0}{a}代入位移公式得x=v_0frac{v - v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2。
- 平均速度¯v=(x)/(t),t=frac{v - v_0}{a},则¯v=frac{v_0frac{v -v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2}{frac{v - v_0}{a}}。
1 / 4关于高中物理匀变速直线运动规律三大推论推论一、物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =2v t =v 0+v 2;位移与平均速度关系:02v vx vt t +==推论二、匀变速运动的中间位置速度2x v =推论三、任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.以上三个推论是高中物理的基础,历次考试高频考点,学生务必掌握.一个物体做匀加速直线运动,它在第3 s 内的位移为5 m ,则下列说法正确的是( ) A .物体在第3 s 末的速度一定是6 m/s B .物体的加速度一定是2 m/s 2 C .物体在前5 s 内的位移一定是25 m D .物体在第5 s 内的位移一定是9 m【解析】考查匀变速直线运动规律,匀变速直线运动的中间时刻的瞬时速度等于该段的平均速度,根据第3 s 内的位移为5 m ,则2.5 s 时刻的瞬时速度为v =5 m/s ,2.5 s 时刻即为前5 s 的中间时刻,因此前5 s 内的位移为x =vt =5 m/s×5 s =25 m ,C 项对;由于无法确定物体在零时刻的速度以及匀变速运动的加速度,故A 、B 、D 项均错.(2016·河北石家庄调研)滑板爱好者由静止开始沿一斜坡匀加速下滑,经过斜坡中点时的速度为v ,则到达斜坡底端时的速度为( ) A.2vB.3vC .2vD.5v【解析】由匀变速直线运动的中间位置的速度公式v x 2=v 20+v22,有v =0+v 2底2,得v 底=2v ,故A 正确。
【答案】a【江西省赣州市十三县(市)十四校2017届高三上学期期中联考】一辆汽车沿着一条平直的公路行驶,公路旁边与公路平行有一行电线杆,相邻电线杆间的间隔均为50m ,取汽车驶过某一根电线杆的时刻为零时刻,此电线杆作为第1根电线杆,此时刻汽车行驶的速度为5m/s ,若汽车的运动为匀变速直线运动,在10s 末汽车恰好经过第3根电线杆,则下列说法中不正确的是( )A .汽车的加速度为1m/s 2B .汽车继续行驶,经过第7根电线杆时瞬时速度大小为25m/sC .汽车在第3根至第7根间的平均速度为20m/sD .汽车在第3根至第7根间运动所需要的时间为20s【答案】D【解析】汽车在10s 内的位移是:13502100s m =⨯=,由2112s v t at =+,代入数据解得:21/a m s =。
匀变速直线运动的公式和推论1.位移公式:位移是指物体从起点到终点的位置变化量,用Δx表示,单位是米(m)。
在匀变速直线运动中,位移可以用位移公式计算:Δx = v0t + 1/2at^2其中,v0是运动物体的初速度,单位是米每秒(m/s),t是运动的时间,单位是秒(s),a是运动的加速度,单位是米每秒的平方(m/s^2)。
2.速度公式:速度是指物体的位移与时间的比值,用v表示,单位是米每秒(m/s)。
在匀变速直线运动中,速度可以由速度公式得到:v = v0 + at其中,v0是运动物体的初速度,t是运动的时间,a是运动的加速度。
3.位移-时间关系推论:根据位移公式,可以推导出位移与时间的关系。
当加速度a恒定时,位移Δx与时间t的关系为:Δx = v0t + 1/2at^2Δx可以写成位移的平均速度v的形式,即Δx = vt。
将此代入位移公式中,得到:vt = v0t + 1/2at^2整理得到:v=v0+(1/2)at这个推论表明,位移与时间的关系是一个二次函数。
当运动开始时,v0为0,此时位移与时间的关系为:Δx=1/2at^2这个公式描述了匀变速直线运动的加速阶段。
4.速度-时间关系推论:根据速度公式,可以推导出速度与时间的关系。
同样地,当加速度a恒定时,速度v与时间t的关系为:v = v0 + at将位移公式中的v代入,得到:vt = v0 + at整理得到:v = v0 + at这个推论表明,速度与时间的关系是线性的。
当运动开始时,v0为0,此时速度与时间的关系为:v = at这个公式描述了匀变速直线运动的加速阶段。
5.时间-位移关系推论:通过速度-时间关系可以推导出时间与位移的关系。
忽略负号,由速度公式可得:t=(v-v0)/a将位移公式中的v代入,得到:t = (Δx - v0t)/((1/2)at)化简得:t = (2Δx - v0t)/at整理得:t=2Δx/v-v0/a这个推论表明,时间与位移的关系是一个一个二次函数。
匀变速直线运动规律推论题目一、匀变速直线运动规律推论基本公式回顾1. 速度 - 时间关系- 基本公式:v = v_0+at,其中v_0是初速度,a是加速度,t是时间,v是末速度。
2. 位移 - 时间关系- 公式:x = v_0t+(1)/(2)at^23. 速度 - 位移关系- 公式:v^2 - v_0^2=2ax二、匀变速直线运动的几个重要推论1. 平均速度公式- 推论:¯v=(v_0 + v)/(2)(此公式适用于匀变速直线运动)- 解析:根据速度 - 时间图像,匀变速直线运动的速度随时间是线性变化的。
位移x=¯vt,而从速度 - 时间图像来看,位移等于梯形的面积,x=((v_0 +v)t)/(2),所以¯v=(v_0 + v)/(2)。
2. 中间时刻速度公式- 推论:v_(t)/(2)=(v_0 + v)/(2)- 解析:设初速度为v_0,末速度为v,加速度为a,根据速度公式v =v_0+at,中间时刻t'=(t)/(2)时的速度v_(t)/(2)=v_0 + a(t)/(2)。
又因为v = v_0+at,所以t=(v - v_0)/(a),将t=(v - v_0)/(a)代入v_(t)/(2)=v_0 + a(t)/(2)中,可得v_(t)/(2)=v_0+(v - v_0)/(2)=(v_0 + v)/(2)。
3. 中间位置速度公式- 推论:v_(x)/(2)=√(frac{v_0^2)+v^{2}{2}}- 解析:根据速度 - 位移公式v^2 - v_0^2 = 2ax,设全程位移为x,对于前半段位移x/2有v_(x)/(2)^2-v_0^2=2a(x)/(2),对于全程有v^2-v_0^2=2ax。
将v_(x)/(2)^2-v_0^2=2a(x)/(2)变形为v_(x)/(2)^2=v_0^2+ax,把x=frac{v^2-v_0^2}{2a}代入可得v_(x)/(2)^2=v_0^2+frac{v^2-v_0^2}{2}=frac{v_0^2+v^2}{2},所以v_(x)/(2)=√(frac{v_0^2)+v^{2}{2}}。
_匀变速直线运动规律的⼏个重要推论匀变速直线运动规律的⼏个重要推论重难点解析:1. 匀变速直线运动的三个重要推论的推导过程:(1)在连续相等的时间(t)内的位移之差为⼀恒定值,即(⼜称匀变速直线运动的判别式)。
推证:设物体以初速、加速度a做匀加速直线运动,⾃计时起时间t内的位移①在第2个t内的位移②由①②两式得连续相等时间内的位移差为即。
进⼀步推证可得(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度。
即推证:由①知经的瞬时速度②由①得,代⼊②中,得即(3)某段位移内中间位置的瞬时速度V S/2与这段位移的初、末速度与的关系为推证:由速度位移公式①知②由①得,代⼊②得得说明:匀变速直线运动中某段位移中点的瞬时速度⼤于该段时间中点的瞬时速度。
【典型例题】问题1、平均速度公式推论的应⽤:[考题1]有⼀做匀加速直线运动的质点,它在连续相等的时间间隔内,所通过的位移分别是24m和64m,每⼀个时间间隔为4s,求质点的初速度和加速度。
[解析]解法⼀:⽤常规⽅法来解。
据题意知,物体在AB段的位移为,在BC段的位移为(如图所⽰),从A到B和从B到C质点运动时间均为4s,要求a和,由位移公式有:将代⼊以上两式,可得:解法⼆:⽤平均速度求解,先求出在AB、CD两段位移内的平均速度:物体运动到B点时是中间时刻,由于匀变速直线运动在⼀段时间的中间时刻的瞬时速度等于这段时间内的平均速度,则⼜有:,所以,故解法三:利⽤匀变速直线运动的规律,,由题意得:再由匀变速直线运动的位移公式:可求出变式1:做匀加速直线运动的质点,连续经过A、B、C三点,已知AB=BC,且已知质点在AB段的平均速度为3m/s,在BC段的平均速度为6m/s,则质点在B点时速度为()A. 4m/sB. 4.5m/sC. 5m/sD. 5.5m/s答案:C变式2:⼀物体做匀减速直线运动,初速度为12m/s,加速度为2m/s2,该物体在某1s内的位移是6cm,此后它运动多少⽶速度为零?答案:6.25m问题2、Δs=aT 2推论的应⽤问题:[考题2]从斜⾯上某⼀位置,每隔0.1s释放⼀颗⼩球,在连续释放⼏颗后,对在斜⾯上滚动的⼩球拍下照⽚,如图所⽰,测得,,试求(1)⼩球的加速度;(2)拍摄时B球的速度;(3)拍摄时;(4)A球上⾯滚动的⼩球还有⼏颗?解析:释放后⼩球都做匀加速直线运动,相邻两球的时间间隔均为0.1s,可以认为A、B、C、D各点是⼀个⼩球在不同时刻的位置。